Nutritional and Phytochemical Characterization of Freeze-Dried Raspberry (Rubus idaeus): A Comprehensive Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Moisture, Ash and Protein Determination
2.3. Mineral Determination
2.4. Organic Acids Determination
2.5. Lipid Determination
2.5.1. Total Lipid
2.5.2. Fatty Acid Determination
2.6. Determination of Sugars
2.7. Determination of Total (poly)Phenols and Proanthocyanidins
2.8. Proanthocyanidin Determination by UHPLC-DAD-Orbitrap MS
2.9. Extraction and Analysis of ACNs from Raspberry Powder
2.10. Extraction and Analysis of Ellagitannins from Raspberry Powder
2.11. Ascorbic Acid Determination
3. Results and Discussion
3.1. Nutrient Composition
3.2. Non-Nutrient Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
glc | 3-O-glucoside |
AIF | All Ion Fragmentation |
AA | Ascorbic acid |
DMAC | Ascorbic acid, 4-dimethylamino-cinnamaldehyde |
CAT | Catechin |
Cy-di-glc | Cy-3,5-di-glucoside |
Cy-sop | Cy-3-O-sophoroside |
Cy | Cyanidin |
Cy-rut | Cy-rutinoside |
Cy-sam | Cy-sambubioside |
EC | Epicatechin |
GAE | Gallic acid equivalents |
HHDP | Hexahydroxydiphenoyl |
L-C | Lambertianin C |
MUFAs | Monounsaturated fatty acids |
OAs | Organic acids |
Pel | Pelargonidin |
PUFA | Polyunsaturated fatty acids |
PA2 | Procyanidin A2 |
PC1 | Procyanidin C1 |
RP | Raspberry powder |
SH-6 | Sanguiin H-6 |
SH-10 | Sanguiin H-10 |
SFAs | Saturated fatty acids |
TLs | Total lipids |
TPC | Total (poly)phenols content |
TFA | Trifluoroacetic acid |
UFAs | Unsaturated fatty acids |
References
- Piña-Contreras, N.; Martínez-Moreno, A.G.; Ramírez-Anaya, J.D.P.; Espinoza-Gallardo, A.C.; Valdés, E.H.M. Raspberry (Rubus idaeus L.), a Promising Alternative in the Treatment of Hyperglycemia and Dyslipidemias. J. Med. Food 2022, 25, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.S.; Kim, S.; Hong, S.J.; Choi, S.C.; Choi, J.-H.; Kim, J.-H.; Park, C.-Y.; Cho, J.Y.; Lee, T.-B.; Kwon, J.-W.; et al. Black Raspberry Extract Increased Circulating Endothelial Progenitor Cells and Improved Arterial Stiffness in Patients with Metabolic Syndrome: A Randomized Controlled Trial. J. Med. Food 2016, 19, 346–352. [Google Scholar] [CrossRef] [PubMed]
- VandenAkker, N.E.; Vendrame, S.; Tsakiroglou, P.; McGilvrey, M.; Klimis-Zacas, D. Whole Red Raspberry (Rubus idaeus)-Enriched Diet Is Hepatoprotective in the Obese Zucker Rat, a Model of the Metabolic Syndrome. J. Med. Food 2021, 24, 817–824. [Google Scholar] [CrossRef] [PubMed]
- VandenAkker, N.E.; Vendrame, S.; Tsakiroglou, P.; Klimis-Zacas, D. Red Raspberry (Rubus idaeus) Consumption Restores the Impaired Vasoconstriction and Vasorelaxation Response in the Aorta of the Obese Zucker Rat, a Model of the Metabolic Syndrome. J. Berry Res. 2021, 11, 89–101. [Google Scholar] [CrossRef]
- Chen, T.; Shi, N.; Afzali, A. Chemopreventive Effects of Strawberry and Black Raspberry on Colorectal Cancer in Inflammatory Bowel Disease. Nutrients 2019, 11, 1261. [Google Scholar] [CrossRef]
- Burton-Freeman, B.M.; Sandhu, A.K.; Edirisinghe, I. Red Raspberries and Their Bioactive Polyphenols: Cardiometabolic and Neuronal Health Links. Adv. Nutr. 2016, 7, 44–65. [Google Scholar] [CrossRef] [PubMed]
- Popović, T.; Šarić, B.; Martačić, J.D.; Arsić, A.; Jovanov, P.; Stokić, E.; Mišan, A.; Mandić, A. Potential Health Benefits of Blueberry and Raspberry Pomace as Functional Food Ingredients: Dietetic Intervention Study on Healthy Women Volunteers. Front. Nutr. 2022, 9, 969996. [Google Scholar] [CrossRef] [PubMed]
- Kashchenko, N.I.; Olennikov, D.N.; Chirikova, N.K. Metabolites of Siberian Raspberries: LC-MS Profile, Seasonal Variation, Antioxidant Activity and, Thermal Stability of Rubus matsumuranus Phenolome. Plants 2021, 10, 2317. [Google Scholar] [CrossRef] [PubMed]
- Anjos, R.; Cosme, F.; Gonçalves, A.; Nunes, F.M.; Vilela, A.; Pinto, T. Effect of Agricultural Practices, Conventional vs Organic, on the Phytochemical Composition of ‘Kweli’ and ‘Tulameen’ Raspberries (Rubus idaeus L.). Food Chem. 2020, 328, 126833. [Google Scholar] [CrossRef]
- Landete, J.M. Ellagitannins, Ellagic Acid and Their Derived Metabolites: A Review about Source, Metabolism, Functions and Health. Food Res. Int. 2011, 44, 1150–1160. [Google Scholar] [CrossRef]
- Gasperotti, M.; Masuero, D.; Vrhovsek, U.; Guella, G.; Mattivi, F. Profiling and Accurate Quantification of Rubus Ellagitannins and Ellagic Acid Conjugates Using Direct UPLC-Q-TOF HDMS and HPLC-DAD Analysis. J. Agric. Food Chem. 2010, 58, 4602–4616. [Google Scholar] [CrossRef]
- Baccichet, I.; Chiozzotto, R.; Bassi, D.; Gardana, C.; Cirilli, M.; Spinardi, A. Characterization of Fruit Quality Traits for Organic Acids Content and Profile in a Large Peach Germplasm Collection. Sci. Hortic. 2021, 278, 109865. [Google Scholar] [CrossRef]
- Gardana, C.; Del Bo’, C.; Quicazán, M.C.; Corrrea, A.R.; Simonetti, P. Nutrients, Phytochemicals and Botanical Origin of Commercial Bee Pollen from Different Geographical Areas. J. Food Compos. Anal. 2018, 73, 29–38. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Gardana, C.; Simonetti, P. Evaluation of the Degree of Polymerization of the Proanthocyanidins in Cranberry by Molecular Sieving and Characterization of the Low Molecular Weight Fractions by UHPLC-Orbitrap Mass Spectrometry. Molecules 2019, 24, 1504. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Durst, R.W.; Wrolstad, R.E.; Eisele, T.; Giusti, M.M.; Haché, J.; Hofsommer, H.; Koswig, S.; Krueger, D.A.; Kupina, S.; et al. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the PH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Spinardi, A.; Cola, G.; Gardana, C.S.; Mignani, I. Variation of Anthocyanin Content and Profile throughout Fruit Development and Ripening of Highbush Blueberry Cultivars Grown at Two Different Altitudes. Front. Plant Sci. 2019, 10, 1045. [Google Scholar] [CrossRef] [PubMed]
- Fotirić Akšić, M.; Nešović, M.; Ćirić, I.; Tešić, Ž.; Pezo, L.; Tosti, T.; Gašić, U.; Dojčinović, B.; Lončar, B.; Meland, M. Chemical Fruit Profiles of Different Raspberry Cultivars Grown in Specific Norwegian Agroclimatic Conditions. Horticulturae 2022, 8, 765. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, G.; Sun, L.; Song, X.; Bao, Y.; Luo, T.; Wang, J. Comprehensive Evaluation of 24 Red Raspberry Varieties in Northeast China Based on Nutrition and Taste. Foods 2022, 11, 3232. [Google Scholar] [CrossRef]
- Bantle, J.P. Dietary Fructose and Metabolic Syndrome and Diabetes. J. Nutr. 2009, 139, 1263S–1268S. [Google Scholar] [CrossRef]
- Oomah, B.D.; Ladet, S.; Godfrey, D.V.; Liang, J.; Girard, B. Characteristics of Raspberry (Rubus idaeus L. ) Seed Oil. Food Chem. 2000, 69, 187–193. [Google Scholar] [CrossRef]
- Bushman, B.S.; Phillips, B.; Isbell, T.; Ou, B.; Crane, J.M.; Knapp, S.J. Chemical Composition of Caneberry (Rubus spp.) Seeds and Oils and Their Antioxidant Potential. J. Agric. Food Chem. 2004, 52, 7982–7987. [Google Scholar] [CrossRef]
- Celik, F.; Ercişli, S. Lipid and Fatty Acid Composition of Wild and Cultivated Red Raspberry Fruits (Rubus idaeus L.). J. Med. Plants Res. 2009, 3, 583–585. [Google Scholar]
- Vara, A.L.; Pinela, J.; Dias, M.I.; Petrović, J.; Nogueira, A.; Soković, M.; Ferreira, I.C.F.R.; Barros, L. Compositional Features of the “Kweli” Red Raspberry and Its Antioxidant and Antimicrobial Activities. Foods 2020, 9, 1522. [Google Scholar] [CrossRef]
- Zula, A.T.; Desta, D.T. Fatty Acid-Related Health Lipid Index of Raw and Fried Nile Tilapia (Oreochromis Niloticus) Fish Muscle. J. Food Qual. 2021, 2021, 6676528. [Google Scholar] [CrossRef]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.V.; Snyder, D.M. Raspberries and Human Health: A Review. J. Agric. Food Chem. 2010, 58, 3871–3883. [Google Scholar] [CrossRef] [PubMed]
- Motyleva, S.M.; Evdokimenko, S.N.; Podgaetsky, M.A.; Tumaeva, T.A.; Burmenko, Y.V.; Svistunova, N.Y.; Panischeva, D.V.; Kulikov, I.M. Mineral Composition of Repair Raspberry (Rubus idaeus L.) Fruits. Vavilovskii Zhurnal Genet. Selektsii 2022, 26, 622–629. [Google Scholar] [CrossRef]
- Vázquez-González, M.; Fernández-Prior, Á.; Bermúdez Oria, A.; Rodríguez-Juan, E.M.; Pérez-Rubio, A.G.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. Utilization of Strawberry and Raspberry Waste for the Extraction of Bioactive Compounds by Deep Eutectic Solvents. LWT 2020, 130, 109645. [Google Scholar] [CrossRef]
- Bobinaitė, R.; Viškelis, P.; Venskutonis, P.R. Variation of Total Phenolics, Anthocyanins, Ellagic Acid and Radical Scavenging Capacity in Various Raspberry (Rubus spp.) Cultivars. Food Chem. 2012, 132, 1495–1501. [Google Scholar] [CrossRef]
- Anttonen, M.J.; Karjalainen, R.O. Environmental and Genetic Variation of Phenolic Compounds in Red Raspberry. J. Food Compos. Anal. 2005, 18, 759–769. [Google Scholar] [CrossRef]
- Lugasi, A.; Hóvári, J.; Kádár, G.; Dénes, F. Phenolics in Raspberry, Blackberry and Currant Cultivars Grown in Hungary. Acta Aliment. 2011, 40, 52–64. [Google Scholar] [CrossRef]
- Işık, E.; Şahin, S.; Demir, C.; Türkben, C. Determination of Total Phenolic Content of Raspberry and Blackberry Cultivars by Immobilized Horseradish Peroxidase Bioreactor. J. Food Compos. Anal. 2011, 24, 944–949. [Google Scholar] [CrossRef]
- Weber, C.A.; Perkins-Veazie, P.; Moore, P.P.; Howard, L. Variability of Antioxidant Content in Raspberry Germplasm. Acta Hortic. 2008, 777, 493–498. [Google Scholar] [CrossRef]
- Jiang, Y.; Subbiah, V.; Wu, H.; Bk, A.; Sharifi-Rad, J.; Suleria, H.A.R. Phenolic Profiling of Berries Waste and Determination of Their Antioxidant Potential. J. Food Qual. 2022, 2022, 5605739. [Google Scholar] [CrossRef]
- Pantelidis, G.; Vasilakakis, M.; Manganaris, G.; Diamantidis, G. Antioxidant Capacity, Phenol, Anthocyanin and Ascorbic Acid Contents in Raspberries, Blackberries, Red Currants, Gooseberries and Cornelian Cherries. Food Chem. 2007, 102, 777–783. [Google Scholar] [CrossRef]
- Shi, H.; Zhou, X.; He, X.; Ding, R.; Wang, R.; Wang, W.; Zhou, W. Extraction Optimization of Raspberry Proanthocyanidins and Determination of Its Antioxidant Activities in Vitro. Food Agric. Immunol. 2021, 32, 693–712. [Google Scholar] [CrossRef]
- Mullen, W.; Larcombe, S.; Arnold, K.; Welchman, H.; Crozier, A. Use of Accurate Mass Full Scan Mass Spectrometry for the Analysis of Anthocyanins in Berries and Berry-Fed Tissues. J. Agric. Food Chem. 2010, 58, 3910–3915. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Concentrations of Anthocyanins in Common Foods in the United States and Estimation of Normal Consumption. J. Agric. Food Chem. 2006, 54, 4069–4075. [Google Scholar] [CrossRef]
- Ludwig, I.A.; Mena, P.; Calani, L.; Borges, G.; Pereira-Caro, G.; Bresciani, L.; Del Rio, D.; Lean, M.E.J.; Crozier, A. New Insights into the Bioavailability of Red Raspberry Anthocyanins and Ellagitannins. Free Radic. Biol. Med. 2015, 89, 758–769. [Google Scholar] [CrossRef]
- Wada, L.; Ou, B. Antioxidant activity and phenolic content of Oregon caneberries. J. Agric. Food Chem. 2022, 50, 3495–3500. [Google Scholar] [CrossRef] [PubMed]
- Çekiç, Ç.; Özgen, M. Comparison of Antioxidant Capacity and Phytochemical Properties of Wild and Cultivated Red Raspberries (Rubus idaeus L.). J. Food Compos. Anal. 2010, 23, 540–544. [Google Scholar] [CrossRef]
Component | % |
---|---|
Raw berries moisture | 85.1 ± 2.3 |
RP moisture | 6.1 ± 0.3 |
Ash | 4.1 ± 0.3 |
Protein | 8.1 ± 0.4 |
Total lipids | 6.2 ± 0.5 |
SFA | 10.6 ± 0.3 |
MUFA | 15.6 ± 0.2 |
PUFA | 65.9 ± 1.1 |
n–3 | 19.8 ± 0.3 |
n–6 | 46.1 ± 0.4 |
UFA/SFA | 7.7 ± 0.2 |
Sugars | 35.4 ± 0.3 |
Fructose | 12.3 ± 0.3 |
Glucose | 10.8 ± 0.1 |
Sucrose | 12.2 ± 0.3 |
Ascorbic acid | 0.112 ± 0.001 |
Total minerals | 0.13 ± 0.01 |
Organic acids | 5.8 ± 0.2 |
Total anthocyanins | 0.53 ± 0.02 |
Total (poly)phenols a | 3.3 ± 0.2 |
Total PACs b | 0.71 ± 0.05 |
Total ellagitannins c | 0.63 ± 0.12 |
FA | % |
---|---|
caproic acid | 0.41 ± 0.05 |
lauric acid | 0.19 ± 0.01 |
palmitic acid | 5.73 ± 0.02 |
stearic acid | 1.73 ± 0.09 |
oleic acid | 14.75 ± 0.03 |
vaccenic acid | 0.84 ± 0.04 |
linoleic acid | 46.14 ± 0.44 |
α-linolenic acid | 19.80 ± 0.29 |
arachidic acid | 1.42 ± 0.01 |
behenic acid | 0.71 ± 0.02 |
tricosanoic acid | 0.21 ± 001 |
lignoceric acid | 0.24 ± 0.06 |
Mineral | mg/Kg |
---|---|
potassium | 959.6 ± 79.7 |
phosphorus | 121.7 ± 10.9 |
calcium | 109.0 ± 8.6 |
magnesium | 91.7 ± 7.2 |
manganese | 8.2 ± 0.5 |
iron | 6.5 ± 0.5 |
aluminum | 5.1 ± 0.8 |
zinc | 1.5 ± 0.2 |
sodium | 0.52 ± 0.04 |
copper | 0.44 ± 0.04 |
chrome | 0.041 ± 0.005 |
molybdenum | 0.032 ± 0.009 |
nichel | 0.27 ± 0.04 |
cobalt | 0.019 ± 0.002 |
cadmium | 0.012 ± 0.001 |
plumb | 0.010 ± 0.002 |
arsenic | 0.006 ± 0.001 |
selenium | ND |
Peak | λmax | [M]+ | Fragment Ions | Anthocyanin | mg/100 g RP |
---|---|---|---|---|---|
1 | 520 | 611.1609 | 449.1081, 287.0552 | Cy-di-Glc | 5.8 ± 0.2 |
2 | 520 | 611.1609 | 287.0551 | Cy-Sop | 406.3 ± 15.0 |
3 | 520 | 449.1080 | 287.0553 | Cy-Glc | 93.7 ± 3.3 |
4 | 520 | 581.1504 | 449.1081, 287.0552 | Cy-Sam | 18.1 ± 0.6 |
5 | 520 | 595.1660 | 449.1081, 287.0552 | Cy-Ru | 6.2 ± 0.2 |
Peak | RT | [M–H]− | Brute Formula | Fragments | Brute Formula | Compound |
---|---|---|---|---|---|---|
1 | 0.9 | 191.0196 | C6H7O7 | Citric acid | ||
2 | 4.6 | 783.0690 | C34H23O22 | 300.9989 | C14H5O8 | Pedunculagin isomer |
3 | 6.7 | 783.069 | C34H23O22 | 300.9989 | C14H5O8 | Pedunculagin isomer |
4 | 7.8 | 577.1352 | C30H25O12 | 288.0640 | C15H13O6 | Procyanidin dimer B-type |
5 | 8.3 | 783.0690 a 1567.1416 | C34H23O22 | 300.9989 | C14H5O8 | Sanguiin H-10 isomer |
6 | 8.5 | 627.1561 609.1461 | C27H31O17 C27H29O16 | 491.1405 284.0323 | C20H27O14 C15H8O6 | Eriodictyol-di-glucoside |
7 | 9.0 | 577.1352 | C30H25O12 | Procyanidin Dimer B-type | ||
8 | 9.4 | 627.1565 | C27H31O17 | 491.1405 285.0402 | C20H27O14 C15H9O6 | Eriodictyol-di-glucoside |
9 | 10.4 | 561.1401 | C30H25O11 | 289.0717 | C15H13O6 | Procyanidin dimer B-type |
10 | 10.8 | 783.0694 a 1567.1416 | C34H23O22 C68H47O44 | 300.9989 | C14H5O8 | Sanguiin H-10 isomer |
11 | 11.8 | 783.0694 a 1567.1416 | C34H23O22 C68H47O44 | 300.9989 | C14H5O8 | Sanguiin H-10 isomer |
12 | 12.0 | 1401.6062 a | C123H79O78 | 633.0723 469.0042 300.9988 | C27H19O18 C21H9O13 C14H5O8 | Lambertianin C |
13 | 12.4 | 1870.1482 934.0715 a | C82H53O52 C41H26O26 | 933.0635 633.0723 469.0042 300.9988 | C41H25O26 C27H19O18 C21H9O13 C14H5O8 | Sanguiin H-6 |
14 | 13.0 | 433.041 | C19H13O12 | 300.9988 | C14H5O8 | Ellagic acid pentoside |
15 | 14.0 | 567.2083 | C27H35O13 | Saponin | ||
16 | 18.3 | 677.2831 1355.5713 b | C34H45O14 C68H89O28 | 489.0673 315.0145 | C22H17O13 C15H7O8 | Saponin |
17 | 19.2 | 679.3696 1359.7452 b | C36H55O12 C72H111O12 | 517.3165 | C30H4 O7 | Tenuifolin |
18 | 19.4 | 679.3696 1359.7452 b | C36H55O12 C72H111O12 | 517.3165 | C30H45O7 | Tenuifolin |
19 | 20.2 | 711.3967 | C37H59O13 | 503.3377 | C30H47O6 | Triterpenoid glycoside (+HCOOH) |
20 | 21.0 | 709.3811 | C37H57O13 | 501.3220 | C30H45O6 | Triterpenoid glycoside (+HCOOH) |
21 | 23.5 | 695.4012 | C37H59O12 | 487.3426 | C30H47O5 | Unknown |
22 | 24.4 | 679.3696 1359.7452 b | C36H55O12 C72H111O12 | 517.3165 | C30H45O7 | Tenuifolin |
23 | 24.6 | 1387.7402 679.3696 | C36H55O12 | 679.3696 | C36H55O12 | Triterpenoid glycoside (+HCOOH) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marino, M.; Gardana, C.; Rendine, M.; Klimis-Zacas, D.; Riso, P.; Porrini, M.; Del Bo’, C. Nutritional and Phytochemical Characterization of Freeze-Dried Raspberry (Rubus idaeus): A Comprehensive Analysis. Foods 2024, 13, 1051. https://doi.org/10.3390/foods13071051
Marino M, Gardana C, Rendine M, Klimis-Zacas D, Riso P, Porrini M, Del Bo’ C. Nutritional and Phytochemical Characterization of Freeze-Dried Raspberry (Rubus idaeus): A Comprehensive Analysis. Foods. 2024; 13(7):1051. https://doi.org/10.3390/foods13071051
Chicago/Turabian StyleMarino, Mirko, Claudio Gardana, Marco Rendine, Dorothy Klimis-Zacas, Patrizia Riso, Marisa Porrini, and Cristian Del Bo’. 2024. "Nutritional and Phytochemical Characterization of Freeze-Dried Raspberry (Rubus idaeus): A Comprehensive Analysis" Foods 13, no. 7: 1051. https://doi.org/10.3390/foods13071051
APA StyleMarino, M., Gardana, C., Rendine, M., Klimis-Zacas, D., Riso, P., Porrini, M., & Del Bo’, C. (2024). Nutritional and Phytochemical Characterization of Freeze-Dried Raspberry (Rubus idaeus): A Comprehensive Analysis. Foods, 13(7), 1051. https://doi.org/10.3390/foods13071051