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Abstract: The use of nanozymes for electrochemical detection in the food industry is
an intriguing area of research. In this study, we synthesized a laccase mimicking the
MnO2@CeO2 nanozyme using a simple hydrothermal method, which was characterized
by modern analytical methods, such as transmission electron microscope (TEM), X-ray
diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX), etc. We found that
the addition of MnO2 significantly increased the laccase-like activity by 300% compared to
CeO2 nanorods. Due to the excellent laccase-like activity of the MnO2@CeO2 nanozyme,
we developed an electrochemical sensor for the detection of hazardous phenolic com-
pounds such as bisphenol A and catechol in red wines by cyclic voltammetry (CV) and
differential pulse voltammetry (DPV). We used the MnO2@CeO2 nanozyme to develop an
electrochemical sensor for detecting harmful phenolic compounds like bisphenol A and
catechol in red wine due to its excellent laccase-like activity. The MnO2@CeO2 nanorods
could be dispersion-modified glassy carbon electrodes (GCEs) by polyethyleneimine (PEI)
to achieve a rapid detection of bisphenol A and catechol, with limits of detection as low
as 1.2 × 10−8 M and 7.3 × 10−8 M, respectively. This approach provides a new way to
accurately determine phenolic compounds with high sensitivity, low cost, and stability.

Keywords: nanozyme; laccase; electrochemical detection; bisphenol A; catechol

1. Introduction
Phenolic compounds in wine are known to have antioxidant properties, preventing

certain diseases [1,2]. However, some phenolic substances can be harmful and affect the
safety and taste of wine [3,4]. For example, bisphenol A (BPA), an endocrine disruptor, may
migrate to wine from plastic packaging [5–7]. Additionally, catechol (CC) can contribute to
bitter taste in wine [8]. Therefore, there is a need for a cost-effective and simple method
for identifying and quantifying these harmful phenolic compounds. Traditional testing
methods such as gas chromatography [9], liquid chromatography [10], and capillary elec-
trophoresis [11] are expensive and require complex operations, limiting their application
for in situ detection.

Laccase, which can catalyze the oxidation of a wide range of phenolic compounds [12–14],
has been considered a candidate for detecting phenolic compounds [15,16]. However, its
application has been hindered by low stability, high cost, and poor reusability [17–21]. In
recent years, nanozymes, which are inorganic nanomaterials with intrinsic enzyme-like
catalytic activity, have received increasing attention due to their high stability, low cost,
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cyclic use, and good polyfunctionality [22–25]. Consequently, various nanomaterials have
been discovered, such as carbon nanomaterials [26,27], metal (hydrogen) oxides [28,29],
metal chalcogenides [30,31], and precious metal nanomaterials [32,33].

As alternatives to natural enzymes, nanozymes have been extensively utilized in
biosensing, bioimaging, antimicrobial applications, antioxidant therapeutics, and environ-
mental remediation [34]. A variety of nanozymes have been developed using metal-based
elements (such as Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Ru, Rh, Pd, Ag, Cd, Sn, Sb, Ce,
Hf, Pt, Au, Bi), non-metal-based elements (such as C, B, Se), and their compounds or hete-
rocomplexes [35,36]. The chemical composition (e.g., metal-based versus non-metal-based),
synthesis method (e.g., impregnation, co-precipitation, deposition–precipitation, hydrother-
mal/solvothermal), and physical morphology (e.g., spherical, rod, cyclic, and hollow struc-
tures) each influence the properties of nanozymes in distinct ways [34]. Cerium-based nano-
materials have garnered significant attention due to their remarkable enzyme-like catalytic
activity. These cerium-based nanozymes have found applications in immunoassays, analyt-
ical detection, and free radical protection owing to their high stability, low cost, ease of syn-
thesis and modification, and biocompatibility [37,38]. Cerium oxide, a notable nanozyme,
has been increasingly integrated with various nanomaterials as research advances. For
instance, Bhagat et al. reported a gold-cerium dioxide core-shell structure exhibiting excel-
lent peroxidase, catalase, and superoxide dismutase activities [39]. Additionally, Zhu et al.
developed boron nitride quantum dot-anchored porous CeO2 nanorods (BNQDs/CeO2)
that effectively catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) by H2O2,
facilitating the detection of kanamycin in environmental and food samples [40].

Nanoceria, one of the important rare earth oxides, have recently attracted consider-
able interest due to their excellent redox ability, unique optical properties, and chemical
stability [41–47]. Nanoceria have been reported to exhibit enzyme-like activity due to the
reversible Ce3+/Ce4+ redox pair and oxygen vacancies on the surface [48]. Kailashiya
et al. [49] explored the effects of nanoceria on human platelet functions and blood coagula-
tion, while Singh et al. reported a remarkably active CeVO4 nanozyme that functionally
mimics cytochrome c oxidase, the terminal enzyme in the respiratory electron transport
chain, by catalyzing a four-electron reduction of dioxygen to water [50]. However, most
nanoceria nanozymes have focused on mimicking peroxidase [14], superoxide dismu-
tase [51], and oxidase [52], and to date, there has been scarce study on comparing the
response between this nanozyme and laccase. Several laccase-like nanozymes have been
reported, including Cu/GMP as described by Hao et al. [53]. However, this system requires
the removal of the solid catalyst through centrifugation post-reaction, necessitating a com-
plex process and specialized equipment. Additionally, the CA-Cu nanozyme reported by
Xu et al. exhibits poor stability under extreme pH and temperature conditions, with its
catalytic performance declining significantly at pH levels below 5 or above 8 [54].

In this study, we utilized MnO2-doped CeO2 nanorods (CeO2 NRs) to create hybrid
nanocomposites with laccase-like activity, which were employed for detecting phenolic
compounds. CeO2 NRs with well-defined reactive planes [55,56] were easily synthesized
via a solution-based hydrothermal method [57]. It has been suggested that nanorods possess
higher oxidation activity than CeO2 nanoparticles due to their more reactive planes [58].
MnO2 was selected as a suitable dopant to modify CeO2 NRs, resulting in MnO2@CeO2

NRs. The introduction of MnO2 induced more oxygen vacancies [59], and their strong redox
behavior (Ce3+/Ce4+ and Mn2+, Mn3+, and Mn4+) as well as the synergistic interaction
between them could also accelerate oxidation reactions [60].

This study introduces an innovative approach by developing a MnO2@CeO2

nanozyme that mimics laccase activity, enhancing the electrochemical detection of phenolic
compounds. The integration of MnO2 into CeO2 nanorods significantly boosts their cat-
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alytic performance, increasing laccase-like activity by 300%. Leveraging this high activity,
a novel electrochemical sensor was created for the rapid and sensitive detection of haz-
ardous phenolic compounds like bisphenol A and catechol in red wine. By modifying a
glassy carbon electrode with polyethyleneimine, the sensor achieves ultra-low detection
limits, offering a highly sensitive, cost-effective, and stable method for food safety analysis.
This method represents a significant advancement in the use of nanozymes for foodborne
contaminant detection.

2. Materials and Methods
2.1. Reagents, Characterization Techniques

Ethanol, Guaiacol, 2,4-Dichlorophenol (2,4-DP) and 4-Aminoantipyrene (4-APP) were
bought from Shanghai Sinopharm Chemical Reagent Co., Ltd., Shanghai, China. BPA, CC,
KMnO4, CeCl3·7H2O, and polyethyleneimine (PEI) were purchased from Shanghai Aladdin
Biochemical Technology Co., Ltd., Shanghai, China. Exhibiting a Km value of 0.4 mM and
a Vmax value of 3 µM, laccase was obtained from Shanghai Yuanye Bio-Technology Co.,
Ltd., Shanghai, China. In this study, all chemicals were analytically pure, and the laccase
used was a purified enzyme solution derived from Trametes versicolor. The methanol and
formic acid used in the chromatographic analysis were of HPLC grade, purchased from
Shanghai Macklin Biochemical Co., Ltd., Shanghai, China.

Electrochemical curves were measured by an electrochemical workstation (Chen Hua
Instruments Co., Shanghai, China), using different signal transducers of cyclic voltam-
metry (CV) and differential pulse voltammetry (DPV). Transmission electron microscopy
(TEM) images were measured by a TEM (Hitachi High-Technologies Co., Ltd., Tokyo,
Japan). X-ray diffraction (XRD, Shimadzu Enterprise Management China Co., Ltd., Tokyo,
Japan) patterns were recorded on the X-ray powder diffractometer. An energy dispersive
spectrometer (EDS, Shanghai Jingke Scientific Instrument Co., Ltd., Shanghai, China) was
used to characterize the MnO2@CeO2 nanozyme together with TEM. Absorption spectra
were performed on a UV-vis spectrophotometer (UV-1800, AoYi Instruments Shanghai Co.,
Ltd., Shanghai, China). An enzyme-labeled instrument was provided by Gene Co., Ltd.,
Hongkong, China.

2.2. Synthesis of MnO2@CeO2 Nanozyme

The MnO2@CeO2 nanozyme was synthesized according to a previous report with
some modifications [61]. Mn4+-doped CeO2 NRs with various content of Mn4+ (4, 8, 12,
and 16 at. %) were prepared by the hydrothermal synthesis method.

In a typical synthesis, for 8% Mn4+-doped CeO2 NRs, 0.4 g CeCl3·7H2O and 0.012 g
KMnO4 was dissolved in 30 mL of 9 mol/L NaOH solution under vigorous stirring. The
suspension was transferred to a 50 mL Teflon-lined stainless-steel autoclave and held at 140
◦C for 48 h. After the autoclave was cooled to room temperature naturally, fresh precipitates
were separated by centrifugation and washed with deionized water to neutrality and
with ethanol several times. The MnO2@CeO2 nanozymes were obtained by drying the
precipitates at 60 ◦C overnight.

2.3. Evaluation of the Catalytic Performance of Nanozyme and Laccase

The catalytic activity of the MnO2@CeO2 nanozyme and laccase was determined using
the colorimetric reaction between 2,4-DP and 4-APP; 2,4-DP (0.1 M, 10 µL) and 4-APP
(0.1 M, 10 µL) was mixed with MnO2@CeO2 nanozyme aqueous dispersion (1 mg/mL,
80 µL) or laccase (10 mg/mL, 60 µL). Then, Tris-HCl buffer (0.1 M, pH 7.0, 180 µL) was
added in the mixture up to 200 µL. The reaction was maintained at 37 ◦C for 2 h, and then,
the absorbance was detected at 485 nm.
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2.4. Determination of the Catalytic Kinetic Parameters

The prepared MnO2@CeO2 nanozyme (1 mg/mL, 80 µL) or laccase (10 mg/mL, 60 µL)
was mixed with 2,4-DP (0.1 M, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 4.0, 6.0, 8.0, and 10.0 µL) and
4-APP (0.1 M, 15 µL). Tris-HCl buffer (0.1 M, pH 7.0, 180 µL) was added in the mixture up
to 200 µL. At 37 ◦C, the kinetics of the reaction can be determined by monitoring the change
in the absorption wavelength at 485 nm over time by ultraviolet-visible spectroscopy. All
the experiments were repeated thrice.

The kinetic parameter was calculated via Equation (1):

v =
Vmax[S]

Km+[S]
(1)

v is the initial velocity of the reaction, Vmax stands for the maximal reaction velocity,
Km is the Michaelis–Menten constant, and [S] is the concentration of substrate. When
calculating Km and Vmax, the conversion form of the Michaelis–Menten equation can be
used, which is named the Lineweaver–Burk Equation (2):

1
v
=

Km

Vmax[S]
+

1
Vmax

(2)

2.5. Evaluation of the Stability of Catalyst

The MnO2@CeO2 nanozyme or laccase was incubated at varying pH (3.0–9.0) for 7 h
to evaluate the effect of pH on catalytic activity. In order to study the temperature stability
of the MnO2@CeO2 nanozyme and laccase, they were stored at −18~120 ◦C for 45 min
before determining their catalytic activity. The catalytic activity at 30 ◦C was used as a
reference. In the same way, the effect of organic solvents on catalytic activity was evaluated
by the addition of different amounts of methanol (0, 10%, 20%, 40%, 60%, 80%, and 100%
v/v) in the reactants. The absorbance of the supernatant at 485 nm was measured after 2 h.

2.6. Preparation of MnO2@CeO2/GCE

A total of 5 mg of MnO2@CeO2 nanozyme and 25 mg of PEI were added into 5 mL
double distilled water and sonicated for 30 min. The GCEs were polished with 0.05 µm
and 0.3 µm alumina pastes, then washed with distilled water and dried at 26 ◦C. A total of
5 µL of 1 mg/mL MnO2@CeO2 nanozyme suspension was dropped on the GCEs and then
dried at room temperature. The dried modified electrode was used for the electrochemical
detection of BPA and CC.

2.7. Electrochemical Experiments

A Tris buffer solution of 0.1 mol L−1, pH 7.0 was used as the electrolyte solution at
room temperature. A three-electrode system was formed with the MnO2@CeO2/GCE
electrode, with the GCE electrode as the working electrode, Pt wire as the main auxiliary
electrode, and Ag/AgCl as the reference electrode. The size of the electrolytic cell was 5 mL,
which was purchased from Guangzhou Saios Chemical Instrument Co., Ltd., Guangzhou,
China. DPV was used with a pulse amplitude of 50 mV, a pulse width of 0.05 s, a potential
increment of 4 mV, a pulse cycle time of 0.5 s, a sensitivity of 1e−5 A V−1, and a scanning
in the negative direction at a potential in the range of 0.2–1.4 V with a scanning speed of
100 mV s−1, and the DPV curve was recorded.

2.8. High-Performance Liquid Chromatography (HPLC) Analyses

The HPLC analysis of BPA was conducted using a HPLC instrument (Thermo Fisher
UltiMate 3000, Waltham, MA, USA) equipped with a reversed-phased column Syncronis
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C18 column (100 mm × 2.1 mm, 1.7 µm) maintained at a constant temperature of 30 ◦C
with a diode array detector (DAD) set at 280 nm. The analysis involved the injection of
10 µL of 0.22 µm membrane-filtered samples at a flow rate of 0.2 mL/min, and the solvents
consisted of a methanol–water mixture in a ratio of 65:35 (v/v).

A HPLC system (Prominence LC-20A, Shimadzu, Japan) with an analytical column
Venusil MP C18 (4.6 mm × 250 mm, 5 µm) was used at a constant temperature of 35 ◦C.
The isocratic elution was performed using a 5 mM ammonium acetate−1‰ formic acid
solution (solvent A) and methanol (solvent B) in a ratio of 30:70 (v/v). The injection volume
was 10 µL of 0.22 µm membrane-filtered samples, with a flow rate of 1 mL/min.

3. Results
3.1. Characterization of CeO2 NRs and MnO2@CeO2 NRs

Figure 1 depicts TEM images of CeO2 NRs and MnO2@CeO2 NRs at different scales. It
can be observed that CeO2 NRs exhibit a well-dispersed, rod-like structure with an average
diameter of 8 nm. The elemental maps of Ce, Mn, and O in MnO2@CeO2 NRs are presented
in Figure 2a–d. The maps show homogeneous distribution of O, Ce, and Mn throughout the
nanorods, suggesting successful incorporation of Mn into the Ce-based nanorods. XRD was
used to characterize the crystal phase of CeO2 NRs and MnO2@CeO2 NRs with varying
mass ratios (Figure 2e). The diffraction peaks observed at 2θ angles of 28.5◦, 33.1◦, 47.5◦,
and 56.3◦ correspond to the (111), (200), (220), and (311) crystalline phases. As the amount
of MnO2 increased, the diffraction peaks shifted towards the lower angle region, indicating
that Mn entered the CeO2 lattice and resulted in structural defects of CeO2 NRs.
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Figure 2f presents EDX images of the synthesized nanorods, showing the presence of
Mn, O, and Ce, which confirms the successful synthesis of MnO2@CeO2 NRs.

3.2. Comparation of the Catalytic Ability of MnO2@CeO2 and Laccase

The absorption spectra of various catalytic systems are presented in Figure 3. Laccase
can catalyse the oxidation of 2,4-DP by simultaneously reducing molecular oxygen to
water. As 2,4-DP is oxidized, the color of the solution gradually changes from colorless
to red due to the reaction of the oxidation products of the phenolic pollutant with 4-APP
to form a red adduct. As a result, the absorbance at 485 nm gradually increases (Figure 3,
green curve). In the presence of CeO2 NRs, 2,4-DP, and 4-APP, a similar absorption peak
at 485 nm was observed, indicating the laccase-like activity. In contrast, the absorption
peaks in the MnO2@CeO2 system increased by 300% compared to CeO2 NRs, suggesting
a significant enhancement of laccase-like activity. These findings imply that MnO2 can
effectively improve the catalytic activity of CeO2 NRs. The other solutions containing the
substrate without laccase or nanozyme did not show an absorption peak at 485 nm. These
results confirm that the MnO2@CeO2 nanozyme possesses prominent laccase-mimicking
catalytic performance.
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Figure 3. Absorbance spectrums of different catalytic systems.

Figure 4a shows the relative activity of the MnO2@CeO2 nanozyme with different
Mn contents at pH 7.0, 20 ◦C and without methanol. As the Mn content was increased
from 4% to 8%, a dramatic enhancement in the activity of the MnO2@CeO2 nanozyme was
observed, indicating that the incorporation of MnO2 effectively augmented the activity of
the nanozymes. However, further increasing the Mn content from 8% to 16% did not yield
any statistically significant differences in enzyme activity. The minor variations observed
may be attributable to experimental error. Therefore, MnO2@CeO2 NRs with 8% Mn were
used for the following experiments considering material consumption.
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The catalytic activities of laccase and MnO2@CeO2 nanozyme were compared at
different pH values (Figure 4b) and temperatures (Figure 4c) to verify the robust adaptability
of the nanozyme. The effect of the pH value on catalytic activity was investigated at 20 ◦C
without methanol. The catalytic activity of the laccase and MnO2@CeO2 nanozyme at
pH 7.0 was considered as 100%, respectively. As depicted in Figure 4b, the MnO2@CeO2

nanozyme exhibited better catalytic activity in the range from pH 3.0 to 9.0 than laccase.
Testing at pH 7.0 without methanol, the catalytic activities of the laccase and

MnO2@CeO2 nanozyme at 20 ◦C were considered as 100%, respectively. Laccase had
the highest catalytic activity at 40 ◦C, and its activity sharply decreased as the temperature
increased from 40 to 100 ◦C, almost becoming inactive at temperatures from 80 to 100 ◦C. In
contrast, the relative activity of the MnO2@CeO2 nanozyme remained consistent from 20 to
80 ◦C and could still retain about 30% of the catalytic activity at 100 ◦C. These results indi-
cate that the MnO2@CeO2 nanozyme exhibits better catalytic ability at high temperatures,
as shown in Figure 4c.

To investigate the effect of organic solvent, different concentrations of methanol
solution (0, 20%, 40%, 60%, 80%, and 100% v/v) were utilized under experimental conditions
of pH 7.0 and 20 ◦C. As depicted in Figure 4d, the catalytic activity of laccase decreased
as the methanol concentration increased. In 100% methanol solution, laccase was entirely
inactivated. However, the MnO2@CeO2 nanozyme retained 90% of its activity in 100%
methanol solution.

These results demonstrate that MnO2@CeO2 nanozymes have robust adaptability in
different conditions.

3.3. Kinetic Parameters of NRs and Laccase

The kinetic parameters of the MnO2@CeO2 nanozyme and laccase were investigated
by studying the oxidation of different concentrations of 2,4-DP (Figure 5). The Km value
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for the MnO2@CeO2 nanozyme was 0.7 mM, while that of laccase was 0.4 mM (shown in
Table 1). The former showed nearly a 2-fold higher Km than laccase, indicating weaker
substrate-binding ability compared to the natural enzyme. Natural enzymes have flexible
active sites, whereas the nanozyme is conformationally rigid. Hence, natural laccase
exhibited stronger affinity towards the substrate than the MnO2@CeO2 nanozyme. The
Vmax value of the MnO2@CeO2 nanozyme was 6 µM, while that of laccase was 3 µM,
indicating a faster reaction rate for the MnO2@CeO2 nanozyme.
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Table 1. Kinetic parameters of MnO2@CeO2 nanozyme and laccase for 2,4-DP at 37 ◦C.

Catalyst Km (mM) Vmax (mM min−1)

MnO2@CeO2 0.7 6
Laccase 0.4 3

3.4. Detection of Phenols Based on MnO2@CeO2/GCE

Cyclic voltammograms of bare GCE, laccase/GCE, MnO2@CeO2/GCE, and CeO2/GCE
in 0.1 M pH 7.0 Tris containing BPA and CC at a concentration of 10−5 M are shown in
Figure 6. The peak currents of MnO2@CeO2/GCE for BPA and CC were much higher
than those of the other electrodes, indicating excellent electrocatalytic activity of the
MnO2@CeO2 nanozyme. The oxidation peaks observed in cyclic voltammograms are typi-
cally attributed to the oxidation of phenolic compounds. Specifically, laccase or nanozymes
facilitate the oxidation of the hydroxyl group (-OH) in phenol, transferring electrons to
molecular oxygen to generate the oxidized form of phenol (quinone) along with water. This
reaction produces a signal at the electrode, which is manifested as an oxidation peak in the
cyclic voltammogram.
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Figure 6. Cyclic voltammograms of bare GCE, laccase/GCE, MnO2@CeO2/GCE, and CeO2/GCE in
0.1 M pH 7.0 Tris containing BPA (a) and CC (b) with scan rate of 50 mV s−1.

DPV was used for the effective detection of BPA and CC in 0.1 M Tris buffer solution
with a scan rate of 0.05 v/s. Under the optimized conditions of MnO2@CeO2 NRs shown
in Figure 4, the oxidation peak current increased linearly with increasing BPA and CC
concentrations (Figure 7a,b). There were linear relationships between the peak currents and
the logarithm of the concentrations for BPA in the range of 4 × 10−8 to 1 × 10−4 M and for
CC in the range of 2 × 10−7 to 1 × 10−4 M. The current change was also linearly correlated
with the logarithm of BPA and CC concentrations within these ranges. The regression
equations were I = 1.56 log BPA − 1.68 (R2 = 0.998), I = 1.55 log CC − 1.45 (R2 = 0.992).
The detection limits (S/N = 3) for BPA and CC were 1.2 × 10−8 M and 7.3 × 10−8 M,
respectively. The response time for completing a single DPV reaction is 10 s. The well-
defined anodic peaks of BPA and CC indicate the excellent electrocatalytic performance of
MnO2@CeO2 nanozymes.
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3.5. Selectivity, Reproducibility, and Stability

To investigate the selectivity of this method, some common metal ions and potential
substances, including cations (K+, Mn2+, Na+, Zn2+), anions (Cl−, SO4

2−), glycine (Gly),
urea, and glucose (Glc) were tested at concentrations 10 times higher than that of BPA
and CC, which were both at 10−5 M. As shown in Figure 8, no significant changes were
observed after the addition of interferents, indicating the high selectivity of the method.
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Figure 8. The selectivity of the proposed system towards BPA (a) and CC (b) detection.

In addition, we also evaluated the stability and reusability of the electrodes. First, five
identical electrodes were used to test 0.1 mM BPA, and the relative standard deviation was
1.59%, indicating excellent reproducibility (Figure 9a). Subsequently, the electrode was
stored at room temperature for a certain period and then used to detect 0.1 mM BPA. As
shown in Figure 9b, after 14 days, the peak current decreased by only 1.86% compared to
its initial value. These results demonstrate that the electrodes exhibit good stability.

Foods 2025, 14, x FOR PEER REVIEW 11 of 15 
 

 

 

Figure 8. The selectivity of the proposed system towards BPA (a) and CC (b) detection. 

In addition, we also evaluated the stability and reusability of the electrodes. First, 
five identical electrodes were used to test 0.1 mM BPA, and the relative standard deviation 
was 1.59%, indicating excellent reproducibility (Figure 9a). Subsequently, the electrode 
was stored at room temperature for a certain period and then used to detect 0.1 mM BPA. 
As shown in Figure 9b, after 14 days, the peak current decreased by only 1.86% compared 
to its initial value. These results demonstrate that the electrodes exhibit good stability. 

 

Figure 9. (a) Reproducibility and (b) stability of the electrodes. 

3.6. Detection of BPA and CC in Red Wine 

To evaluate the practicality of this method, red wine purchased from a supermarket 
was selected as a sample. Different concentrations of BPA and CC (5, 50, and 500 µmol/L, 
respectively) were added to the red wine, and the recoveries and relative standard devia-
tion (RSD) were calculated (shown in Table 2). The results indicated that this method has 
excellent accuracy and precision and can be used for the detection of phenolic compounds 
in practical samples. 

Table 2. Recoveries and RSD of BPA and CC in actual samples. 

Analytes 
Added 
(μM) 

This Work HPLC 
Found 
(μM) 

Recovery 
(%) 

RSD (%) Found 
(μM) 

Recovery 
(%) 

RSD (%) 

BPA 
5 4.9 98.0 2.0 4.6 93.0 4.7 

50 48.8 97.6 2.4 46.2 92.4 5.0 
500 491.3 98.2 3.1 542.5 108.5 4.2 

CC 
5 5.1 102.0 2.8 5.3 106.0 5.9 

50 49.1 98.2 2.3 45.9 91.8 6.3 
500 488.5 97.7 3.0 450.5 90.1 5.6 

  

Figure 9. (a) Reproducibility and (b) stability of the electrodes.

3.6. Detection of BPA and CC in Red Wine

To evaluate the practicality of this method, red wine purchased from a supermarket
was selected as a sample. Different concentrations of BPA and CC (5, 50, and 500 µmol/L,
respectively) were added to the red wine, and the recoveries and relative standard deviation
(RSD) were calculated (shown in Table 2). The results indicated that this method has
excellent accuracy and precision and can be used for the detection of phenolic compounds
in practical samples.
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Table 2. Recoveries and RSD of BPA and CC in actual samples.

Analytes Added (µM) This Work HPLC
Found (µM) Recovery (%) RSD (%) Found (µM) Recovery (%) RSD (%)

BPA
5 4.9 98.0 2.0 4.6 93.0 4.7

50 48.8 97.6 2.4 46.2 92.4 5.0
500 491.3 98.2 3.1 542.5 108.5 4.2

CC
5 5.1 102.0 2.8 5.3 106.0 5.9

50 49.1 98.2 2.3 45.9 91.8 6.3
500 488.5 97.7 3.0 450.5 90.1 5.6

4. Conclusions
In summary, the MnO2@CeO2 nanozyme with laccase-like activity was successfully

prepared and exhibits excellent stability and environmental suitability under various harsh
conditions compared with laccase. Furthermore, the MnO2@CeO2 nanozyme was used to
fabricate a modified electrode for electrocatalytic detection, which showed good accuracy
with a low detection limit and high selectivity. This work provides a novel strategy for
developing electrochemical methods for the detection of phenolic compounds in practical
samples based on the MnO2@CeO2 nanozyme.
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