Critical Review of Selected Analytical Platforms for GC-MS Metabolomics Profiling—Case Study: HS-SPME/GC-MS Analysis of Blackberry’s Aroma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. GC-MS Analysis
2.3. Data Processing
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Everitt, B.S. Multivariate Analysis: The Need for Data, and Other Problems. Br. J. Psychiatry 1975, 126, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Goldrick, S.; Sandner, V.; Cheeks, M.; Turner, R.; Farid, S.S.; McCreath, G.; Glassey, J. Multivariate Data Analysis Methodology to Solve Data Challenges Related to Scale-Up Model Validation and Missing Data on a Micro-Bioreactor System. Biotechnol. J. 2020, 15, e1800684. [Google Scholar] [CrossRef] [PubMed]
- Dempster, A.P. An overview of multivariate data analysis. J. Multivar. Anal. 1971, 1, 316–346. [Google Scholar] [CrossRef]
- Nicholson, J.K.; Connelly, J.; Lindon, J.C.; Holmes, E. Metabonomics: A platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 2002, 1, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Verpoorte, R.; Choi, Y.H.; Mustafa, N.R.; Kim, H.K. Metabolomics: Back to basics. Phytochem. Rev. 2008, 7, 525–537. [Google Scholar] [CrossRef]
- Wolfender, J.-L.; Rudaz, S.; Hae Choi, Y.; Kyong Kim, H. Plant Metabolomics: From Holistic Data to Relevant Biomarkers. Curr. Med. Chem. 2013, 20, 1056–1090. [Google Scholar] [CrossRef]
- Shuman, J.L.; Cortes, D.F.; Armenta, J.M.; Pokrzywa, R.M.; Mendes, P.; Shulaev, V. Plant Metabolomics by GC-MS and Differential Analysis. Plant Reverse Genet. Methods Protoc. 2011, 678, 229–246. [Google Scholar]
- Worley, B.; Powers, R. Multivariate Analysis in Metabolomics. Curr. Metabolomics 2012, 1, 92–107. [Google Scholar] [CrossRef]
- Stoudt, S.; Vásquez, V.N.; Martinez, C.C. Principles for data analysis workflows. PLoS Comput. Biol. 2021, 17, e1008770. [Google Scholar] [CrossRef]
- Niu, W.; Knight, E.; Xia, Q.; McGarvey, B.D. Comparative evaluation of eight software programs for alignment of gas chromatography–mass spectrometry chromatograms in metabolomics experiments. J. Chromatogr. A 2014, 1374, 199–206. [Google Scholar] [CrossRef]
- Maciel, E.V.S.; Pereira dos Santos, N.G.; Vargas Medina, D.A.; Lanças, F.M. Electron ionization mass spectrometry: Quo vadis? Electrophoresis 2022, 43, 1587–1600. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, P.M. Gas Chromatography–Mass Spectrometry (GC–MS). In Encyclopedia of Geochemistry; Springer International Publishing: Cham, Switzerland, 2018; pp. 530–535. [Google Scholar]
- Fiehn, O. Metabolomics by Gas Chromatography–Mass Spectrometry: Combined Targeted and Untargeted Profiling. Curr. Protoc. Mol. Biol. 2016, 114, 30.4.1–30.4.32. [Google Scholar] [CrossRef]
- Coble, J.B.; Fraga, C.G. Comparative evaluation of preprocessing freeware on chromatography/mass spectrometry data for signature discovery. J. Chromatogr. A 2014, 1358, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Styczynski, M.P.; Moxley, J.F.; Tong, L.V.; Walther, J.L.; Jensen, K.L.; Stephanopoulos, G.N. Systematic Identification of Conserved Metabolites in GC/MS Data for Metabolomics and Biomarker Discovery. Anal. Chem. 2007, 79, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Hamany Djande, C.Y.; Pretorius, C.; Tugizimana, F.; Piater, L.A.; Dubery, I.A. Metabolomics: A Tool for Cultivar Phenotyping and Investigation of Grain Crops. Agronomy 2020, 10, 831. [Google Scholar] [CrossRef]
- O’Hagan, S.; Dunn, W.B.; Brown, M.; Knowles, J.D.; Kell, D.B. Closed-Loop, Multiobjective Optimization of Analytical Instrumentation: Gas Chromatography/Time-of-Flight Mass Spectrometry of the Metabolomes of Human Serum and of Yeast Fermentations. Anal. Chem. 2005, 77, 290–303. [Google Scholar] [CrossRef] [PubMed]
- Fialkov, A.B.; Steiner, U.; Lehotay, S.J.; Amirav, A. Sensitivity and noise in GC–MS: Achieving low limits of detection for difficult analytes. Int. J. Mass Spectrom. 2007, 260, 31–48. [Google Scholar] [CrossRef]
- Stein, S.E. An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J. Am. Soc. Mass Spectrom. 1999, 10, 770–781. [Google Scholar] [CrossRef]
- Ibáñez, E.; López-Sebastián, S.; Ramos, E.; Tabera, J.; Reglero, G. Analysis of volatile fruit components by headspace solid-phase microextraction. Food Chem. 1998, 63, 281–286. [Google Scholar] [CrossRef]
- D’Agostino, M.F.; Sicari, V.; Giuffrè, A.M.; Soria, A.C. Blackberries (Rubus ulmifolius Schott) from Calabria (Italy): A comprehensive characterisation. Eur. Food Res. Technol. 2022, 248, 905–916. [Google Scholar] [CrossRef]
- Avramidou, E.; Sarri, E.; Ganopoulos, I.; Madesis, P.; Kougiteas, L.; Papadopoulou, E.-A.; Aliferis, K.A.; Abraham, E.M.; Tani, E. Genetic and Metabolite Variability among Commercial Varieties and Advanced Lines of Vicia faba L. Plants 2023, 12, 908. [Google Scholar] [CrossRef] [PubMed]
- Padilla-Jimenez, S.M.; Angoa-Pérez, M.V.; Mena-Violante, H.G.; Oyoque-Salcedo, G.; Renteria-Ortega, M.; Oregel-Zamudio, E. Changes in the Aroma of Organic Blackberries (Rubus Fruticosus) During Ripeness. Anal. Chem. Lett. 2019, 9, 64–73. [Google Scholar] [CrossRef]
- Dayananda, B.; Owen, S.; Kolobaric, A.; Chapman, J.; Cozzolino, D. Pre-processing Applied to Instrumental Data in Analytical Chemistry: A Brief Review of the Methods and Examples. Crit. Rev. Anal. Chem. 2023, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Oliveri, P.; Malegori, C.; Simonetti, R.; Casale, M. The impact of signal pre-processing on the final interpretation of analytical outcomes—A tutorial. Anal. Chim. Acta 2019, 1058, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Yang, H.; Wei, Z.; Yang, H.; Fan, S.; Wu, W.; Lyu, L.; Li, W. Effects of Different Nitrogen Forms on Blackberry Fruit Quality. Foods 2023, 12, 2318. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Huang, X.; Yang, H.; Zhang, S.; Lyu, L.; Li, W.; Wu, W. Analysis of flavonoid-related metabolites in different tissues and fruit developmental stages of blackberry based on metabolome analysis. Food Res. Int. 2023, 163, 112313. [Google Scholar] [CrossRef]
- Zhang, M.-Q.; Zhang, J.; Zhang, Y.-T.; Sun, J.-Y.; Prieto, M.A.; Simal-Gandara, J.; Putnik, P.; Li, N.-Y.; Liu, C. The link between the phenolic composition and the antioxidant activity in different small berries: A metabolomic approach. LWT 2023, 182, 114853. [Google Scholar] [CrossRef]
- Kodikara, C.; Netticadan, T.; Bandara, N.; Wijekoon, C.; Sura, S. A new UHPLC-HRMS metabolomics approach for the rapid and comprehensive analysis of phenolic compounds in blueberry, raspberry, blackberry, cranberry and cherry fruits. Food Chem. 2024, 445, 138778. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Lee, M.Y.; Shon, J.C.; Kwon, Y.S.; Liu, K.-H.; Lee, C.H.; Ku, K.-M. Untargeted and targeted metabolomics analyses of blackberries–Understanding postharvest red drupelet disorder. Food Chem. 2019, 300, 125169. [Google Scholar] [CrossRef]
- Columbia Star Thornless Blackberry. Available online: https://raintreenursery.com/products/columbia-star-thornless-blackberry-4-inch-pot (accessed on 12 March 2024).
- Loch Ness Thornless Blackberry. Available online: https://raintreenursery.com/products/loch-ness-thornless-blackberry-2yr-bareroot (accessed on 12 March 2024).
- Natchez Thornless Blackberry Plant. Available online: https://www.starkbros.com/products/berry-plants/blackberry-plants/natchez-thornless-blackberry (accessed on 12 March 2024).
- Ouachita Thornless Blackberry Plant. Available online: https://www.starkbros.com/products/berry-plants/blackberry-plants/ouachita-thornless-blackberry (accessed on 12 March 2024).
- Prime-Ark® 45 Primocane Blackberry Plant. Available online: https://www.starkbros.com/products/berry-plants/blackberry-plants/prime-ark-45-primocane-blackberry (accessed on 12 March 2024).
- Von Blackberry Plant. Available online: https://www.isons.com/shop/berry-plants/blackberry/von-blackberry-plant/ (accessed on 12 March 2024).
- XCMS TM. Available online: https://xcmsonline.scripps.edu/landing_page.php?pgcontent=mainPage (accessed on 12 March 2024).
- SpectConnect. Available online: http://spectconnect.mit.edu/index.php (accessed on 12 March 2024).
- Dervishi, E.; Zhang, G.; Zwierzchowski, G.; Mandal, R.; Wishart, D.S.; Ametaj, B.N. Serum metabolic fingerprinting of pre-lameness dairy cows by GC–MS reveals typical profiles that can identify susceptible cows. J. Proteomics 2020, 213, 103620. [Google Scholar] [CrossRef]
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Anal. Chem. 2006, 78, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Ivanović, S.; Simić, K.; Tešević, V.; Vujisić, L.; Ljekočević, M.; Gođevac, D. GC-FID-MS Based Metabolomics to Access Plum Brandy Quality. Molecules 2021, 26, 1391. [Google Scholar] [CrossRef] [PubMed]
Platform (No. Variables) | Model | No. of Components (pred. + orth. in Y) | R2 X | R2 Y | Q2 | CV-ANOVA | Comparison of | |
---|---|---|---|---|---|---|---|---|
F | p | |||||||
XCMS (72) | PCA | 6 | 0.931 | 0.863 | all | |||
PLS-DA | 9 | 0.950 | 0.952 | 0.893 | 15.05 | 1 × 10−31 | all | |
OPLS-DA | 1 + 2 | 0.923 | 0.994 | 0.963 | 52.6 | 6.32 × 10−9 | Loch Ness/Columbia star | |
1 + 1 | 0.901 | 0.986 | 0.978 | 155.3 | 1.98 × 10−11 | Loch Ness/Von | ||
1 + 3 | 0.873 | 0.994 | 0.963 | 40.4 | 5.50 × 10−7 | Loch Ness/Prime-Ark 45 | ||
1 + 3 | 0.958 | 0.993 | 0.967 | 45.7 | 2.89 × 10−7 | Loch Ness/Nachez | ||
1 + 1 | 0.901 | 0.963 | 0.944 | 54.5 | 5.34 × 10−8 | Loch Ness/Ouachita | ||
SpectConnect—relative abundance (119) | PCA | 6 | 0.712 | 0.531 | all | |||
PLS-DA | 7 | 0.729 | 0.935 | 0.879 | 18.2 | 1 × 10−31 | all | |
OPLS-DA | 1 + 1 | 0.681 | 0.994 | 0.979 | 175.9 | 2.08 × 10−12 | Loch Ness/Columbia star | |
1 + 1 | 0.656 | 0.992 | 0.981 | 190.1 | 1.18 × 10−12 | Loch Ness/Von | ||
1 + 2 | 0.588 | 0.994 | 0.961 | 52.8 | 2.22 × 10−8 | Loch Ness/Prime-Ark 45 | ||
1 + 1 | 0.702 | 0.991 | 0.964 | 101.5 | 1.14 × 10−10 | Loch Ness/Nachez | ||
1 + 1 | 0.593 | 0.992 | 0.971 | 123.7 | 2.71 × 10−11 | Loch Ness/Ouachita | ||
SpectConnect -integrated signal (119) | PCA | 6 | 0.711 | 0.532 | all | |||
PLS-DA | 9 | 0.761 | 0.961 | 0.898 | 13.9 | 1 × 10−31 | all | |
OPLS-DA | 1 + 1 | 0.678 | 0.994 | 0.981 | 189.3 | 1.22 × 10−12 | Loch Ness/Columbia star | |
1 + 1 | 0.655 | 0.992 | 0.981 | 189.8 | 1.19 × 10−12 | Loch Ness/Von | ||
1 + 2 | 0.585 | 0.994 | 0.962 | 54.2 | 1.87 × 10−8 | Loch Ness/Prime-Ark 45 | ||
1 + 1 | 0.705 | 0.99 | 0.965 | 103.5 | 9.81 × 10−11 | Loch Ness/Nachez | ||
1 + 1 | 0.592 | 0.993 | 0.973 | 137 | 1.29 × 10−11 | Loch Ness/Ouachita | ||
SpectConnect—base peak (119) | PCA | 6 | 0.706 | 0.531 | all | |||
PLS-DA | 9 | 0.758 | 0.958 | 0.889 | 13.1 | 1 × 10−31 | all | |
OPLS-DA | 1 + 1 | 0.67 | 0.996 | 0.98 | 187.9 | 1.28 × 10−12 | Loch Ness/Columbia star | |
1 + 1 | 0.64 | 0.994 | 0.98 | 184.3 | 1.48 × 10−12 | Loch Ness/Von | ||
1 + 2 | 0.582 | 0.995 | 0.956 | 46.8 | 4.64 × 10−8 | Loch Ness/Prime-Ark 45 | ||
1 + 1 | 0.689 | 0.99 | 0.964 | 100.7 | 1.2 × 10−10 | Loch Ness/Nachez | ||
1 + 1 | 0.61 | 0.992 | 0.975 | 144.7 | 8.68 × 10−12 | Loch Ness/Ouachita | ||
MNOVA-automatic (87) | PCA | 7 | 0.610 | 0.276 | all | |||
PLS-DA | 5 + 3 | 0.687 | 0.912 | 0.813 | 11.0 | 1 × 10−31 | all | |
OPLS-DA | 1 + 2 | 0.689 | 0.996 | 0.952 | 43.1 | 7.72 × 10−9 | Loch Ness/Columbia star | |
1 + 1 | 0.566 | 0.974 | 0.923 | 45.1 | 3.44 × 10−8 | Loch Ness/Von | ||
1 + 1 | 0.516 | 0.972 | 0.934 | 53.0 | 1.14 × 10−8 | Loch Ness/Prime-Ark 45 | ||
1 + 1 | 0.651 | 0.983 | 0.948 | 68.4 | 1.90 × 10−9 | Loch Ness/Nachez | ||
1 + 2 | 0.582 | 0.996 | 0.964 | 57.8 | 1.27 × 10−8 | Loch Ness/Ouachita | ||
MNOVA-manual corrected (167) | PCA | 7 | 0.698 | 0.547 | all | |||
PLS-DA | 7 | 0.691 | 0.923 | 0.863 | 18.6 | 1 × 10−31 | all | |
OPLS-DA | 1 + 2 | 0.766 | 0.999 | 0.987 | 196.3 | 1.43 × 10−11 | Loch Ness/Columbia star | |
1 + 1 | 0.667 | 0.992 | 0.963 | 97.4 | 1.53 × 10−10 | Loch Ness/Von | ||
1 + 2 | 0.542 | 0.998 | 0.948 | 39.9 | 1.24 × 10−11 | Loch Ness/Prime-Ark 45 | ||
1 + 1 | 0.692 | 0.993 | 0.961 | 91.5 | 2.39 × 10−10 | Loch Ness/Nachez | ||
1 + 1 | 0.605 | 0.994 | 0.962 | 94.8 | 1.85 × 10−10 | Loch Ness/Ouachita |
Platforms | Loch Ness/Columbia Star | Loch Ness/Von | Loch Ness/Prime-Ark 45 | Loch Ness/Nachez | Loch Ness/Ouachita |
---|---|---|---|---|---|
XCMS | Camphene | Ethyl butanoate | Ethyl butanoate | Camphene | Ethyl butanoate |
Benzaldehyde | 2-Heptanone | (E)-2-Hexenal | Limonene | (E)-2-Hexenal | |
Limonene | Limonene | 1-Hexanol | Nonanal | 2-Heptanone | |
Acetophenone | Nonanal | 2-Heptanone | α-Cubebene | β-pinene | |
Terpinolene | Theaspirane A | Camphene | Sibirene | Limonene | |
Linalol | Theaspirane B | (E)-2-Heptenal | (Z)-Calamenene | Nonanal | |
Nonanal | (Z)-Calamenene | (E)-(3,3-Dimethyl-cyclohexyl-idene)acetaldehyde | α-Calacorene | (Z)-Carveol | |
Camphor | Ethyl dodecanoate | Acetophenone | Theaspirane A | ||
1-Nonanol | Camphor | Theaspirane B | |||
Citronellol | 1-Nonanol | α-Cubebene | |||
Carvone | p-Cymen-8-ol | Sibirene | |||
Carvacrol | Carvone | (Z)-Calamenene | |||
Theaspirane A | Ethyl dodecanoate | ||||
Theaspirane B | |||||
2,2,4,4,6,8,8-Heptamethylnonane | |||||
(Z)-β-Ionone | |||||
SpectConnect—relative abundance | (E)-2-Hexenal | (E)-2-Hexenal | Hexenal | 2-Heptanone | Pentanal |
1-Heptanol | 1-Hexanol | 1-Hexanol | 2-Heptanol | Hexanal | |
Octanal | 2-Heptanone | 1-Heptanol | Ethyl tiglate | (E)-2-Hexenal | |
δ-Carene | 2-Heptanol | Camphor | Myrcene | 1-Hexanol | |
Limonene | Octanal | Methyl benzoate | Nonanal | 2-Heptanone | |
Acetophenone | Nonanal | Ethylbenzoate | (Z)-Carveol | (E)-2-Heptenal | |
Linalol | Theaspirane B | (Z)-Carveol | α-Copaene | 1-Heptanol | |
Nonanal | Ethyl dodecanoate | Carvone | Ethyl decanoate | Octanal | |
Camphor | Theaspirane B | (Z)-Calamenene | Nonanal | ||
Methyl salicylate | β-Gurjunene | (Z)-Carveol | |||
Carvone | (Z)-β-Ionone | Theaspirane B | |||
(Z)-β-Ionone | α-Muurolene | (Z)-Calamenene | |||
Ethyl dodecanoate | |||||
SpectConnect—integrated signal | Hexanal | Hexanal | Hexanal | Heptanone | Hexanal |
1-Heptanol | (E)-2-Hexenal | (E)-2-Hexenal | 2-Heptanol | (E)-2-Hexenal | |
Octanal | 2-Heptanone | (Z)-2-Hexen-1-ol | Nonanal | 1-Hexanol | |
δ-Carene | 2-Heptanol | 1-Hexanol | (Z)-Carveol | 2-Heptanone | |
Limonene | Octanal | 1-Heptanol | α-Copaene | (E)-2-Heptenal | |
Acetophenone | Hexyl acetate | Methyl benzoate | Ethyl dodecanoate | 1-Heptanol | |
Linalol | Nonanal | 1,3,8-p-Menthatriene | (Z)-Calamenene | Octanal | |
Nonanal | Decanal | Camphor | Nonanal | ||
Camphor | Theaspirane B | (Z)-Carveol | Decanal | ||
Methyl salicylate | 2,6,10-Trimethylpentadecane | Carvone | (Z)-Carveol | ||
Carvone | Theaspirane B | Theaspirane B | |||
(Z)-β-Ionone | β-Gurjunene | Ethyl dodecanoate | |||
(Z)-β-Ionone | |||||
SpectConnect—base peak | Hexanal | Hexanal | Hexanal | 2-Heptanone | Pentanal |
1-Heptanol | Hexenal | (E)-2-Hexenal | Nonanal | Hexanal | |
Octanal | 2-Heptanone | (Z)-2-Hexen-1-ol | (Z)-Carveol | (E)-2-Hexenal | |
δ-Carene | Octanal | 1-Hexanol | α-Copaene | 1-Hexanol | |
Limonene | Nonanal | 1-Heptanol | Ethyl dodecanoate | 2-Heptanone | |
Acetophenone | Theaspirane B | Methyl benzoate | (Z)-Calamenene | (E)-2-Heptenal | |
Linalol | Ethyl dodecanoate | 1,3,8-p-Menthatriene | 1-Heptanol | ||
Nonanal | Camphor | Octanal | |||
Camphor | (Z)-Carveol | Nonanal | |||
Methyl salicylate | Carvone | (Z)-Carveol | |||
Carvone | Theaspirane B | Theaspirane B | |||
(Z)-β-Ionone | β-Gurjunene | (Z)-Calamenene | |||
(Z)-β-Ionone | Ethyl dodecanoate | ||||
MNOVA-automatic | 2-Heptanone | (E)-2-Hexenal | Ethyl (E)-2-butenoate | 2-Heptanone | Ethyl (E)-2-butenoate |
2-Heptanol | Hexyl acetate | (E)-2-Hexenal | 2-Heptanol | (E)-2-Hexenal | |
(E)-2-Heptenal | Linalol | Hexyl acetate | Camphene | 1-Hexanol | |
Octanal | (Z)-3-Nonen-1-ol | (E)-2-Nonenal | Myrcene | (E)-2-Heptenal | |
Hexyl acetate | Decanal | Borneol | Hexyl acetate | β-pinene | |
2-Ethyl-1-Hexanol | α-Muurolene | 1-Nonanol | γ-Terpinene | Hexyl acetate | |
γ-Terpinene | |||||
Ethyl 2-hydroxy-4-methylpentanoate | 4-Phenyldodecane | Methyl salicylate | Myrtenol | Linalol | |
Linalol | Carvone | α-Copaene | Myrtenol | ||
(E)-2-Nonenal | Theaspirane A | (Z)-Calamenene | Decanal | ||
1-Nonanol | Theaspirane B | ||||
Decanal | |||||
Carvone | |||||
(E)-Caryophyllene | |||||
(Z)-β-Ionone | |||||
Heptadecane | |||||
MNOVA manual corrected | 2-Heptanone | (E)-2-Hexenal | (E)-2-Hexenal | 2-Heptanone | Ethyl butanoate |
Camphene | 2-Heptanone | Ethyl 4-methylpentanoate | Ethyl tiglate | (E)-2-Hexenal | |
Ethyl 2-hydroxy-4-methylpentanoate | Nonanal | 1-Heptanol | Camphene | 2-Heptanone | |
Linalol | Decanal | Hexyl acetate | Myrcene | 2-Heptanol | |
Nonanal | Nonanoic acid | 3-Ethyl-4-methyl-1-pentanol | Hexyl acetate | (E)-2-Heptenal | |
1-Nonanol | Theaspirane A | Methyl benzoate | Nonanal | β-pinene | |
α-Terpineol | Theaspirane B | Camphor | Methyl chavicol | Hexanoic acid | |
Decanal | α-Copaene | Borneol | Verbenone | Hexyl acetate | |
Verbenone | 2,6,10-Trimethyltridecane | 1-Nonanol | α-Cubebene | Decanal | |
Citronellol | Alloaromadendrene | Citronellol | γ-Nonalactone | Citronellol | |
Geraniol | γ-Himachalene | Carvone | α-Ylangene | Theaspirane A | |
Dehydro-ar-ionene | Ethyl dodecanoate | Theaspirane A | α-Copaene | Theaspirane B | |
(E)-Caryophyllene | Theaspirane B | Ethyl decanoate | γ-Nonalactone | ||
α-Ionone | α-Ylangene | Sibirene | α-Copaene | ||
1-Dodecanol | α-Copaene | γ-Himachalene | β-Gurjunene | ||
(Z)-β-Ionone | (E)-Caryophyllene | (Z)-Calamenene | 2,6,10-Trimethyltridecane | ||
β-Gurjunene | (Z)-Calamenene | ||||
2,6,10-Trimethyltridecane | Ethyl dodecanoate | ||||
(Z)-β-Ionone | |||||
10,11-epoxy-Calamenene |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ljujić, J.; Vujisić, L.; Tešević, V.; Sofrenić, I.; Ivanović, S.; Simić, K.; Anđelković, B. Critical Review of Selected Analytical Platforms for GC-MS Metabolomics Profiling—Case Study: HS-SPME/GC-MS Analysis of Blackberry’s Aroma. Foods 2024, 13, 1222. https://doi.org/10.3390/foods13081222
Ljujić J, Vujisić L, Tešević V, Sofrenić I, Ivanović S, Simić K, Anđelković B. Critical Review of Selected Analytical Platforms for GC-MS Metabolomics Profiling—Case Study: HS-SPME/GC-MS Analysis of Blackberry’s Aroma. Foods. 2024; 13(8):1222. https://doi.org/10.3390/foods13081222
Chicago/Turabian StyleLjujić, Jovana, Ljubodrag Vujisić, Vele Tešević, Ivana Sofrenić, Stefan Ivanović, Katarina Simić, and Boban Anđelković. 2024. "Critical Review of Selected Analytical Platforms for GC-MS Metabolomics Profiling—Case Study: HS-SPME/GC-MS Analysis of Blackberry’s Aroma" Foods 13, no. 8: 1222. https://doi.org/10.3390/foods13081222
APA StyleLjujić, J., Vujisić, L., Tešević, V., Sofrenić, I., Ivanović, S., Simić, K., & Anđelković, B. (2024). Critical Review of Selected Analytical Platforms for GC-MS Metabolomics Profiling—Case Study: HS-SPME/GC-MS Analysis of Blackberry’s Aroma. Foods, 13(8), 1222. https://doi.org/10.3390/foods13081222