Physico-Chemical and Rheological Trait-Based Identification of Indian Wheat Varieties Suitable for Different End-Uses †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Protein Isolation and SDS-PAGE
2.3. Quality Analysis
2.4. Statistical Analysis
3. Results
3.1. Quality Trait Variation and Their Correlations
3.2. Principal Component Analysis (PCA) of Quality Traits
3.3. Dendrogram Construction
3.4. Scatter Plots
4. Discussion
4.1. Variability of Traits among Genotypes
4.2. Correlation among Traits
4.3. Genotypes Identified for End-Use Based on Scatter Plot Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statista. Worldwide Production of Grain in 2023/24, by Type (in Million Metric Tons). 2024. Available online: https://www.statista.com/ (accessed on 12 February 2024).
- Tian, X.; Sun, B.; Wang, X.; Ma, S.; Li, L.; Qian, X. Effects of milling methods on rheological properties of fermented and non-fermented dough. Grain Oil Sci. Technol. 2020, 3, 77–86. [Google Scholar] [CrossRef]
- Gómez, M.; Gutkoski, L.C.; Bravo-Núñez, N. Understanding whole-wheat flour and its effect in breads: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3241–3265. [Google Scholar] [CrossRef] [PubMed]
- Hassoon, W.H.; Dziki, D.; Miś, A.; Biernacka, B. Wheat Grinding Process with Low Moisture Content: A New Approach for Wholemeal Flour Production. Processes 2020, 9, 32. [Google Scholar] [CrossRef]
- Shewry, P. What Is Gluten—Why Is It Special? Front. Nutr. 2019, 6, 101. [Google Scholar] [CrossRef]
- Lu, X.; Brennan, M.A.; Serventi, L.; Brennan, C.S. Incorporation of mushroom powder into bread dough—Effects on dough rheology and bread properties. Cereal Chem. 2018, 95, 418–427. [Google Scholar] [CrossRef]
- Payne, P.I. Genetics of Wheat Storage Proteins and the Effect of Allelic Variation on Bread-Making Quality. Annu. Rev. Plant Physiol. 1987, 38, 141–153. [Google Scholar] [CrossRef]
- Zhao, J.; Zheng, X.; Qiao, L.; Ge, C.; Wu, B.; Zhang, S.; Qiao, L.; Feng, Z.; Zheng, J. Effects of HMW-GSs on quality related traits in wheat (Triticum aestivum L.) under different water regimes. PLoS ONE 2020, 15, e0237711. [Google Scholar] [CrossRef]
- Dong, L.; Huo, N.; Wang, Y.; Deal, K.; Wang, D.; Hu, T.; Dvorak, J.; Anderson, O.D.; Luo, M.; Gu, Y.Q. Rapid evolutionary dynamics in a 2.8-Mb chromosomal region containing multiple prolamin and resistance gene families in Aegilops tauschii. Plant J. 2016, 87, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, F.; Cao, S.; Zhang, K. Genomic and functional genomics analyses of gluten proteins and prospect for simultaneous improvement of end-use and health-related traits in wheat. Theor. Appl. Genet. 2020, 133, 1521–1539. [Google Scholar] [CrossRef]
- AbuHammad, W.A.; Elias, E.M.; Manthey, F.A.; Alamri, M.S.; Mergoum, M. A Comparison of Methods for Assessing Dough and Gluten Strength of Durum Wheat and Their Relationship to Pasta Cooking Quality. Int. J. Food Sci. Technol. 2012, 47, 2561–2573. [Google Scholar] [CrossRef]
- Singh, N.; Katyal, M.; Virdi, A.S.; Kaur, A.; Goyal, A.; Ahlawat, A.K.; Mahendru Singh, A. Effect of Grain Hardness, Fractionation and Cultivars on Protein, Pasting and Dough Rheological Properties of Different Wheat Flours. Int. J. Food Sci. Technol. 2018, 53, 2077–2087. [Google Scholar] [CrossRef]
- Barak, S.; Mudgil, D.; Khatkar, B.S. Relationship of Gliadin and Glutenin Proteins with Dough Rheology, Flour Pasting and Bread Making Performance of Wheat Varieties. LWT Food Sci. Technol. 2013, 51, 211–217. [Google Scholar] [CrossRef]
- Ma, F.; Lee, Y.Y.; Baik, B.-K. Bran Characteristics Influencing Quality Attributes of Whole Wheat Chinese Steamed Bread. J. Cereal Sci. 2018, 79, 431–439. [Google Scholar] [CrossRef]
- Zhen, Z.; Mares, D. A simple extraction and one-step SDS–PAGE system for separating HMW And LMW glutenin subunits of wheat and high molecular weight proteins of rye. J. Cereal Sci. 1992, 15, 63–78. [Google Scholar] [CrossRef]
- Payne, P.I.; Lawrence, G.J. Catalogue of Alleles for the Complex Gene Loci, Glu-A1, Glu-B1, and Glu-D1 Which Code for High-Molecular-Weight Subunits of Glutenin in Hexaploid Wheat. Cereal Res. Commun. 1983, 11, 29–35. Available online: https://eurekamag.com/research/001/051/001051987.php (accessed on 10 October 2023).
- Quinton, L.A.; Kennedy, J.F. American Association of Cereal Chemists Approved Methods, 10th Ed., CD-ROM: American Association of Cereal Chemists, 2000, ISBN: 1-891127-13-6, US$579. Carbohydr. Polym. 2002, 49, 515. [Google Scholar] [CrossRef]
- Morris, C.F.; Lillemo, M.; Simeone, M.C.; Giroux, M.J.; Babb, S.L.; Kidwell, K.K. Prevalence of Puroindoline Grain Hardness Genotypes among Historically Significant North American Spring and Winter Wheats. Crop Sci. 2001, 41, 218–228. [Google Scholar] [CrossRef]
- Katyal, M.; Virdi, A.S.; Kaur, A.; Singh, N.; Kaur, S.; Ahlawat, A.K.; Singh, A.M. Diversity in Quality Traits amongst Indian Wheat Varieties I: Flour and Protein Characteristics. Food Chem. 2016, 194, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Dziki, D.; Laskowski, J. Wheat Kernel Physical Properties and Milling Process. Acta Agrophys. 2005, 6, 59–71. Available online: www.researchgate.net/publication/237423868_Wheat_kernel_physical_properties_and_milling_process (accessed on 12 October 2023).
- Abdipour, M.; Ebrahimi, M.; Izadi-Darbandi, A.; Mastrangelo, A.M.; Najafian, G.; Arshad, Y.; Mirniyam, G. Association between Grain Size and Shape and Quality Traits, and Path Analysis of Thousand Grain Weight in Iranian Bread Wheat Landraces from Different Geographic Regions. Not. Bot. Horti Agrobot. Cluj-Napoca 2016, 44, 228–236. [Google Scholar] [CrossRef]
- Katyal, M.; Singh, N.; Virdi, A.S.; Kaur, A.; Chopra, N.; Ahlawat, A.K.; Singh, A.M. Extraordinarily Soft, Medium-Hard and Hard Indian Wheat Varieties: Composition, Protein Profile, Dough and Baking Properties. Food Res. Int. 2017, 100, 306–317. [Google Scholar] [CrossRef] [PubMed]
- Aydŏgan, S.; ¸Sahin, M.; Göçmen Akçacik, A.; Hamzaŏglu, S.; Taner, S. Relationships between farinograph parameters and breadvolume, physicochemical traits in bread wheat flours. J. Bahri Dagdas Crop Res. 2015, 3, 14–18. [Google Scholar]
- Munteanu, M.; Voicu, G.; Ungureanu, N.; Istrate, I. Methods for Determining The Characteristics Of Flour And Dough. In Proceedings of the 5th International Conference on Thermal Equipment, Renewable Energy and Rural Development TE-RE-RD, Golden Sands, Bulgaria, 2–4 June 2016; pp. 349–354. Available online: www.researchgate.net/publication/305324896 (accessed on 12 October 2023).
- Cui, F.; Zhao, C.; Ding, A.; Li, J.; Wang, L.; Li, X.; Bao, Y.; Li, J.; Wang, H. Construction of an Integrative Linkage Map and QTL Mapping of Grain Yield-Related Traits Using Three Related Wheat RIL Populations. Theor. Appl. Genet. 2013, 127, 659–675. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.S.; Ihsanullah Qamar, M.; Anjum, F.M.; Aziz, A.; Atif Randhawa, M. Development of Minerals-enriched Brown Flour by Utilizing Wheat Milling By-Products. Nutr. Food Sci. 2004, 34, 161–165. [Google Scholar] [CrossRef]
- Heshe, G.G.; Haki, G.D.; Woldegiorgis, A.Z.; Gemede, H.F. Effect of Conventional Milling on the Nutritional Value and Antioxidant Capacity of Wheat Types Common in Ethiopia and a Recovery Attempt with Bran Supplementation in Bread. Food Sci. Nutr. 2015, 4, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, R.A.; Singh, T.P.; Rani, M.; Sogi, D.S.; Bhat, M.A. Diversity in Grain, Flour, Amino Acid Composition, Protein Profiling, and Proportion of Total Flour Proteins of Different Wheat Cultivars of North India. Front. Nutr. 2020, 7, 141. [Google Scholar] [CrossRef] [PubMed]
- Lacko-Bartošová, M.; Konvalina, P.; Lacko-Bartošová, L. Baking Quality Prediction of Spelt Wheat Based on Rheological and Mixolab Parameters. Acta Aliment. 2019, 48, 213–220. [Google Scholar] [CrossRef]
- Oelofse, R.M.; Labuschagne, M.T.; van Deventer, C.S. Influencing Factors of Sodium Dodecyl Sulfate Sedimentation in Bread Wheat. J. Cereal Sci. 2010, 52, 96–99. [Google Scholar] [CrossRef]
- Pedersen, L.; Kaack, K.; Bergsøe, M.N.; Adler-Nissen, J. Rheological Properties of Biscuit Dough from Different Cultivars, and Relationship to Baking Characteristics. J. Cereal Sci. 2004, 39, 37–46. [Google Scholar] [CrossRef]
- Peña, R.J.; Trethowan, R.; Pfeiffer, W.H.; Ginkel, M.V. Quality (End-Use) Improvement in Wheat. J. Crop Prod. 2002, 5, 1–37. [Google Scholar] [CrossRef]
- Mohan, D.M.; Gupta, R.K. Assessment of non-grain parameters in wheat quality under. J. Wheat Res. 2015, 7, 59–65. [Google Scholar]
- Haridas Rao, P.; Sai Manohar, R. Chapatis and Related Products. In Encyclopedia of Food Sciences and Nutrition; Academic Press: Cambridge, MA, USA, 2003; pp. 1033–1044. [Google Scholar] [CrossRef]
- Kundu, M.; Khatkar, B.S.; Gulia, N. Assessment of Chapatti Quality of Wheat Varieties Based on Physicochemical, Rheological and Sensory Traits. Food Chem. 2017, 226, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Harisha, R. Assessment of the Effect of Compositional Factors on Chapati Quality and Marker Assisted Transfer of Glutenin Alleles to Indian Wheat Variety. Ph.D. Thesis, ICAR-Indian Agricultural Research Institute, New Delhi, India, 2023. [Google Scholar]
Glu-1 Scores | Frequency | Percent |
---|---|---|
4 | 2 | 3.1 |
5 | 2 | 3.1 |
6 | 6 | 9.2 |
7 | 10 | 15.4 |
8 | 27 | 41.5 |
9 | 4 | 6.2 |
10 | 14 | 21.5 |
Total | 65 | 100 |
Parameters | Mean | Std. Error ± Mean | Std. Dev. | Variance | Range | Minimum | Maximum |
---|---|---|---|---|---|---|---|
Glu-1 scores | 7.94 | 0.18 | 1.49 | 2.24 | 6 | 4 | 10 |
GHI | 66.90 | 2.88 | 9.23 | 539.94 | 78.12 | 16.08 | 94.21 |
TKW (gm) | 35.65 | 0.80 | 6.52 | 42.63 | 32.74 | 21.21 | 53.96 |
GD (mm) | 2.72 | 0.03 | 0.25 | 0.06 | 1.22 | 2.13 | 3.35 |
TW (kg/hL) | 75.72 | 0.54 | 4.36 | 19.07 | 23.21 | 58.53 | 81.74 |
TB (%) | 26.21 | 0.31 | 1.51 | 6.64 | 14.41 | 19.62 | 34.04 |
FB (%) | 6.24 | 0.30 | 1.67 | 6.11 | 8.52 | 2.10 | 10.63 |
FR (%) | 67.54 | 0.35 | 2.83 | 8.04 | 13.76 | 61.36 | 75.12 |
SDS-SV (mL) | 47.03 | 1.14 | 3.19 | 84.46 | 42 | 26 | 68 |
P (%) | 13.39 | 0.25 | 1.02 | 4.10 | 11.10 | 8.77 | 19.88 |
WG (%) | 32.03 | 0.65 | 5.26 | 27.71 | 21.44 | 21.75 | 43.20 |
DG (%) | 11.15 | 0.28 | 2.27 | 5.15 | 11.62 | 7.22 | 18.84 |
GI | 67.18 | 2.94 | 9.78 | 65.59 | 89.83 | 10.16 | 100 |
WA (14%) | 61.66 | 0.49 | 3.95 | 15.66 | 17.8 | 52.5 | 70.3 |
DDT (min) | 5.58 | 0.65 | 5.24 | 17.51 | 19.3 | 0.7 | 20.0 |
STAB (min) | 6.60 | 0.42 | 1.42 | 11.74 | 14.7 | 1.5 | 16.2 |
DOS (FU) | 58.69 | 5.80 | 16.80 | 190.27 | 182 | 1 | 182 |
FQN | 84.32 | 5.73 | 26.22 | 136.37 | 191 | 9 | 200 |
Glu-1 Score | GHI | TKW (gm) | GD (mm) | TW kg/hL | TB (%) | FB (%) | FR (%) | SDS-SV (mL) | P (%) | WG (%) | DG (%) | GI | WA (14%) | DDT | STAB | DOS | FQN | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Glu-1 Score | 1 | |||||||||||||||||
GHI | 0.263 * | 1 | ||||||||||||||||
TKW (gm) | −0.091 | −0.022 | 1 | |||||||||||||||
GD (mm) | −0.11 | 0.082 | 0.962 ** | 1 | ||||||||||||||
TW kg/hL | −0.003 | 0.276 * | 0.724 ** | 0.719 ** | 1 | |||||||||||||
TB (%) | −0.264 * | −0.410 ** | −0.505 ** | −0.537 ** | −0.557 ** | 1 | ||||||||||||
FB (%) | 0.112 | 0.683 ** | 0.393 ** | 0.464 ** | 0.458 ** | −0.369 ** | 1 | |||||||||||
FR (%) | 0.143 | 0.322 | 0.477 ** | 0.084 | 0.417 ** | −0.587 ** | −0.536 ** | 1 | ||||||||||
SDS-SV (mL) | 0.208 | −0.177 | −0.448 ** | −0.491 ** | −0.594 ** | 0.13 | −0.549 ** | 0.360 ** | 1 | |||||||||
P (%) | −0.038 | −0.059 | −0.661 ** | −0.610 ** | −0.572 ** | 0.376 ** | −0.399 ** | 0.006 | 0.434 ** | 1 | ||||||||
WG (%) | −0.19 | −0.114 | −0.660 ** | −0.631 ** | −0.585 ** | 0.411 ** | −0.493 ** | 0.056 | 0.393 ** | 0.779 ** | 1 | |||||||
DG (%) | −0.056 | −0.113 | −0.631 ** | −0.619 ** | −0.664 ** | 0.316 * | −0.499 ** | 0.148 | 0.547 ** | 0.812 ** | 0.891 ** | 1 | ||||||
GI | 0.408 ** | 0.179 | 0.024 | −0.017 | 0.003 | −0.176 | 0.03 | 0.134 | 0.354 ** | −0.031 | −0.241 | −0.017 | 1 | |||||
WA (14%) | 0.168 | 0.753 ** | 0.092 | 0.203 | 0.252 * | −0.321 ** | 0.784 ** | −0.391 ** | −0.331 ** | −0.166 | −0.247 * | −0.255 * | 0.148 | 1 | ||||
DDT | 0.205 | 0.321 ** | 0.091 | 0.099 | 0.029 | −0.169 | 0.340 ** | −0.143 | −0.068 | −0.057 | −0.182 | −0.086 | 0.402 ** | 0.392 ** | 1 | |||
STAB | 0.270 * | 0.358 ** | −0.01 | −0.005 | −0.088 | −0.189 | 0.132 | 0.057 | 0.409 ** | 0.049 | −0.1 | 0.027 | 0.538 ** | 0.279 * | 0.422 ** | 1 | ||
DOS | −0.362 ** | −0.595 ** | 0.084 | 0.033 | 0.048 | 0.258 * | −0.393 ** | 0.108 | −0.231 | −0.071 | 0.089 | −0.025 | −0.442 ** | −0.501 ** | −0.398 ** | −0.792 ** | 1 | |
FQN | 0.349 ** | 0.506 ** | −0.048 | −0.007 | −0.04 | −0.19 | 0.334 ** | −0.118 | 0.234 | 0.062 | −0.116 | −0.012 | 0.489 ** | 0.511 ** | 0.516 ** | 0.905 ** | −0.831 ** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.K.; Singhal, S.; Jaiswal, P.; Basu, U.; Sahi, A.N.; Singh, A.M. Physico-Chemical and Rheological Trait-Based Identification of Indian Wheat Varieties Suitable for Different End-Uses. Foods 2024, 13, 1125. https://doi.org/10.3390/foods13071125
Singh SK, Singhal S, Jaiswal P, Basu U, Sahi AN, Singh AM. Physico-Chemical and Rheological Trait-Based Identification of Indian Wheat Varieties Suitable for Different End-Uses. Foods. 2024; 13(7):1125. https://doi.org/10.3390/foods13071125
Chicago/Turabian StyleSingh, Sumit Kumar, Shaily Singhal, Praful Jaiswal, Umer Basu, Anant Narayan Sahi, and Anju Mahendru Singh. 2024. "Physico-Chemical and Rheological Trait-Based Identification of Indian Wheat Varieties Suitable for Different End-Uses" Foods 13, no. 7: 1125. https://doi.org/10.3390/foods13071125
APA StyleSingh, S. K., Singhal, S., Jaiswal, P., Basu, U., Sahi, A. N., & Singh, A. M. (2024). Physico-Chemical and Rheological Trait-Based Identification of Indian Wheat Varieties Suitable for Different End-Uses. Foods, 13(7), 1125. https://doi.org/10.3390/foods13071125