The Neural Correlates of Food Preference among Music Kinds
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Hunger and Desire to Eat
2.3. Stimuli and Food Liking Task
2.4. Procedure
2.5. EEG Recording and Analysis
3. Results
3.1. Behavioral Results
3.2. ERP Results (Figure 2)
3.2.1. P2
3.2.2. N2
4. Discussion
5. Limitation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silva, I.C.; Gouveia, A.; Dalagna, G.; Oliveira, J.M.; Carvalho, P.; Costa, R.; Gama, J. Music and emotion. Eur. Psychiatry 2021, 64, S671–S672. [Google Scholar] [CrossRef]
- Schellenberg, E.G. Music and Cognitive Abilities. Curr. Dir. Psychol. Sci. 2005, 14, 317–320. [Google Scholar] [CrossRef]
- Gfeller, K.; Driscoll, V.D.; Schwalje, A.T. Beyond Technology: The Interaction of Perceptual Accuracy and Experiential Factors in Pediatric Music Engagement. Otol. Neurotol. 2019, 40, e290–e297. [Google Scholar] [CrossRef] [PubMed]
- Peck, K.; Girard, T.A.; Russo, F.A.; Fiocco, A.J. Music and Memory in Alzheimer’s Disease and The Potential Underlying Mechanisms. J. Alzheimer’s Dis. JAD 2016, 51, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Loui, P.; Guetta, R.E. Music and Attention, Executive Function, and Creativity. In The Oxford Handbook of Music and the Brain; Oxford University Press: New York, NY, USA, 2018. [Google Scholar]
- Fiegel, A.; Meullenet, J.-F.; Harrington, R.J.; Humble, R.; Seo, H.S. Background music genre can modulate flavor pleasantness and overall impression of food stimuli. Appetite 2014, 76, 144–152. [Google Scholar] [CrossRef]
- Motoki, K.; Takahashi, N.; Velasco, C.; Spence, C. Is classical music sweeter than jazz? Crossmodal influences of background music and taste/flavour on healthy and indulgent food preferences. Food Qual. Prefer. 2022, 96, 104380. [Google Scholar] [CrossRef]
- Walsh, L.M.; Toma, R.B.; Tuveson, R.V.; Sondhi, L. Color preference and food choice among children. J. Psychol. 1990, 124, 645–653. [Google Scholar] [CrossRef]
- Morquecho-Campos, P.; de Graaf, K.; Boesveldt, S. Smelling our appetite? The influence of food odors on congruent appetite, food preferences and intake. Food Qual. Prefer. 2020, 85, 103959. [Google Scholar] [CrossRef]
- Drewnowski, A. Taste preferences and food intake. Annu. Rev. Nutr. 1997, 17, 237–253. [Google Scholar] [CrossRef]
- Goldberg, L.R.; Strycker, L.A. Personality traits and eating habits: The assessment of food preferences in a large community sample. Personal. Individ. Differ. 2002, 32, 49–65. [Google Scholar] [CrossRef]
- Wardle, J.; Cooke, L. Genetic and environmental determinants of children’s food preferences. Br. J. Nutr. 2008, 99, S15–S21. [Google Scholar] [CrossRef] [PubMed]
- Peng-Li, D.; Mathiesen, S.L.; Chan, R.C.K.; Byrne, D.V.; Wang, Q.J. Sounds Healthy: Modelling sound-evoked consumer food choice through visual attention. Appetite 2021, 164, 105264. [Google Scholar] [CrossRef]
- Crisinel, A.-s.; Spence, C. Crossmodal associations between flavoured milk solutions and musical notes. Acta Psychol. 2011, 138, 155–161. [Google Scholar] [CrossRef]
- Deroy, O.; Spence, C. Crossmodal Correspondences: Four Challenges. Multisensory Res. 2016, 29, 29–48. [Google Scholar] [CrossRef]
- Klapetek, A.; Ngo, M.K.; Spence, C. Does crossmodal correspondence modulate the facilitatory effect of auditory cues on visual search? Atten. Percept. Psychophys. 2012, 74, 1154–1167. [Google Scholar] [CrossRef] [PubMed]
- Knöferle, K.; Spence, C. Crossmodal correspondences between sounds and tastes. Psychon. Bull. Rev. 2012, 19, 992–1006. [Google Scholar] [CrossRef] [PubMed]
- Kontukoski, M.; Luomala, H.T.; Mesz, B.; Sigman, M.; Trevisan, M.A.; Rotola-Pukkila, M.; Hopia, A. Sweet and sour: Music and taste associations. Nutr. Food Sci. 2015, 45, 357–376. [Google Scholar] [CrossRef]
- Biggs, L.N.H.; Juravle, G.; Spence, C. Haptic exploration of plateware alters the perceived texture and taste of food. Food Qual. Prefer. 2016, 50, 129–134. [Google Scholar] [CrossRef]
- Spence, C.; Reinoso-Carvalho, F.; Velasco, C.; Wang, Q.J. Extrinsic Auditory Contributions to Food Perception & Consumer Behaviour: An Interdisciplinary Review. Multisensory Res. 2019, 32, 275–318. [Google Scholar]
- Velasco, C.; Jones, R.; King, S.; Spence, C. Assessing the influence of the multisensory environment on the whisky drinking experience. Flavour 2013, 2, 23. [Google Scholar] [CrossRef]
- Huang, X.; Labroo, A.A. Cueing Morality: The Effect of High-Pitched Music on Healthy Choice. J. Mark. 2020, 84, 130–143. [Google Scholar] [CrossRef]
- Quekel, M. Sweets in My Beat, Sugar for my Money?: The Effects of High-Pitched Background Music on Consumers’ Choice of Sweet Food Products. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2016. [Google Scholar]
- Crisinel, A.-s.; Spence, C. As bitter as a trombone: Synesthetic correspondences in nonsynesthetes between tastes/flavors and musical notes. Atten. Percept. Psychophys. 2010, 72, 1994–2002. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.J.; Spence, C. Assessing the Effect of Musical Congruency on Wine Tasting in a Live Performance Setting. i-Perception 2015, 6, 2041669515593027. [Google Scholar] [CrossRef]
- Peng-Li, D.; Byrne, D.V.; Chan, R.C.K.; Wang, Q.J. The influence of taste-congruent soundtracks on visual attention and food choice: A cross-cultural eye-tracking study in Chinese and Danish consumers. Food Qual. Prefer. 2020, 85, 103962. [Google Scholar] [CrossRef]
- Guedes, D.; Prada, M.; Garrido, M.V.; Lamy, E. The taste & affect music database: Subjective rating norms for a new set of musical stimuli. Behav. Res. Methods 2022, 55, 1121–1140. [Google Scholar] [PubMed]
- Padulo, C.; Mangone, M.; Brancucci, A.; Balsamo, M.; Fairfield, B. Crossmodal congruency effects between sound and food pictures in a forced-choice task. Psychol. Res. 2020, 85, 2340–2345. [Google Scholar] [CrossRef]
- Al-Galal, S.A.Y.; Alshaikhli, I.F.; bin Abdul Rahman, A.W.; Dzulkifli, M.A. EEG-based Emotion Recognition while Listening to Quran Recitation Compared with Relaxing Music Using Valence-Arousal Model. In Proceedings of the 2015 4th International Conference on Advanced Computer Science Applications and Technologies (ACSAT), Kuala Lumpur, Malaysia, 8–10 December 2015; pp. 245–250. [Google Scholar]
- Folstein, J.R.; Van Petten, C.K. Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology 2007, 45, 152–170. [Google Scholar] [CrossRef]
- Botvinick, M.M.; Braver, T.S.; Barch, D.M.; Carter, C.S.; Cohen, J.D. Conflict monitoring and cognitive control. Psychol. Rev. 2001, 108, 624–652. [Google Scholar] [CrossRef]
- Clayson, P.E.; Larson, M.J. Psychometric properties of conflict monitoring and conflict adaptation indices: Response time and conflict N2 event-related potentials. Psychophysiology 2013, 50, 1209–1219. [Google Scholar] [CrossRef]
- Hao, J.; Zhong, Y.; Pang, Y.; Jing, Y.; Liu, Y.; Li, H.; Li, J.; Zheng, M. The relationship between music training and cognitive flexibility: An ERP study. Front. Psychol. 2023, 14, 1276752. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Shi, H.; Li, L.; Zheng, M. Regulation of Mindfulness-Based Music Listening on Negative Emotions Related to COVID-19: An ERP Study. Int. J. Environ. Res. Public Health 2021, 18, 7063. [Google Scholar] [CrossRef]
- Carbine, K.A.; Christensen, E.; LeCheminant, J.D.; Bailey, B.W.; Tucker, L.A.; Larson, M.J. Testing food-related inhibitory control to high- and low-calorie food stimuli: Electrophysiological responses to high-calorie food stimuli predict calorie and carbohydrate intake. Psychophysiology 2017, 54, 982–997. [Google Scholar] [CrossRef] [PubMed]
- Funakoshi, M.; Kawamura, Y. Summated cerebral evoked responses to taste stimuli in man. Electroencephalogr. Clin. Neurophysiol. 1971, 30, 205–209. [Google Scholar] [CrossRef]
- Funakoshi, M.; Kawamura, Y. Summated cortical response to taste stimulation in man. J. Physiol. Soc. Jpn. 1968, 30, 282–283. [Google Scholar]
- Pritchard, T.C.; Hamilton, R.B.; Morse, J.R.; Norgren, R. Projections of thalamic gustatory and lingual areas in the monkey, Macaca fascicularis. J. Comp. Neurol. 1986, 244, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Ohla, K.; Busch, N.A.; Lundström, J.N. Time for Taste—A Review of the Early Cerebral Processing of Gustatory Perception. Chemosens. Percept. 2012, 5, 87–99. [Google Scholar] [CrossRef]
- Tremblay, K.; Ross, B.; Inoue, K.; McClannahan, K.S.; Collet, G. Is the auditory evoked P2 response a biomarker of learning? Front. Syst. Neurosci. 2014, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Kuriki, S.; Ohta, K.; Koyama, S. Persistent responsiveness of long-latency auditory cortical activities in response to repeated stimuli of musical timbre and vowel sounds. Cereb. Cortex 2007, 17, 2725–2732. [Google Scholar] [CrossRef]
- Leea, E.K.; Leea, S.; Kwona, Y.S. The effect of lyrical and non-lyrical background music on different types of language processing-An ERP study. Korean J. Cogn. Sci. 2020, 31, 155–178. [Google Scholar]
- Sänger, J. Can’t take my eyes off you—How task irrelevant pictures of food influence attentional selection. Appetite 2019, 133, 313–323. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, X.; Zhao, J.; Zhang, L.; Chen, H. Neurocognitive Correlates of Food-Related Response Inhibition in Overweight/Obese Adults. Brain Topogr. 2019, 33, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Nijs, I.M.T.; Franken, I.H.A.; Muris, P. Food-related Stroop interference in obese and normal-weight individuals: Behavioral and electrophysiological indices. Eat. Behav. 2010, 11, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Hachl, P.; Hempel, C.; Pietrowsky, R. ERPs to stimulus identification in persons with restrained eating behavior. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 2003, 49, 111–121. [Google Scholar] [CrossRef]
- Stockburger, J.; Weike, A.I.; Hamm, A.O.; Schupp, H.T. Deprivation selectively modulates brain potentials to food pictures. Behav. Neurosci. 2008, 122, 936–942. [Google Scholar] [CrossRef]
- Draschkow, D.; Heikel, E.; Võ, M.L.-H.; Fiebach, C.J.; Sassenhagen, J. No evidence from MVPA for different processes underlying the N300 and N400 incongruity effects in object-scene processing. Neuropsychologia 2018, 120, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Carretié, L.; Iglesias, J.; García, T.; Ballesteros, M. N300, P300 and the emotional processing of visual stimuli. Electroencephalogr. Clin. Neurophysiol. 1997, 103, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Quan, H.; Song, S.; Zhang, X.; Yang, C.; Chen, H. Decreased Conflict Control in Overweight Chinese Females: Behavioral and Event-Related Potentials Evidence. Nutrients 2019, 11, 1450. [Google Scholar] [CrossRef]
- Krompinger, J.W.; Moser, J.S.; Simons, R.F. Modulations of the electrophysiological response to pleasant stimuli by cognitive reappraisal. Emotion 2008, 8, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Hajcak, G.; MacNamara, A.; Foti, D.; Ferri, J.; Keil, A. The dynamic allocation of attention to emotion: Simultaneous and independent evidence from the late positive potential and steady state visual evoked potentials. Biol. Psychol. 2013, 92, 447–455. [Google Scholar] [CrossRef]
- Huang, Y.-x.; Luo, Y.-j. Temporal course of emotional negativity bias: An ERP study. Neurosci. Lett. 2006, 398, 91–96. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, J.; Zhou, Y.; Yang, R.; Han, B.; Zhao, Y.; Pang, Y.; Yuan, H.; Chen, H. High-Calorie Food-Cues Impair Conflict Control: EEG Evidence from a Food-Related Stroop Task. Nutrients 2022, 14, 4593. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, L.; Jackson, T.; Wang, J.; Yang, R.; Chen, H. Effects of negative mood state on event-related potentials of restrained eating subgroups during an inhibitory control task. Behav. Brain Res. 2020, 377, 112249. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, J.; Zhang, X.; Gao, X.; Xu, W.; Chen, H. Overweight adults are more impulsive than normal weight adults: Evidence from ERPs during a chocolate-related delayed discounting task. Neuropsychologia 2019, 133, 107181. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Braboszcz, C.; Delorme, A. Lost in thoughts: Neural markers of low alertness during mind wandering. Neuroimage 2011, 54, 3040–3047. [Google Scholar] [CrossRef] [PubMed]
- Allan, K.; Allan, J.L. An obesogenic bias in women’s spatial memory for high calorie snack food. Appetite 2013, 67, 99–104. [Google Scholar] [CrossRef]
- Girz, L.; Polivy, J.; Herman, C.P.; Lee, H. The effects of calorie information on food selection and intake. Int. J. Obes. 2012, 36, 1340–1345. [Google Scholar] [CrossRef]
- Nijs, I.M.T.; Muris, P.; Euser, A.S.; Franken, I.H.A. Differences in attention to food and food intake between overweight/obese and normal-weight females under conditions of hunger and satiety. Appetite 2010, 54, 243–254. [Google Scholar] [CrossRef]
- Padulo, C.; Pizzi, S.D.; Bonanni, L.; Edden, R.A.E.; Ferretti, A.; Marzoli, D.; Franciotti, R.; Manippa, V.; Onofrj, M.; Sepede, G.; et al. GABA levels in the ventromedial prefrontal cortex during the viewing of appetitive and disgusting food images. Neuroscience 2016, 333, 114–122. [Google Scholar] [CrossRef]
- Rangel, A. Regulation of dietary choice by the decision-making circuitry. Nat. Neurosci. 2013, 16, 1717–1724. [Google Scholar] [CrossRef]
- Strack, F.; Deutsch, R. Reflective and Impulsive Determinants of Social Behavior. Personal. Soc. Psychol. Rev. 2004, 8, 220–247. [Google Scholar] [CrossRef] [PubMed]
- Schubert, E.; Rosenblatt, D.H.; Eliby, D.; Kashima, Y.; Hogendoorn, H.; Bode, S. Decoding explicit and implicit representations of health and taste attributes of foods in the human brain. Neuropsychologia 2021, 162, 108045. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, N.J.; Hutcherson, C.A.C.; Harris, A.; Rangel, A. Dietary Self-Control Is Related to the Speed With Which Attributes of Healthfulness and Tastiness Are Processed. Psychol. Sci. 2015, 26, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Egan, H.; Keyte, R.; Mantzios, M. Exploring the Environmental Manifestation of Types of Music on Reinforcing Mindfulness and Concurrent Calorie Intake. Psychol. Rep. 2020, 124, 2633–2650. [Google Scholar] [CrossRef] [PubMed]
- North, A.C.; Sheridan, L.P.; Areni, C.S. Music Congruity Effects on Product Memory, Perception, and Choice. J. Retail. 2016, 92, 83–95. [Google Scholar] [CrossRef]
- Yeoh, J.P.S.; North, A.C. The effects of musical fit on choice between two competing foods. Music. Sci. 2010, 14, 165–180. [Google Scholar] [CrossRef]
- Zellner, D.A.; Geller, T.; Lyons, S.J.; Pyper, A.; Riaz, K. Ethnic congruence of music and food affects food selection but not liking. Food Qual. Prefer. 2017, 56, 126–129. [Google Scholar] [CrossRef]
- Lim, A.J.; Teo, P.S.; Tan, V.; Forde, C.G. Associations between Psycho-Hedonic Responses to Sweet and Savoury Tastes with Diet and Body Composition in a Sample of Asian Females. Foods 2020, 9, 1318. [Google Scholar] [CrossRef]
- Bellisle, F.; Drewnowski, A.; Anderson, G.H.; Westerterp-Plantenga, M.S.; Martin, C.K. Sweetness, satiation, and satiety. J. Nutr. 2012, 142, 1149S–1154S. [Google Scholar] [CrossRef]
- Gorelik, G.; Shackelford, T.K.; Weekes-Shackelford, V.A. Resource Acquisition, Violence, and Evolutionary Consciousness. In The Oxford Handbook of Evolutionary Perspectives on Violence, Homicide, and War; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Gilboord, A. Male and Female Differences on Performance for Food Rewards. Huron Univ. Coll. J. Learn. Motiv. 2010, 48, 18. [Google Scholar]
- Aguiar-Bloemer, A.C.; Diez-Garcia, R.W. Influence of emotions evoked by life events on food choice. Eat. Weight. Disord. Stud. Anorex. Bulim. Obes. 2018, 23, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Rentfrow, P.J.; Gosling, S.D. The Do Re Mi’s of Everyday Life: The Structure and Personality Correlates of Music Preferences. J. Personal. Soc. Psychol. 2003, 84, 1236–1256. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, M.; Chaudhari, M. The Impact of Rock Music on Indian Young Adults: A Qualitative Study on Emotions and Moods. Rev. Gestão Inovação E Tecnol. 2021, 11, 5361–5374. [Google Scholar] [CrossRef]
- Witek, K.; Wydra, K.; Filip, M. A High-Sugar Diet Consumption, Metabolism and Health Impacts with a Focus on the Development of Substance Use Disorder: A Narrative Review. Nutrients 2022, 14, 2940. [Google Scholar] [CrossRef] [PubMed]
- Mehrabian, A.; Russell, J.A. An Approach to Environmental Psychology; The MIT Press: Cambridge, MA, USA, 1974. [Google Scholar]
Music | High-Sweet | High-Salty | Low-Sweet | Low-Salty | Mean |
---|---|---|---|---|---|
Classical | 5.02 (1.13) | 5.26 (0.83) | 4.87 (0.86) | 4.34 (1.10) | 4.87 (0.98) a |
Jazz | 4.89 (0.99) | 5.38 (0.76) | 4.67 (0.95) | 4.27 (1.04) | 4.80 (0.94) a |
Hip-hop | 4.73 (1.21) | 5.38 (0.78) | 4.64 (0.88) | 4.20 (1.06) | 4.73 (0.98) b |
Rock | 4.83 (1.18) | 5.41 (0.78) | 4.70 (0.98) | 4.05 (1.07) | 4.75 (1.00) b |
Mean | 4.87 (1.13) b | 5.36 (0.79) a | 4.72 (0.92) b | 4.22 (1.07) c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, Y.; Xu, Z.; Pang, Y.; Liu, X.; Zhao, J.; Liu, Y. The Neural Correlates of Food Preference among Music Kinds. Foods 2024, 13, 1127. https://doi.org/10.3390/foods13071127
Jing Y, Xu Z, Pang Y, Liu X, Zhao J, Liu Y. The Neural Correlates of Food Preference among Music Kinds. Foods. 2024; 13(7):1127. https://doi.org/10.3390/foods13071127
Chicago/Turabian StyleJing, Yuanluo, Ziyuan Xu, Yazhi Pang, Xiaolin Liu, Jia Zhao, and Yong Liu. 2024. "The Neural Correlates of Food Preference among Music Kinds" Foods 13, no. 7: 1127. https://doi.org/10.3390/foods13071127
APA StyleJing, Y., Xu, Z., Pang, Y., Liu, X., Zhao, J., & Liu, Y. (2024). The Neural Correlates of Food Preference among Music Kinds. Foods, 13(7), 1127. https://doi.org/10.3390/foods13071127