Evaluation of Blue Honeysuckle Berries (Lonicera caerulea L.) Dried at Different Temperatures: Basic Quality, Sensory Attributes, Bioactive Compounds, and In Vitro Antioxidant Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Hot-Air Drying Treatment
2.3. Basic Quality Determination
2.4. Sensatory Evaluation
2.5. Phytochemicals Determination
2.6. Antioxidant Activity Determination
2.7. Statistical Analysis
3. Results and Discussion
3.1. Hot-Air Drying Conditions of Blue Honeysuckle Berries
3.2. Color and Basic Quality
3.3. Sensory Evaluation of Appearance and Flavor
3.4. Contents of Ascorbic Acid, Phenolics, Flavonoids and Anthocyanins
3.5. In Vitro Antioxidant Capacity
3.6. Correlation and Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, C.Q.; Zhang, L.J.; Gao, Y.L.; Qin, D.; Huo, J.W. Two Novel Blue Honeysuckle (Lonicera caerulea L.) Cultivars: Lanjingling and Wulan. HortScience 2022, 57, 1145–1147. [Google Scholar] [CrossRef]
- Gołba, M.; Sokół-Łętowska, A.; Kucharska, A.Z. Health Properties and Composition of Honeysuckle Berry Lonicera caerulea L. An Update on Recent Studies. Molecules 2020, 25, 749. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Li, S.; Zhan, Y.; Huang, Z.; Lv, J.; Liu, Y.; Quan, X.; Xiong, J.; Qin, D.; Huo, J.; et al. Evaluation of the Harvest Dates for Three Major Cultivars of Blue Honeysuckle (Lonicera caerulea L.) in China. Plants 2023, 12, 3758. [Google Scholar] [CrossRef] [PubMed]
- Grobelna, A.; Kalisz, S.; Kieliszek, M. The Effect of the Addition of Blue Honeysuckle Berry Juice to Apple Juice on the Selected Quality Characteristics, Anthocyanin Stability, and Antioxidant Properties. Biomolecules 2019, 9, 744. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Mi, Y.; Li, Y.; Zang, H.; Guo, L.; Huo, J.; Man, Z.; Chen, Z.; Zhang, B.; Sang, M.; et al. First Report of Postharvest Fruit Rot Caused by Botrytis cinerea on Blue Honeysuckle (Lonicera caerulea L.) Fruit in China. Plant Dis. 2023, 108, 527. [Google Scholar] [CrossRef] [PubMed]
- Leisso, R.; Jarrett, B.; Richter, R.; Miller, Z. Fresh haskap berry postharvest quality characteristics and storage life. Can. J. Plant Sci. 2021, 101, 1051–1063. [Google Scholar] [CrossRef]
- Khattab, R.Y.; Ghanem, A.; Brooks, M.S.-L. Stability of Haskap Berry (Lonicera caerulea L.) Anthocyanins at Different Storage and Processing Conditions. J. Field Robot. 2016, 5, 67. [Google Scholar] [CrossRef]
- Lewicki, P.P. Design of hot air drying for better foods. Trends Food Sci. Technol. 2006, 17, 153–163. [Google Scholar] [CrossRef]
- Rybicka, I.; Kiewlicz, J.; Kowalczewski, P.Ł.; Gliszczyńska-Świgło, A. Selected dried fruits as a source of nutrients. Eur. Food Res. Technol. 2021, 247, 2409–2419. [Google Scholar] [CrossRef]
- Gerbrandt, E.M.; Bors, R.H.; Chibbar, R.N. Agronomic potential of fruit size and yield traits in blue honeysuckle (Lonicera caerulea L.) foundation germplasm. Euphytica 2018, 214, 107. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y.; Xu, W.; Zheng, X. Analysis of the Anthocyanin Degradation in Blue Honeysuckle Berry under Microwave Assisted Foam-Mat Drying. Foods 2020, 9, 397. [Google Scholar] [CrossRef] [PubMed]
- Žlabur, J.Š.; Colnar, D.; Voća, S.; Lorenzo, J.M.; Munekata, P.E.; Barba, F.J.; Dobričević, N.; Galić, A.; Dujmić, F.; Pliestić, S. Effect of ultrasound pre-treatment and drying method on specialized metabolites of honeyberry fruits (Lonicera caerulea var. kamtschatica). Ultrason. Sonochem. 2019, 56, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Khattab, R.; Ghanem, A.; Brooks, M.S.-L. Quality of dried haskap berries (Lonicera caerulea L.) as affected by prior juice extraction, osmotic treatment, and drying conditions. Dry. Technol. 2017, 35, 375–391. [Google Scholar] [CrossRef]
- Pateiro, M.; Vargas-Ramella, M.; Franco, D.; Gomes da Cruz, A.; Zengin, G.; Kumar, M.; Dhama, K.; Lorenzo, J.M. The role of emerging technologies in the dehydration of berries: Quality, bioactive compounds, and shelf life. Food Chem. X 2022, 16, 100465. [Google Scholar] [CrossRef] [PubMed]
- Sagar, V.R.; Suresh Kumar, P. Recent advances in drying and dehydration of fruits and vegetables: A review. J. Food Sci. Technol. 2010, 47, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Zielinska, M.; Zielinska, D.; Markowski, M. The effect of microwave-vacuum pretreatment on the drying kinetics, color and the content of bioactive compounds in osmo-microwave-vacuum dried cranberries (Vaccinium macrocarpon). Food Bioprocess Technol. 2018, 11, 585–602. [Google Scholar] [CrossRef]
- Senica, M.; Stampar, F.; Ercisli, S.; Sladonja, B.; Poljuha, D.; Mikulic-Petkovsek, M. The impact of drying on bioactive compounds of blue honeysuckle berries (Lonicera caerulea var. edulis Turcz. ex Herder). Acta Bot. Croat. 2020, 79, 235024. [Google Scholar] [CrossRef]
- Zielinska, M.; Michalska, A. Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture. Food Chem. 2016, 212, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Vega-Gálvez, A.; Lemus-Mondaca, R.; Tello-Ireland, C.; Miranda, M.; Yagnam, F. Kinetic study of convective drying of blueberry variety O’Neil (Vaccinium corymbosum L.). Chil. J. Agric. Res. 2009, 69, 171–178. [Google Scholar] [CrossRef]
- Angulo, O.; Fidelibus, M.W.; Heymann, H. Grape cultivar and drying method affect sensory characteristics and consumer preference of raisins. J. Sci. Food Agric. 2007, 87, 865–870. [Google Scholar] [CrossRef]
- Pallas, L.A.; Pegg, R.B.; Kerr, W.L. Quality factors, antioxidant activity, and sensory properties of jet-tube dried rabbiteye blueberries. J. Sci. Food Agric. 2013, 93, 1887–1897. [Google Scholar] [CrossRef]
- Kamanova, S.; Temirova, I.; Aldiyeva, A.; Yermekov, Y.; Toimbayeva, D.; Murat, L.; Muratkhan, M.; Khamitova, D.; Tultabayeva, T.; Bulashev, B.; et al. Effects of Freeze-Drying on Sensory Characteristics and Nutrient Composition in Black Currant and Sea Buckthorn Berries. Appl. Sci. 2023, 13, 12709. [Google Scholar] [CrossRef]
- (GB/T 43396—2023), 1-5; Sensory Analysis—Guidance on Substantiation for Sensory and Consumer Product Claims; National Standards of the People’s Republic of China. National Standardization Administration of the People’s Republic of China: Beijing, China, 2023. Available online: https://std.samr.gov.cn/gb (accessed on 2 January 2024).
- (GB/T 10220—2012), 4-14; Sensory Analysis—Methodology—General Guidance; National Standards of the People’s Republic of China. National Standardization Administration of the People’s Republic of China: Beijing, China, 2012. Available online: https://std.samr.gov.cn/gb (accessed on 2 January 2024).
- (GB/T 16291.1—2012), 8-12; Sensory Analysis—General Guidance for the Selection, Training and Monitoring of Assessors—Part 1: Selected Assessors; National Standards of the People’s Republic of China. National Standardization Administration of the People’s Republic of China: Beijing, China, 2012. Available online: https://std.samr.gov.cn/gb (accessed on 2 January 2024).
- (GB/T 23470.2—2009), 5-6; Sensory analysis—General Guidance for the Staff of a Sensory Evaluation Laboratory—Part 2: Recruitment and Training of Panel Leaders; National Standards of the People’s Republic of China. National Standardization Administration of the People’s Republic of China: Beijing, China, 2009. Available online: https://std.samr.gov.cn/gb (accessed on 2 January 2024).
- Wu, X.; Diao, Y.; Sun, C.; Yang, J.; Wang, Y.; Sun, S. Fluorimetric determination of ascorbic acid with o-phenylenediamine. Talanta 2003, 59, 95–99. [Google Scholar] [CrossRef] [PubMed]
- (GB 5009.86—2016), 4-7; National Standards for Food Safety: Determination of Ascorbic Acid in Food; National Standards of the People’s Republic of China. National Health Commission of the People’s Republic of China: Beijing, China, 2016. Available online: https://std.samr.gov.cn/gb (accessed on 10 August 2022).
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Zhao, L.; Li, S.; Zhao, L.; Zhu, Y.; Hao, T. Antioxidant Activities and Major Bioactive Components of Consecutive Extracts from Blue Honeysuckle (Lonicera caerulea L.) Cultivated in China. J. Food Biochem. 2015, 39, 653–662. [Google Scholar] [CrossRef]
- Zia, M.P.; Alibas, I. Influence of the drying methods on color, vitamin C, anthocyanin, phenolic compounds, antioxidant activity, and in vitro bioaccessibility of blueberry fruits. Food Biosci. 2021, 42, 101179. [Google Scholar] [CrossRef]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 3. [Google Scholar]
- (SN/T 4592—2016), 1-3; Determination of Total Flavonoids in Export Food; Industry Standards for Entry-Exit Inspection and Quarantine of the People’s Republic of China. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China,, 2016. Available online: https://hbba.sacinfo.org.cn (accessed on 10 August 2022).
- Horszwald, A.; Julien, H.; Andlauer, W. Characterisation of Aronia powders obtained by different drying processes. Food Chem. 2013, 141, 2858–2863. [Google Scholar] [CrossRef]
- Horszwald, A.; Andlauer, W. Characterisation of bioactive compounds in berry juices by traditional photometric and modern microplate methods. J. Berry Res. 2011, 1, 189–199. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 00, F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Celli, G.B.; Khattab, R.; Ghanem, A.; Brooks, M.S. Refractance Window drying of haskap berry—Preliminary results on anthocyanin retention and physicochemical properties. Food Chem. 2016, 194, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Ozgen, M.; Reese, R.N.; Tulio, A.Z.; Scheerens, J.C.; Miller, A.R. Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) Method to Measure Antioxidant Capacity of Selected Small Fruits and Comparison to Ferric Reducing Antioxidant Power (FRAP) and 2,2‘-Diphenyl-1-picrylhydrazyl (DPPH) Methods. J. Agric. Food Chem. 2006, 54, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Tang, J.; Zhang, J. Effects of Salt Stress on the Morphology, Growth and Physiological Parameters of Juglans microcarpa L. Seedlings. Plants 2022, 11, 2381. [Google Scholar] [CrossRef] [PubMed]
- Oszmiański, J.; Wojdyło, A.; Lachowicz, S. Effect of dried powder preparation process on polyphenolic content and antioxidant activity of blue honeysuckle berries (Lonicera caerulea L. var. kamtschatica). LWT-Food Sci. Technol. 2016, 67, 214–222. [Google Scholar] [CrossRef]
- Nemzer, B.; Vargas, L.; Xia, X.; Sintara, M.; Feng, H. Phytochemical and physical properties of blueberries, tart cherries, strawberries, and cranberries as affected by different drying methods. Food Chem. 2018, 262, 242–250. [Google Scholar] [CrossRef]
- Batu, H.S.; Kadakal, Ç. Drying characteristics and degradation kinetics in some parameters of goji berry (Lycium barbarum L.) fruit during hot air drying. Ital. J. Food Sci. 2021, 33, 16–28. [Google Scholar] [CrossRef]
- Bors, B. Dried Haskap Berries. University of Saskatchewan Fruit Program: Haskap, SK, Canada, 2012. Available online: https://research-groups.usask.ca/fruit/documents/haskap (accessed on 2 January 2024).
- Vilela, A.; Gonçalves, B.; Ribeiro, C.; Fonseca, A.T.; Correia, S.; Fernandes, H.; Ferreira, S.; Bacelar, E.; Silva, A.P. Study of textural, chemical, color and sensory properties of organic blueberries harvested in two distinct years: A chemometric approach. J. Texture Stud. 2016, 47, 199–207. [Google Scholar] [CrossRef]
- Velickova, E.; Winkelhausen, E.; Kuzmanova, S. Physical and sensory properties of ready to eat apple chips produced by osmo-convective drying. J. Food Sci. Technol. 2014, 51, 3691–3701. [Google Scholar] [CrossRef]
- Liao, H.; Banbury, L.K.; Leach, D.N. Antioxidant activity of 45 Chinese herbs and the relationship with their TCM characteristics. Evid. Based Complement. Altern. Med. 2008, 5, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Xin, X.; Yuan, Q.; Su, D.; Liu, W. Phytochemical properties and antioxidant capacities of various colored berries. J. Sci. Food Agric. 2014, 94, 180–188. [Google Scholar] [CrossRef] [PubMed]
Drying Temperature | Initial MoC (g H2O/g DW) | Drying Time | Final MoC (g H2O/g DW) | Rotting Percentage | Spoilage Percentage |
---|---|---|---|---|---|
75 °C/167 °F | 7.63 ± 0.90 | 4 h | 0.37 ± 0.08 | NA | 80.00% ± 13.33% |
70 °C/158 °F | 7.49 ± 0.75 | 5 h | 0.43 ± 0.16 | NA | 54.44% ± 15.75% |
65 °C/149 °F | 6.52 ± 0.61 | 7 h | 0.24 ± 0.03 | NA | 12.22% ± 5.09% |
60 °C/140 °F | 6.24 ± 0.77 | 10 h | 0.21 ± 0.07 | NA | 5.56% ± 5.09% |
55 °C/131 °F | 7.72 ± 1.43 | 18 h | 0.48 ± 0.19 | NA | NA |
50 °C/122 °F | 7.26 ± 0.88 | 32 h | 0.54 ± 0.20 | NA | NA |
45 °C/113 °F | 7.64 ± 0.92 | 52 h | 0.75 ± 0.14 | NA | NA |
40 °C/104 °F | 7.13 ± 0.93 | 72 h | 1.10 ± 0.19 | 4.44% ± 1.92% | NA |
35 °C/95 °F | 6.34 ± 0.80 | 72 h * | 5.10 ± 0.64 | 11.11% ± 6.93% | NA |
Sample | L* | a* | b* | SS (Brix°) | TA (%) | SS:TA |
---|---|---|---|---|---|---|
LJL-40 | 30.28 ± 4.33 a | −0.70 ± 1.01 d | −6.32 ± 2.64 d | 4.94 ± 0.31 d | 0.723 ± 0.081 c | 6.90 ± 0.82 b |
LJL-45 | 22.54 ± 4.41 b | 1.09 ± 1.01 b | −4.22 ± 1.80 c | 6.88 ± 0.58 c | 0.785 ± 0.066 c | 8.81 ± 1.26 a |
LJL-50 | 25.43 ± 5.10 b | 3.49 ± 1.42 bc | −1.58 ± 1.05 b | 7.44 ± 1.16 b | 0.794 ± 0.068 c | 9.40 ± 1.37 a |
LJL-55 | 16.06 ± 2.28 c | 1.70 ± 1.59 a | 0.80 ± 1.15 a | 7.96 ± 0.15 ab | 0.826 ± 0.050 c | 9.67 ± 0.59 a |
LJL-60 | 10.64 ± 3.58 d | 0.21 ± 1.46 cd | 1.82 ± 0.96 a | 8.18 ± 0.56 a | 0.932 ± 0.044 a | 8.79 ± 0.68 b |
LJL-65 | 6.99 ± 2.59 e | −0.41 ± 1.73 d | 0.63 ± 0.84 a | 8.37 ± 0.34 a | 1.231 ± 0.065 b | 6.82 ± 0.44 b |
Fresh pulp | 38.81 ± 7.61 | 0.17 ± 0.35 | −9.65 ± 5.19 | 15.19 ± 0.19 | 1.83 ± 0.87 | 8.48 ± 1.42 |
Sample | AsA (mg/g) | TpC (GAE mg/g) | TfC (QCT mg/g) | TaC (C3G mg/g) |
---|---|---|---|---|
LJL-40 | 1.19 ± 0.92 d | 104.96 ± 7.86 a | 18.56 ± 2.58 b | 12.23 ± 0.16 b |
LJL-45 | 1.39 ± 0.31 bc | 103.50 ± 6.87 a | 21.65 ± 3.74 ab | 13.43 ± 0.36 a |
LJL-50 | 1.41 ± 0.15 ab | 84.17 ± 2.76 b | 22.67 ± 2.26 ab | 13.62 ± 0.41 a |
LJL-55 | 1.50 ± 0.51 a | 78.81 ± 3.96 bc | 24.28 ± 1.38 a | 13.99 ± 0.36 a |
LJL-60 | 1.32 ± 0.19 c | 73.05 ± 4.76 cd | 24.21 ± 2.93 a | 11.38 ± 0.88 c |
LJL-65 | 1.09 ± 0.26 e | 66.18 ± 3.57 d | 22.68 ± 1.34 ab | 9.20 ± 0.24 d |
Fresh pulp | 0.62 ± 0.30 | 31.98 ± 4.44 | 5.34 ± 0.73 | 4.64 ± 0.05 |
Sample | DPPH (μmol TE/g) | ABTS (μmol TE/g) | FRAP (μmol TE/g) |
---|---|---|---|
LJL-40 | 682.16 ± 68.48 b | 748.14 ± 21.14 ab | 554.58 ± 74.14 ab |
LJL-45 | 797.67 ± 28.31 a | 792.61 ± 28.05 a | 584.99 ± 38.16 a |
LJL-50 | 690.29 ± 39.55 b | 717.49 ± 30.17 b | 580.14 ± 32.42 a |
LJL-55 | 614.91 ± 67.49 b | 701.03 ± 29.87 b | 561.16 ± 79.03 ab |
LJL-60 | 456.51 ± 74.54 c | 611.53 ± 37.22 c | 462.51 ± 55.56 bc |
LJL-65 | 273.66 ± 64.70 d | 589.26 ± 34.30 c | 439.23 ± 70.35 c |
Fresh pulp | 278.72 ± 14.18 | 618.15 ± 60.02 | 521.76 ± 28.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Wang, B.; Huang, Z.; Lv, J.; Teng, Y.; Li, T.; Zhang, Y.; Dong, K.; Qin, D.; Huo, J.; et al. Evaluation of Blue Honeysuckle Berries (Lonicera caerulea L.) Dried at Different Temperatures: Basic Quality, Sensory Attributes, Bioactive Compounds, and In Vitro Antioxidant Activity. Foods 2024, 13, 1240. https://doi.org/10.3390/foods13081240
Yu M, Wang B, Huang Z, Lv J, Teng Y, Li T, Zhang Y, Dong K, Qin D, Huo J, et al. Evaluation of Blue Honeysuckle Berries (Lonicera caerulea L.) Dried at Different Temperatures: Basic Quality, Sensory Attributes, Bioactive Compounds, and In Vitro Antioxidant Activity. Foods. 2024; 13(8):1240. https://doi.org/10.3390/foods13081240
Chicago/Turabian StyleYu, Min, Beibei Wang, Zhiqiang Huang, Jinjiao Lv, Yunfei Teng, Tianbo Li, Yu Zhang, Kun Dong, Dong Qin, Junwei Huo, and et al. 2024. "Evaluation of Blue Honeysuckle Berries (Lonicera caerulea L.) Dried at Different Temperatures: Basic Quality, Sensory Attributes, Bioactive Compounds, and In Vitro Antioxidant Activity" Foods 13, no. 8: 1240. https://doi.org/10.3390/foods13081240
APA StyleYu, M., Wang, B., Huang, Z., Lv, J., Teng, Y., Li, T., Zhang, Y., Dong, K., Qin, D., Huo, J., & Zhu, C. (2024). Evaluation of Blue Honeysuckle Berries (Lonicera caerulea L.) Dried at Different Temperatures: Basic Quality, Sensory Attributes, Bioactive Compounds, and In Vitro Antioxidant Activity. Foods, 13(8), 1240. https://doi.org/10.3390/foods13081240