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Abstract: Stacking fermentation is critical in sauce-flavor Baijiu production, but winter
production often sees abnormal fermentations, like Waistline and Sub-Temp fermenta-
tion, affecting yield and quality. This study used three machine learning models (Logistic
Regression, KNN, and Random Forest) combined with multi-omics (metagenomics and
flavoromics) to develop a classification model for abnormal fermentation. SHAP analysis
identified 13 Sub-Temp Fermentation and 9 Waistline microbial biomarkers, along with
9 Sub-Temp Fermentation and 12 Waistline flavor biomarkers. Komagataeibacter and Glu-
conacetobacter are key for normal fermentation, while Ligilactobacillus and Lactobacillus are
critical in abnormal cases. Excessive acid and ester markers caused unbalanced aromas in
abnormal fermentations. Additionally, ecological models reveal the bacterial community
assembly in abnormal fermentations was influenced by stochastic factors, while the fungal
community assembly was influenced by deterministic factors. RDA analysis shows that
moisture significantly drove Sub-Temp fermentation. Differential gene analysis and KEGG
pathway enrichment identify metabolic pathways for flavor markers. This study provides
a theoretical basis for regulating stacking fermentation and ensuring Baijiu quality.

Keywords: machine learning; multi-omics; community assembly; biomarker; abnormal
fermentation

1. Introduction
Chinese Baijiu is made from grains through saccharification, fermentation, distillation,

and blending [1]. It is considered one of the world’s six major distilled spirits, along with
brandy, whiskey, vodka, gin, and rum [2]. Sauce-flavor Baijiu, a typical representative of
Chinese Baijiu, owes its unique flavor and quality to its complex and multi-step traditional
brewing process [3].

Stacking fermentation is the most critical process in the traditional brewing system of
sauce-flavor Baijiu [4]. It typically involves steaming and gelatinizing the raw materials,
cooling and adding Daqu (a saccharifying and fermenting agent made from grains), and
then stacking them in a tent-like shape in an open brewing environment [5]. This process
enriches essential brewing microorganisms from the environment and produces important
sauce-flavor compounds and flavor precursors [6]. Previous studies have shown that
Jiupei (fermented grains) without stacking fermentation has significantly lower levels of
various aromatic compounds, resulting in less prominent sauce-flavor characteristics in the
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Baijiu [4]. However, stacking fermentation often faces challenges, such as climate instability
or improper manual operations, leading to microbial dysbiosis or metabolic disorders in
Jiupei. This results in clumping and moldiness, dark coloration, and slow temperature rise,
phenomena we defined as “Waistline” when white colonies and clumping occur in the
middle section of stacking fermentation and “Sub-Temp Fermentation” for overall slow
temperature rise during the fermentation process. Currently, the identification of abnormal
stacking fermentation phenomena relies solely on subjective sensory experience, lacking
scientific and objective evaluation standards. Additionally, in the open and complex stack-
ing fermentation ecosystem, taxa within the community occupy optimal ecological niches
and assemble microbial communities based on ecological phenomena such as priority
effects [7–9]. However, the significant environmental heterogeneity in different stacking
fermentation states, the ecological niches of microbial species, and the contributions of
stochastic and deterministic ecological processes to microbial community assembly in
different fermentation states remain unclear. Therefore, the industry urgently needs to
identify key biomarkers causing abnormal stacking fermentation based on microbial and
metabolic levels and understand the differences in microbial community composition and
assembly mechanisms that affect abnormal stacking fermentation. This will provide scien-
tific theoretical guidance for production, allowing the timely regulation and improvement
of fermentation levels to ensure the quality of Baijiu.

In recent years, omics technologies and artificial intelligence have been continuously
updated [10]. Multi-omics technologies are increasingly emerging in the traditional fer-
mented food industry [11]. Yang et al. used multi-omics technologies to elucidate that
differences in microbial ecological niches in different spatial environments are a significant
reason for the micro-ecological differentiation of high-temperature Daqu in sauce-flavor
Baijiu [12]. Zhang et al. applied flavoromics techniques combined with comprehensive
2D gas chromatography coupled with mass spectrometry to elucidate key volatile flavor
compounds in beer and wine [13]. However, the heterogeneity in sample types and scales
between different omics data increases the difficulty of data integration [14]. Additionally,
omics technologies often contain [1] a large number of missing values and noise, requiring
higher-level algorithms for preprocessing [15]. To address the issues in omics technologies,
machine learning holds great potential in data processing and analysis [16]. By optimizing
algorithms and iteratively training models, it can extract and reveal functionally significant
relationships and biological mechanisms from complex multi-dimensional omics data,
which are important for biological research and applications [17,18].

Based on the abnormal stacking fermentation phenomena, this study aimed to use
multi-omics techniques such as metagenomics and flavoromics (non-targeted volatile
flavor synthesis) to analyze the differences in microbial composition and volatile flavor
compounds during abnormal stacking fermentation. By applying the neutral community
model combined with the ecological null model, we aimed to characterize the differences
in microbial community assembly mechanisms under different fermentation states. We
selected three machine learning methods—Random Forests, Logistic Regression, and K-
Nearest Neighbor (KNN)—to clarify the microbial and flavor markers causing abnormal
stacking fermentation. By screening biomarkers and combining them with the KEGG
database, we aimed to identify the key metabolic pathways responsible for abnormal stack-
ing fermentation and elucidate the mechanisms of abnormal fermentation formation. This
study provides scientific theoretical guidance for regulating and improving the stacking
fermentation level of sauce-flavor Baijiu and ensuring its quality.
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2. Materials and Methods
2.1. Sample Collection

The samples were obtained from Guizhou Guotai Distillery Co., Ltd., located in
Maotai Town, Guizhou, China. The samples were Jiupei from the first round of stacking fer-
mentation during the winter production of sauce-flavor Baijiu from three different batches
covering the 1–7 day fermentation period. Following the sampling method of Wang et al. [6],
we sampled the common abnormal fermentation phenomena in winter stacking fermenta-
tion, as shown in Figure S1a, as well as normal fermentation for comparison. The common
fermentation states in stacking fermentation—normal fermentation, Waistline, and Sub-
Temp Fermentation—were named NF, WL, and STF, respectively. Waistline Jiupei is milky
white and blocky, with a slightly sour and astringent taste and a strong alcoholic aroma
(Figure S1b). Normal fermentation Jiupei is bright in color and moderately loose, with a
sweet liquor aroma and floral and fruity notes (Figure S1c). Sub-Temp Fermentation Jiupei
is dark in color and loose, with a pungent sour and astringent taste (Figure S1d). The
samples from the three treatment groups were from the same round of fermentation, with
samples collected daily over the 1–7 day period. A total of 63 samples were collected (three
replicates each): 21 normal fermentation samples, 21 Waistline samples, and 21 Sub-Temp
Fermentation samples. Samples for physicochemical and volatile compound analysis were
stored at 4 ◦C, while samples for metagenomic sequencing were stored at −80 ◦C.

2.2. Physicochemical Analysis

To characterize the physicochemical differences in Jiupei under different stacking
fermentation states, we measured temperature, moisture, titratable acidity, reducing sugars,
and starch content following the methods reported by Yang et al. [19]. Lactic acid and
ethanol contents were measured using an M-100 biosensor (Siemens Technology, Beijing,
China). The details are as follows: weigh 5.0 g of Jiupei and place it in a 250 mL beaker.
Add 100 mL of water, then stir with a glass rod and let it soak for 30 min, stirring every
15 min. After soaking, adjust the pH to neutral or slightly acidic (pH 5–8) using a 20%
NaOH solution. Let it stand for 10 min, then collect the supernatant for centrifugation.
Use a desktop high-speed centrifuge and set the parameters for 5 min at 10,000 rpm. After
centrifugation, collect the supernatant and proceed with testing using the M-100 biosensor.

2.3. Metagenomic Sequencing

Metagenomic sequencing of the Jiupei samples was performed by Personal Biotech-
nology Co., Ltd. (Shanghai, China). DNA was extracted from the samples using the
OMEGA Mag-Bind Soil DNA Kit (M5635-02) from Omega Bio-Tek (Norcross, GA, USA).
All sequencing analyses were conducted on the Illumina NovaSeq 6000 platform, following
the methods outlined in the literature [20].

2.4. Identification of Functional Genes and Metabolic Pathways

Following the methods reported in the literature [21], MEGAHIT was used to construct
a non-redundant gene set with 95% identity and 90% contrast coverage using default
parameters, while Prodigal was used for each allele and scaffold. Functional annotation was
performed using HUMAnN3 (v3.6), with annotation information and relative abundance
tables obtained from KEGG based on Uniref 90 IDs and the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database.

2.5. Analysis of Volatile Compounds by HS-SPME-GC-MS

Following previously reported methods with slight modifications [22], 5.0 g of Jiu-
pei was added to 20 mL of distilled water, ultrasonicated at 0 ◦C for 30 min, and then
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centrifuged at 8000× g for 5 min at 4 ◦C to obtain the supernatant. Next, 5 mL of the
supernatant was added to a 20 mL headspace vial containing 2.0 g NaCl and 0.008 mL
2-octanol (internal standard, 100 mg/L). Volatile compounds were analyzed by HS-SPME-
GC-MS (GC 7890N and MS 5975; Agilent Technologies, Santa Clara, CA, USA) using a
DB-Wax column (30 m × 0.25 mm i.d., 0.25 µm film thickness; J&W Scientific, Folsom,
CA, USA) with helium as the carrier gas at a constant flow rate of 2 mL/min. The injector
temperature was maintained at 250 ◦C. The oven temperature was held at 50 ◦C for 2 min,
then increased at a rate of 6 ◦C/min to 230 ◦C, and finally held at 230 ◦C for 20 min. Mass
spectra were recorded in electron ionization mode (MS-EI) with an ionization energy of
70 eV and an ion source temperature of 230 ◦C. Full-scan acquisition was performed over a
mass range of 30–350 amu. The retention index (RI) was calculated using a series of stan-
dard alkanes C5-C40 [22] as an external reference under the same conditions. The volatile
compounds were qualitatively identified by comparing the mass spectra and RI values in
the NIST17 standard library with a matching index ≥70% [22]. The semi-quantification of
volatile compounds was calculated from peak areas according to the internal standard [13].

2.6. Mechanisms of Microbial Community Assembly

Based on the above genus-level microbial data, we constructed networks following
the methods reported by Liu et al. [23]. We selected bacteria and fungi present in more than
75% of the samples and species with a relative abundance greater than 0.01% to construct
the networks. The Spearman correlation matrix between genera was calculated based
on the relative abundance of each sample. The random matrix theory (RMT) was used
to automatically identify the appropriate similarity threshold before network construc-
tion. The network topological properties were characterized using the “igraph”, “psych”,
and “Hmisc” packages in R (v.4.2.3), and the network graph was plotted using Gephi
(version 0.9.5). The neutral community model (NCM) was applied to estimate the impact
of stochastic processes on microbial community composition [24]. The NCM was con-
structed using the “Hmisc”, “minpack.lm”, and “stats4” packages in R (4.3.2), with the
R2 value indicating the goodness of fit of the model. According to previous studies, the
closer the R2 value is to 1, the greater the influence of stochastic processes on community
assembly [25]. The niche width was calculated using the niche width function in the “spaa”
package in R (4.3.2). The checkerboard score (C-score) null model method was applied to
assess community species co-occurrence patterns and ecological stochasticity. The C-score
and standardized effect size (SES) in the null model analysis were calculated using the
“EcoSimR” package in R (4.3.2). According to previous studies [26], the magnitude of SES
is interpreted as the strength of deterministic processes affecting microbial community
composition, with larger SES values indicating a stronger influence of deterministic factors
on community assembly [27].

2.7. Machine Learning Model Construction

Based on the machine learning model construction process shown in Figure S2, we
screened for microorganisms and volatile flavor biomarkers causing abnormal fermentation.
Data preprocessing involved applying the np.log1p (features) function in Python for natu-
ral log transformation, followed by standardization using the “StandardScaler” function.
The dataset was split into training and testing sets in a 60:40 ratio using the train_test_split
function, with stratified sampling (stratify = labels) to maintain consistent class distribution.
Additionally, 80% of the training data was used for model training, while the remaining 20%
of the training set was held out as a validation set. This ensures that hyperparameter tuning
and model selection are performed on data that the model has not seen during training,
helping to prevent overfitting [28]. Three machine learning models were selected: Random
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Forest, Logistic Regression, and KNN. Random Forest is an ensemble learning method
that improves the accuracy and robustness of the model by combining the predictions
of multiple decision trees. It uses randomness to reduce overfitting and is suitable for
handling high-dimensional data. Logistic Regression is a linear classification model that
maps the linear combination of features to a probability between 0 and 1 using the Sigmoid
function, making it suitable for binary classification tasks. KNN classifies or regresses
by calculating the distances between samples. As a non-parametric method, it makes no
assumptions about the data distribution and directly predicts based on the training data.
The specific setup parameters are as follows for the Random Forest model: we reported
important parameters such as n_estimators = 100 (number of trees), max_depth = 10 (max-
imum depth of the tree), min_samples_split = 2 (minimum number of samples required
for splitting), min_samples_leaf = 1 (minimum number of samples for leaf nodes), and
max_features = “sqrt” (square root of the number of features considered for each split).
Additionally, 42 features were selected for the Random Forest model, which was based
on feature selection techniques to retain the most relevant features for classification. For
the Logistic Regression model, we further added parameters such as penalty = “l2” (regu-
larization type) and C = 0.001 (regularization strength). For the KNN model, we added
n_neighbors = 5 and explicitly specified the distance metric as “Euclidean distance”. The
SMOTE (Synthetic Minority Over-sampling Technique) was used to oversample the training
set, ensuring data balance for model training and prediction. The models were evaluated
using the AUC, F1-Score, Accuracy, Recall, and Precision [16]. Additionally, following
previous methods [29], we employed the SHAP algorithm for global interpretation and
calculated Shapley values for each feature across the models to rank feature importance,
enhancing the credibility and transparency of the machine learning models. All machine
learning models were implemented using the Scikit-learn library in Python 3.8 on the
Jupyter Notebook platform, and the SHAP values were computed using the SHAP library.

2.8. Statistical Analysis and Visualization

All data statistical analyses were repeated 3 times. Statistical difference analysis
was conducted using one-way analysis of variance (ANOVA) and T-tests in IBM SPSS
Statistics (version 25.0; IBM Co., New York, NY, USA), with an adjusted p-value < 0.05 as
the significance threshold. Principal component analysis (PCA) was performed using the
“FactoMine” package in R (4.3.2), combined with permutational multivariate analysis of
variance (Permanova) using the adonis function from the “vegan” package to determine
significant differences in microbial communities and volatile compositions across different
fermentation states. Dynamic changes in the microbial and flavor heatmap contents were
visualized using the “heatmap” package in R (4.3.2). Based on Spearman’s rank correlation,
the correlations between microorganisms and volatile compounds were calculated using
the “psych” and “reshape2” packages in R (4.3.2). Significant correlations with p < 0.05 and
|ρ| > 0.6 were considered valid [12]. Correlation networks were visualized using Gephi.
Redundancy analysis (RDA) was conducted using the “capscale” function from the “vegan”
package in R (4.3.2) to assess the correlations between microbial communities and various
parameters. The differential fold change (FC) of microbial and flavor biomarkers and
functional genes was calculated using the “DESeq2” package in R (4.3.2). A p-value < 0.05
and |log2FC| > 1 were considered significant [20]. Other statistical analyses and plotting
were performed using OriginPro2023 (version 2023, OriginLab Corporation, Northampton,
MA, USA), RStudio (v.4.3.2), and Adobe Illustrator CC2018 (version 2018, Adobe Systems
Incorporated, Atlanta, GA, USA).
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3. Results and Discussion
3.1. Analysis of Physicochemical Index Differences

During fermentation, physicochemical indicators are important driving factors for
microbial community succession [19]. Seven physicochemical indicators showed significant
differences between normal fermentation and the two types of abnormal fermentation
(p < 0.05) (Figure S3). During the 1–7 day fermentation period, the temperature of normal
fermentation was significantly higher than that of the two types of abnormal fermentation
(p < 0.05) (Figure 1a). The average temperature of Sub-Temp Fermentation samples was only
25.6 ± 3.4 ◦C, not meeting the high-temperature fermentation standard for sauce-flavor
Baijiu [4]. Additionally, the average moisture content during the 1–7 day fermentation
period was also significantly lower in Sub-Temp Fermentation compared to normal fermen-
tation (WL: 44.85 ± 0.8% > NF: 41.88 ± 0.5% > STF: 38.67 ± 1.2%) (p < 0.05) (Figure 1b).
This indicated that during Sub-Temp Fermentation, microbial growth, reproduction, and
metabolic activities were weaker, leading to poor bio-heat accumulation and low fermen-
tation temperatures [30]. The average reducing sugar content varied significantly under
different fermentation states (p < 0.05) (NF: 14.33 ± 2.6 mg/g > STF: 10.61 ± 2.8 mg/g
> WL: 9.46 ± 3.1 mg/g) (Figure S3f). Especially in the mid-to-late fermentation stages, there
were significant fluctuations in the reducing sugar content of the two types of abnormal
fermentation. The reducing sugar content in Waistline samples dropped to a minimum
of 4.88 mg/g at 3–5 days, then rapidly increased to 13.56 mg/g at 5–7 days. For Sub-
Temp samples, the reducing sugar content peaked at 12.84 mg/g at 3–5 days, then rapidly
decreased to 8.33 mg/g at 5–7 days (Figure 1c). These fluctuations reflected abnormal
saccharification and fermentation rates in Jiupei during the fermentation process. Com-
pared to abnormal fermentation, the hydrolysis of starch by amylase to produce reducing
sugars was more intense in normal fermentation, indicating vigorous microbial metabolism.
In contrast, the average starch content changes in the two types of incomplete abnor-
mal fermentation were more stable and significantly higher than in normal fermentation
(STF: 37.19 ± 0.97% > WL: 32.13 ± 1.86% > NF: 29.18 ± 5.7%) (Figures 1d and S3g), in-
dicating abnormal metabolic regulation during fermentation. Additionally, during the
1–7 day fermentation period, the average contents of lactic acid (NF: 3.96 ± 0.7 mg/g < STF:
4.51 ± 0.7 mg/g < WL: 4.87 ± 1.3 mg/g) (Figure S3d) and ethanol (NF: 1.08 ± 0.7 mg/g
< STF: 1.25 ± 1.3 mg/g < WL: 2.16 ± 1.7 mg/g) (Figure S3e) were significantly lower in ab-
normal fermentation (p < 0.05), consistent with previous reports of high-acid, high-ethanol
stress conditions.

3.2. Differences in Microbial Community Composition

The microbial community composition differences in different stacking fermentation
states through metagenomic sequencing were characterized. After quality control, a total
of 678.11 Gbps of clean data was obtained, followed by de novo assembly of the sequences.
In the clean data from 63 samples, the proportion of effective sequence bases was 98.41%.
A total of 475 bacterial genera and 135 fungal genera were detected in samples from the
three different stacking fermentation states. Significant differences were found in the
bacterial and fungal compositions between different fermentation states (p < 0.05), with the
principal component analysis explaining 57.04% and 62.44% of the variance, respectively
(Figure 2c,f).

The dominant bacterial genera (relative abundance > 1%) in different fermentation
states included Bacillus, Acetobacter, Kroppenstedtia, Staphylococcus, Corynebacterium, Pe-
diococcus, Komagataeibacter, Weizmannia, and Thermoactinomyces (Figure 2a), which is con-
sistent with previous research results [19]. Among them, Bacillus (NF: 52.45% < WL:
56.34% < STF: 61.56%) and Acetobacter (WL: 22.34% > NF: 19.77% > STF: 9.56%) had an



Foods 2025, 14, 245 7 of 19

average relative abundance exceeding 60% throughout the 1–7 day fermentation period,
making them the dominant bacterial genera in the stacking fermentation of sauce-flavor
Baijiu. Previous studies have shown that certain Bacillus in the fermentation process of
sauce-flavor Baijiu has the characteristic of producing a high yield of a pickle-like odor [31],
which may be one reason why Baijiu from abnormal fermentation has a strong pickle-like
odor. Additionally, Komagataeibacter, which improves the ecological stability and function of
microbial communities in traditional fermentation [32], had a higher proportion in normal
fermentation (Figure 2b).

Figure 1. Dynamics of physicochemical indicators during stacking fermentation: (a) temperature,
(b) moisture, (c) reducing sugar, (d) starch, (e) lactic acid, (f) ethanol, and (g) titratable acidity. The *,
**, and *** indicate statistical significance at p < 0.05, p < 0.01, and p < 0.001, respectively.

The dominant fungal genera (relative abundance > 1%) in different fermentation
states included Pichia, Lichtheimia, Monascus, Aspergillus, Saccharomyces, Saccharomycop-
sis, Zygosaccharomyces, Schizosaccharomyces, Rhizopus, and Wickerhamomyces (Figure 2d),
which is consistent with the previous research results [33]. Among them, Pichia (STF:
37.44% > WL: 31.78% > NF: 29.56%), Lichtheimia (STF: 18.45% > NF: 16.47% > WL: 13.25%),
Monascus (WL: 18.98% > NF: 14.67% > STF: 8.56%), and Saccharomyces (WL: 17.76% > STF:
10.97% > NF: 9.23%) had a combined average relative abundance exceeding 60% through-
out the 1–7 day fermentation period, making them the dominant fungal genera in the
stacking fermentation of sauce-flavor Baijiu. Previous studies have shown that Pichia and
Saccharomyces are the main alcohol-producing functional genera during the fermentation
of sauce-flavor Baijiu [22,34]. In abnormal fermentation, the combined relative abundance
of Pichia and Saccharomyces was higher than in normal fermentation (WL: 48.23% > STF:
47.67% > NF: 38.56%). The high relative abundance of Pichia and Saccharomyces inevitably
led to high ethanol concentrations in the fermentation environment, inhibiting the growth,
reproduction, and metabolism of other microorganisms, and resulting in a simplified
microbial community structure, causing abnormal fermentation [35]. Additionally, Zy-
gosaccharomyces, which has strong tolerance and can significantly enhance various aromatic
components in sauce-flavor Baijiu [36], had a higher proportion in normal fermentation
(Figure 2e).
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NF: Normal Fermentation
WL: Waistline
STF: Sub-Temp Fermentation

NF: Normal Fermentation
WL: Waistline
STF: Sub-Temp Fermentation

Bacillus
Acetobacter
Kroppenstedtia
Staphylococcus
Corynebacterium
Pediococcus
Weizmannia
Komagataeibacter
Thermoactinomyces
Acinetobacter
Weissella
Caldibacillus
Leuconostoc
Lactobacillus
Companilactobacillus
Lentilactobacillus
Brevibacterium
Levilactobacillus
Enterococcus
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9×105 

3×105 

6×105 

9×105 

Figure 2. Microbial community dynamics during the fermentation process: (a) bacterial distribution
at the genus−level of microbiota and (d) fungal distribution at the genus−level of microbiota.
(b) Ternary phase diagram of dominant bacteria. (e) Ternary phase diagram of dominant fungi.
(c) Score plot of bacterial compositional structure based on principal component analysis. (f) Score
plot of fungal compositional structure based on principal component analysis.

3.3. Differences in Microbial Community Assembly Mechanisms

In normal fermentation (Figure 3a,e), the microbial community structure was com-
plex and highly interconnected, which contributed to fermentation stability. In contrast,
in Waistline (Figure 3b,f) and Sub-Temp Fermentation (Figure 3c,g) states, the microbial
community structure was simplified, dispersed, and showed significant differentiation,
indicating potential metabolic blockages in the community. The network topology prop-
erties table (Table S1) for different fermentation states show that in normal fermentation,
both bacterial and fungal networks had higher numbers of nodes (Bacteria-NF: 151 > STF:
134 > WL: 128, Fungi-NF: 67 > STF: 63 > NF: 56) and edges (Bacteria-NF: 496 > WL:
349 > STF: 231, Fungi-NF: 338 > WL: 293 > STF: 254). This indicates that the microbial
community in normal fermentation was richer and more complex. This complexity was
reflected in higher biological α-diversity (Figure S4) and higher local interconnectedness
(such as high average clustering coefficient and transitivity) (Table S1). These characteristics
helped form a stable ecological network and maintain fermentation stability. In contrast,
the networks in Waistline and Sub-Temp Fermentation states had fewer nodes and edges,
reflecting the simplification and reduced functionality of the microbial communities in
abnormal fermentation.
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Figure 3. Microbial co-occurrence network analysis: co-occurrence network of bacterial community
for (a) normal fermentation, (b) Waistline, and (c) Sub-Temp Fermentation. Co-occurrence network
of fungal community for (e) normal fermentation, (f) Waistline, and (g) Sub-Temp Fermentation.
Analysis of microbial community assembly mechanism: neutral community model of bacterial
community for (i) normal fermentation, (j) Waistline, and (k) Sub-Temp Fermentation. Neutral
community model of fungal community for (m) normal fermentation, (n) Waistline, and (o) Sub-Temp
Fermentation. C-score score plots for bacterial (l) and fungal (p) communities. Niche widths for
bacterial (d) and fungal (h) communities. The * indicate statistical significance at p < 0.05. Different
colours in the network diagram represent different modules. Green in the box-and-line diagram
represents NF; orange represents WL; and purple represents STF samples. The blue colour in the bar
chart corresponds to the C-Score sim value; black represents the C-Score obs value; and red represents
the SES value. green and black represent Neutral, orange and blue represent Above, and red and
burgundy represent Below in the NCM Neutral Community Model.

Using NCM models, niche breadth, and C-score methods to jointly assess the relative
importance of deterministic and stochastic processes in microbial community assembly
under different fermentation states [27], the R2 values of bacterial communities in the two
types of abnormal fermentation (Figure 3j,k) were higher than those in normal fermentation
(Figure 3i) (STF: 0.691 > WL: 0.678 > NF: 0.667). This indicates that the bacterial community
assembly in abnormal fermentation was more influenced by stochastic events, likely due to
factors such as sudden temperature drops during winter production, leading to frequent
dynamic changes in bacterial communities and increased species turnover and extinction
events [37]. Additionally, niche breadth analysis shows that the bacterial communities in
normal fermentation, which were more influenced by deterministic factors, had a lower
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niche breadth (NF: 7.29 < WL: 8.02 < STF: 8.47) (Figure 3d), indicating greater metabolic
plasticity and adaptability to environmental changes in the latter [38]. In the C-score
analysis, the bacterial community SES values were highest in normal fermentation (NF:
13.81 > WL: 10.87 > STF: 9.27) (Figure 3l), indicating that the bacterial community struc-
ture in normal fermentation was strongly influenced by ecological driving factors and
competitive interactions. The lower SES values in the bacterial communities of abnormal
fermentation suggest a structure closer to a random model, more susceptible to envi-
ronmental fluctuations, leading to fermentation instability [39]. In contrast, the fungal
communities in abnormal fermentation (Figure 3n,o) had lower R2 values (NF: 0.686 > WL:
0.668 > STF: 0.635), higher niche breadth (Figure 3h), and higher SES values (Figure 3p) com-
pared to normal fermentation. This implies that the instability of the abnormal fermentation
environment forces fungi to dominate resource competition through complex interactions
and adaptation mechanisms [8,40], thus being more influenced by deterministic factors.
Conversely, bacteria respond more quickly to environmental fluctuations and have more
fixed metabolic processes, making them more influenced by stochastic events [41].

3.4. Screening of Microbial Biomarkers Based on Machine Learning

Using Random Forest, Logistic Regression, and KNN machine learning algorithms,
we constructed diagnostic prediction models for abnormal stacking fermentation in sauce-
flavor Baijiu, achieving good model evaluations. Three algorithms demonstrated strong
classification performance across tasks, with high AUC values, such as 1.0 (Random Forest),
0.94 (Logistic Regression), and 0.86 (KNN) in NF vs. STF (Bacteria). The F1-Scores were
similarly robust, reaching 0.89, 0.91, and 0.74 for Random Forest, Logistic Regression,
and KNN, respectively, in NF vs. STF (Fungi). Accuracy remained consistent, such as
0.85, 0.90, and 0.90 in NF vs. WL (Fungi), while Recall (e.g., 1.0 for Random Forest) and
Precision (e.g., 0.93 for Logistic Regression) validated reliability. These results confirm
the robustness and applicability of all three models (Table S2). The SHAP method was
used to interpret the model feature rankings (Figure 4a,d). Nine biomarkers were identi-
fied for Waistline, including Komagataeibacter (p < 0.001, log2Fc = 3.95), Gluconacetobacter
(p < 0.001, log2Fc = 5.93), Paecilomyces (p < 0.001, log2Fc = −1.28), Lactobacillus
(p < 0.01, log2Fc = −1.51), etc. (Figure 4b). Thirteen microbial biomarkers were identified
for Sub-Temp Fermentation, including Komagataeibacter (p < 0.001, log2Fc = 6.01), Gluconace-
tobacter (p < 0.001, log2Fc = 8.14), Pediococcus (p < 0.001, log2Fc = −1.23), Ligilactobacillus
(p < 0.001, log2Fc = −1.29), etc. (Figure 4e). Notably, the relative abundances of Koma-
gataeibacter and Gluconacetobacter showed significant differences between normal fermen-
tation and the two types of abnormal fermentation (p < 0.0001, log2Fc > 1) (Figure 4c,f).
Previous studies have shown that Komagataeibacter and Gluconacetobacter are high producers
of bacterial cellulose [42], which provides a protective barrier for microorganisms in the
fermentation system [43], protecting against external changes and harmful substances and
improving the quality of fermented foods [44,45]. Additionally, during the 1–7 day stacking
fermentation period, the relative abundance of Lactobacillus in Waistline was significantly
higher than in normal fermentation (Figure 4b), and the relative abundance of Ligilacto-
bacillus in Sub-Temp Fermentation was significantly higher than in normal fermentation
(Figure 4e). The previous literature has shown that Lactobacillus and Ligilactobacillus have
high lactic acid production capacity, which may explain the significantly higher lactic acid
content in abnormal fermentation compared to normal fermentation (NF: 3.96 ± 0.7 mg/g
< STF: 4.51 ± 0.7 mg/g < WL: 4.87 ± 1.3 mg/g) (Figure S3d). However, non-volatile acids,
like lactic acid, can accumulate during the fermentation process of sauce-flavor Baijiu,
leading to excessively high lactic acid levels, which inhibit the growth, reproduction, and
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metabolism of microorganisms [46], thereby affecting fermentation stability and the quality
of Baijiu.

Figure 4. Plots of feature importance ranking of the three machine learning SHAP models: (a) normal
fermentation vs. Waistline and (d) normal fermentation vs. Sub-Temp Fermentation. Heatmap
of microbial marker relative abundance dynamics during stacking fermentation: (b) Waistline vs.
normal fermentation and (e) Sub-Temp Fermentation vs. normal fermentation. Histogram of fold
change in microbial biomarkers: (c) Waistline vs. normal fermentation and (f) Sub-Temp Fermentation
vs. normal fermentation. The ** and *** indicate statistical significance at p < 0.01, and p < 0.001,
respectively. p < 0.05 and |log2Fc| > 1 were considered significant. The green colour in the figure
represents the NF sample, the orange colour represents the WL sample and the blue colour represents
the STF sample.

3.5. Analysis of Volatile Compound Differences and Screening of Flavor Biomarkers

We used HS-SPME-GCMS to detect the volatile compounds in Jiupei during the 1–7 day
stacking fermentation period under different fermentation states. The volatile compounds
showed significant differences (p < 0.05) in their concentrations across different fermentation
states. The principal component analysis (PCA) of the volatile compounds explained 63.82%
of the total variance, with the first two principal components accounting for 63.82% of
the variation (Figure 5d). PCA was performed on all detected volatile compounds, and
the results were based on those compounds exhibiting significant variation (p < 0.05)
across fermentation states. A total of 173 volatile compounds were detected in normal
fermentation, 179 in Sub-Temp Fermentation, and 198 in Waistline (Figure S5i,j,k). This
was consistent with the previous findings of Cao et al. [20], where the number of volatile
compounds in medium- and low-quality Daqu was higher than in high-quality Daqu. Acid
and ester compounds were dominant during the 1–7 day fermentation period and showed
significant differences in concentration (p < 0.05) (Figure S5b,c). The concentration of
ester compounds was higher in both types of abnormal fermentation compared to normal
fermentation (WL: 0.16 ± 0.05 mg/L > STF: 0.12 ± 0.02 mg/L > NF: 0.06 ± 0.02 mg/L),
and the concentration of acid compounds was also higher in abnormal fermentation (STF:
0.36 ± 0.22 mg/L > WL: 0.31 ± 0.02 mg/L > NF: 0.25 ± 0.16 mg/L) (Figure 5a).
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Figure 5. (a) Average concentration content of volatile components during stacking fermentation.
Heatmap of the dynamic change of flavor marker concentration during stacking fermentation:
(b) normal fermentation vs. Waistline and (e) normal fermentation vs. Sub-Temp Fermentation.
Histogram of flavor marker fold change: (c) normal fermentation vs. Waistline and (f) normal
fermentation vs. Sub-Temp Fermentation. (d) Principal component analysis of volatile components.
The *, **, and *** indicate statistical significance at p < 0.05, p < 0.01, and p < 0.001, respectively.
p < 0.05 and |log2Fc| > 1 were considered significant.

To better reveal the differences in volatile compounds under different fermenta-
tion states, we applied a machine learning-based biomarker screening process to select
volatile compounds, achieving good model evaluations (Figure S5l) (Table S3). We iden-
tified nine biomarkers for Sub-Temp Fermentation, including propionic acid (p < 0.0001,
log2Fc = −4.0917), ethyl heptanoate (p < 0.0001, log2Fc = 1.91), 5-hydroxymethylfurfural
(p < 0.05, log2Fc = −4.54), etc. (Figure 5e). Twelve biomarkers were identified for
Waistline, including octanoic acid (p < 0.001, log2Fc = −5.34), hexyl hexanoate (p < 0.01,
log2FC = −4.79), p-cresol (p < 0.001, log2Fc = −2.06), etc. (Figure 5b). Overall, ester com-
pounds were the most common type of flavor biomarkers, and their concentrations in
abnormal fermentation were significantly higher than in normal fermentation (p < 0.001,
log2FC < −1). Previous studies have indicated that ester and acid compounds are important
aroma substances in the fermentation of Baijiu. However, excessive concentrations of acids
and esters can disrupt the aroma balance, leading to off-flavors [47,48]. For instance, high
concentrations of octanoic acid can produce sweaty and fatty odors, while propionic acid
can produce unpleasant, rancid, and pungent smells [49]. Ester compounds, like ethyl
hexanoate and ethyl heptanoate, can generate unpleasant odors [48]. Therefore, we suggest
that the off-flavor characteristics of Jiupei in abnormal fermentation might be related to
the high content of acid and ester volatile compounds (Figure 5b,e). In addition to acid
and ester compounds, the Waistline biomarkers included p-cresol, which had a muddy
odor (Figure 5b) [50], and 5-hydroxymethylfurfural, which caused bitterness in Baijiu, was
identified as a Sub-Temp Fermentation biomarker (Figure 5e) [51].

3.6. Correlation Analysis of Biomarkers and Environmental Driving Factors

Based on the selected microbial and flavor biomarkers, Spearman correlation anal-
ysis was conducted. A total of 102 pairs of Waistline microbial biomarkers and volatile
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compounds were found to be correlated, with 31 pairs showing positive correlations and
71 pairs showing negative correlations (Figure 6a). Among them, Gluconacetobacter and
Komagataeibacter were mostly negatively correlated with acid and ester flavor biomarkers
in Waistline. For example, ethyl hexanoate was negatively correlated with Gluconacetobacter
(ρ = −0.87, p < 0.05) and Komagataeibacter (ρ = −0.86, p < 0.05), which might be one reason
for the lower ester concentrations in normal fermentation compared to abnormal fermenta-
tion. The correlations between microbial biomarkers and flavor biomarkers in Sub-Temp
Fermentation were more balanced, with 117 pairs of microbial biomarkers and volatile
compounds identified, including 56 positive correlations and 61 negative correlations
(Figure 6b). For instance, propionic acid, which had a pungent and sour taste, was signifi-
cantly negatively correlated with Gluconacetobacter (ρ = −0.74, p < 0.05) and Komagataeibacter
(ρ = 0.71, p < 0.05). This study further indicates that Gluconacetobacter and Komagataeibacter
were key functional genera for maintaining normal fermentation.

Microorganism

Figure 6. Spearman correlation network analysis of microbial markers with flavor markers: (a) normal
fermentation vs. Waistline and (b) normal fermentation vs. Sub-Temp Fermentation. The positive
edges (Spearman’s ρ > 0.6) are represented in red, and the negative edges (Spearman’s ρ < −0.6)
are represented in blue. RDA analysis: (c) Waistline, (d) Sub-Temp Fermentation, and (e) normal
fermentation. The dotted lines in the RDA diagram represent the axes.

Environmental factors significantly drove normal fermentation (F = 5.022, p < 0.001),
with RDA explaining 71.18% of the variance. Reducing sugars (r2 = 0.88, p = 0.001),
titratable acidity (r2 = 0.82, p = 0.001), temperature (r2 = 0.79, p = 0.001), ethanol
(r2 = 0.65, p = 0.001), and lactic acid (r2 = 0.61, p = 0.001) significantly co-regulated fermen-
tation (Figure 6e). The synergistic regulation of multiple environmental factors favored
the production of bacterial cellulose by Gluconacetobacter and Komagataeibacter biomark-
ers, thereby maintaining normal fermentation. This was consistent with previous studies
indicating that bacterial cellulose synthesis pathways are influenced by reducing sugars,
moderate ethanol, and lactic acid [52]. Environmental factors also significantly drove
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Sub-Temp Fermentation (F = 3.56, p < 0.001), with RDA explaining 65.08% of the variance.
Ethanol (r2 = 0.85, p = 0.002), titratable acidity (r2 = 0.78, p = 0.001), and moisture (r2 = 0.67,
p = 0.002) significantly regulated Sub-Temp Fermentation (Figure 6d). Comparing the RDA
analysis results with normal fermentation, we identified moisture as a significant driving
factor for the differences in Sub-Temp Fermentation. The lack of co-regulation by reducing
sugars, lactic acid, and temperature indirectly led to Sub-Temp Fermentation. Additionally,
maintaining a low moisture state throughout the 1–7 day fermentation process (Figure 1b)
suggested that adding moisture during production could improve the regulation of Sub-
Temp Fermentation. The environmental factor regulation of Waistline was significantly
different from the other two fermentation types (p = 0.01, F = 1.96), with RDA explaining
only 50.93% of the variance. The correlations with temperature, lactic acid, and titratable
acidity were relatively low (r2 < 0.6) (Figure 6c). This could be due to the dominance of
bacterial biomarkers in Waistline (Figure 4b) and the bacterial community assembly in
abnormal fermentation being more influenced by stochastic ecological processes.

3.7. Differential Gene Pathway Enrichment and Predicted Metabolic Network Analysis for
Characteristic Flavor Formation

Based on metagenomic data, DESeq2 differential gene analysis identified 758 differen-
tially expressed genes between normal fermentation and Sub-Temp Fermentation, with
543 genes upregulated and 215 genes downregulated (Figure 7a). Between normal fermen-
tation and Waistline, 742 differentially expressed genes were identified, with 216 genes
upregulated and 526 genes downregulated (Figure 7b). Pathway enrichment analysis based
on these differentially expressed genes using the KEGG database (Figure S6b,c) shows that
71 metabolism-related pathways were enriched for 742 genes between normal fermentation
and Waistline, and 42 metabolism-related pathways were enriched for 758 genes between
normal fermentation and Sub-Temp Fermentation. Additionally, the metabolic pathways
responsible for the formation of flavor biomarkers in abnormal fermentation were predicted
(Figure 7c), and the enzyme-encoding genes potentially involved in the production of these
flavor biomarkers were identified (Figure S6a).

In abnormal fermentation, the 5-hydroxymethylfurfural responsible for the bitterness
in Baijiu may be produced via the pentose phosphate pathway from cellulose in the raw
materials, which was degraded to pentose through the differential gene-enriched pathway
(Figure 7c). Under the high-temperature conditions of stacking fermentation, pentose
undergoes the Maillard reaction to form 5-hydroxymethylfurfural [53]. P-cresol, a pheno-
lic compound with a foul odor, may originate from the degradation of ferulic acid and
vanillin in the raw materials rather than microbial metabolism during fermentation [54].
Vanillin was decarboxylated by phenacrylate decarboxylase (EC 4.1.1.102) to produce gua-
iacol, which was then converted to toluene by vanillate monooxygenase (EC 1.14.13.82).
In the nitrotoluene degradation pathway, enriched in the differential gene pathway
(Figure S6b), toluene was catalytically degraded to p-cresol by arachidonate 8-lipoxygenase
(EC 1.13.11.40). For ester compounds, like ethyl acetate, isoamyl octanoate, and isobutyl
hexanoate, which are flavor markers in abnormal fermentation, we conducted metabolic
pathway analysis using the corresponding acids and alcohols, as KEGG does not provide
explicit pathways for ester formation [55]. Organic acids, such as acetic acid, lactic acid,
propionic acid, and octanoic acid, primarily originated from starch in the raw materials,
which was broken down into glucose by related enzymes. Glucose was further converted
into pyruvate through microbial metabolism. Pyruvate was then converted into acetyl-CoA
by pyruvate dehydrogenase. Acetyl-CoA was transformed into organic acids through dif-
ferential gene-enriched pathways, such as propionate metabolism, lipoic acid metabolism,
and C5-branched dibasic acid metabolism (Figure S6b,c). The formation of higher alcohols,
such as isoamyl alcohol and isobutanol, might occur through the differential metabolic path-
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ways of phenylalanine, tyrosine, and tryptophan biosynthesis (Figure S6b,c). This process
primarily involves the conversion of pyruvate to α-acetolactate by acetolactate synthase
(EC 2.2.1.6), ketol-acid reductoisomerase (EC 1.1.1.86), and dihydroxy-acid dehydratase (EC
4.2.1.9), followed by conversion to α-ketoisovalerate by valine--pyruvate aminotransferase
(EC 2.6.1.66), which is then further converted to isoamyl alcohol and isobutanol.

Foods 2025, 14, x FOR PEER REVIEW 16 of 21 
 

 

and isobutyl hexanoate, which are flavor markers in abnormal fermentation, we con-
ducted metabolic pathway analysis using the corresponding acids and alcohols, as KEGG 
does not provide explicit pathways for ester formation [55]. Organic acids, such as acetic 
acid, lactic acid, propionic acid, and octanoic acid, primarily originated from starch in the 
raw materials, which was broken down into glucose by related enzymes. Glucose was 
further converted into pyruvate through microbial metabolism. Pyruvate was then con-
verted into acetyl-CoA by pyruvate dehydrogenase. Acetyl-CoA was transformed into 
organic acids through differential gene-enriched pathways, such as propionate metabo-
lism, lipoic acid metabolism, and C5-branched dibasic acid metabolism (Figure S6b,c). The 
formation of higher alcohols, such as isoamyl alcohol and isobutanol, might occur through 
the differential metabolic pathways of phenylalanine, tyrosine, and tryptophan biosyn-
thesis (Figure S6b,c). This process primarily involves the conversion of pyruvate to α-ace-
tolactate by acetolactate synthase (EC 2.2.1.6), ketol-acid reductoisomerase (EC 1.1.1.86), 
and dihydroxy-acid dehydratase (EC 4.2.1.9), followed by conversion to α-ketoisovalerate 
by valine--pyruvate aminotransferase (EC 2.6.1.66), which is then further converted to iso-
amyl alcohol and isobutanol. 

 

Figure 7. DESqe2 differential gene volcano map: (a) normal fermentation vs. Sub−Temp Fermenta-
tion and (b) normal fermentation vs. Waistline. (c) Flavor marker metabolic pathway network preic-
tion based on KEGG data. The doĴed lines in the volcano map represent the axes. 

4. Conclusions 
Based on machine learning combined with multi-omics, nine microbial markers and 

twelve flavor markers were identified for Waistline, while thirteen microbial markers and 

Figure 7. DESqe2 differential gene volcano map: (a) normal fermentation vs. Sub−Temp Fermen-
tation and (b) normal fermentation vs. Waistline. (c) Flavor marker metabolic pathway network
preiction based on KEGG data. The dotted lines in the volcano map represent the axes.

4. Conclusions
Based on machine learning combined with multi-omics, nine microbial markers and

twelve flavor markers were identified for Waistline, while thirteen microbial markers and
nine flavor markers were identified for Sub-Temp Fermentation. Komagataeibacter and Glu-
conacetobacter were significantly less abundant in both abnormal fermentations compared to
normal, while Ligilactobacillus and Lactobacillus were significantly more abundant. Excessive
acid and ester markers in abnormal fermentations resulted in off-flavors. RDA analysis
indicates that moisture significantly drives Sub-Temp Fermentation, while Waistline is
less affected by deterministic environmental factors. This research provides new insights
for regulating and improving stacking fermentation to ensure the quality and yield of
sauce-flavor Baijiu.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods14020245/s1, Figure S1: (a) Sampling points of Jiupei:
(b) Waistline, (c) normal fermentation, and (d) Sub-Temp Fermentation. Figure S2: Schematic of the
machine learning build process. Figure S3: Box plots of differences in average physical–chemical
indicators of stacking fermentation: (a) moisture, (b) titratable acidity, (c) temperature, (d) lactic
acid, (e) ethanol, (f) reducing sugar, and (g) starch. The *, **, and *** indicate statistical significance
at p < 0.05, p < 0.01, and p < 0.001, respectively. Figure S4: Boxplot of the overall difference in the
Shannon index of alpha diversity of stacking fermenting organisms: (a) fungi Shannon, (b) bac-
teria Shannon. The * and ** indicate statistical significance at p < 0.05 and p < 0.01, respectively.
Figure S5: Boxplot of overall differences in volatile components in stacking fermentation: (a) alcohol,
(b) acid, (c) ester, (d) pyrazine, (e) furan, (f) aldehyde, (g) ketone, and (h) other. Pie chart of the
number of volatile components in stacking fermentation: (i) normal fermentation, (j) Waistline, and
(k) Sub-Temp Fermentation. Plots of feature importance ranking of the three machine learning
SHAP models (l). Figure S6: (a) Relative abundance of enzymes encoding pathways involved in
metabolic prediction of flavor markers during stack fermentation. Differential gene-based enrichment
analysis of the KEGG pathway: (b) normal fermentation vs. Sub-Temp Fermentation and (c) normal
fermentation vs. Waistline. Table S1: Topological analysis of microbial co-occurrence network graphs.
Table S2: Evaluation of machine learning models for microbiological markers. Table S3: Evaluation of
machine learning models for flavor markers. Table S4: (a) normal fermentation vs. Waistline and
(b) normal fermentation vs. Sub-Temp Fermentation. Histogram of flavor marker fold change.
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