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Abstract: Herein, β-glucan (BG) was extracted from different colored varieties of highland
barley (HB, Hordeum vulgare), defined as BBG, WBG, and LBG depending on the colors of
black, white, and blue and their molecular structure and physicochemical properties were
investigated through a series of technical methods. The high-performance anion-exchange
chromatography (HPAEC) results indicated the extracted BBG, LBG, and WBG mainly
comprised glucose regardless of color. The molecular weight (Mw) of BBG, LBG, and WBG
were 55.87 kDa, 65.19 kDa, and 81.59 kDa, respectively. 4-Glc(p), 3-Glc(p), and t-Glc(p)
accounted for a larger proportion (>90%) of the total methylated residues according to gas
chromatography–mass spectrometry (GC-MS) analysis. Additionally, Fourier transform
infrared (FT-IR) spectroscopy revealed that the β-linkage of LBG had a greater capacity
to develop stronger hydrogen bonds, due to the absence of 3,4-Glc(p). Among them,
LBG had a low particle size distribution and a high shear viscosity, showing obvious
round aggregates on its surface. Meanwhile, BBG presented a high peak viscosity (PV) and
thermal stability. Based on the differences in their molecular structure, it could be concluded
that there were different physicochemical properties among BBG, LBG, and WBG.

Keywords: highland barley; β-glucan; molecular structure; physicochemical properties

1. Introduction
β-glucan is an important natural dietary fiber that is found in plants and microor-

ganisms from natural sources such as grains, fungi, bacteria, and algae [1,2]. The intake
of β-glucan can increase the viscosity of the digestive fluid in the gastrointestinal tract,
extend the emptying time of the stomach, reduce the digestibility of starch, promote insulin
secretion, and reduce the absorption rate of glucose, thereby leading to the inhibition
and prevention of diabetes. Moreover, β-glucan is recognized as a hypocholesterolemic
compound that can lower cholesterol and low-density lipoprotein (LDL) levels [3–5].

For the past several decades, there has been a general consensus that grain β-glucan is
made up of mixed linkage (1,3) (1,4) β-D-glucose units. Nevertheless, the molecular struc-
ture and nutritional efficacy of β-glucan from different sources vary remarkably [2,6–10].
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In particular, grain-derived β-glucan is a kind of non-starch polysaccharide existing in
the endosperm and cell wall, which has attracted increasing attention due to its special
physiological activity and medicinal value. In a previous study, cereal β-glucan showed
prebiotic potential via microencapsulation with probiotics, which could provide better
protective effects during gastrointestinal digestion [11]. Furthermore, there have been wide
applications of cereal β-glucan, which can bind to proteins through more exposure sites
in protein-based products, resulting in the formation of stronger three-dimensional gel
networks and thereby improving the stability of protein gels [12].

The β-glucan content of highland barley (HB) is far greater than that of other grain
crops [12]. In addition, β-glucan extracted from HB can interact with proteins through
non-covalent bonds such as hydrogen bonding and electrostatic interactions, leading to
the formation of a stronger three-dimensional gel network, which further promotes its
application in the food industry [12,13]. The mechanical and barrier properties of highland
barley β-glucan (HBBG) film have been enhanced through the incorporation of highland
barley prolamin (HBP), resulting in the formation of hydrogen bonds between HBBG
and HBP [14]. Both the fine structure and functional characteristics of β-glucan are also
determined by the species, genetics, and growing conditions of HB [15]. Furthermore, it
should be noted that there are many varieties of HB, which can be mainly divided into
white, black, and blue according to their color [16]. Li et al. [17] found that the β-glucan
extracted from the HB core had a higher Mw than that extracted from the HB outer bran,
showing better foam stability and emulsifying properties. Colored (black and blue) HB
varieties showed higher antioxidant, neuroprotective, hypoglycemic, and hypolipidemic
properties than white HB [16]. Wang et al. [18] have also reported that colored HB contains
a high amount of functional constituents, making it suitable for use in the functional food
industry. Therefore, there is no doubt that β-glucans extracted from different colored HB
varieties exhibit different molecular and physicochemical characteristics. However, limited
investigations on the fine structure and physicochemical properties of β-glucans extracted
from different colored HB varieties have been reported.

The main objective of this study was to extract β-glucan from different colored vari-
eties of HB and investigate its molecular structure through a series of technical methods,
including high-performance anion-exchange chromatography (HPAEC), size-exclusion
chromatography (SEC) equipped with refractive index (RI) and multi-angle laser light-
scattering (MALLS) detectors, X-ray diffraction (XRD) and Fourier transform infrared
(FT-IR) spectroscopy. In addition, the physicochemical properties of the extracted β-glucans
were evaluated via scanning electron microscopy (SEM), rapid viscosity analysis (RVA),
and thermal stability analysis (TGA). The relevant fluid viscosity results could provide a
theoretical basis facilitating the precise processing and high-value utilization (cosmetics
and drug delivery) of β-glucan.

2. Materials and Methods
2.1. Materials

HB seeds of different colors (black, white, and blue) were provided by Qinghai Lanke
Agriculture and Animal Husbandry Technology Co., Ltd. (Qinghai, China). High tempera-
ture resistant α-amylase (BR, 4000 U/g), amyloglucosidase (deriving from Aspergillus niger,
BR, 100,000 U/g), pancreatin (BR, 4000 U/g), and the dialysis bag (molecular weight cut-off
of 3500 Da) were purchased from Yuanye Bio-Technology Co., Ltd. (Shanghai, China).
The β-glucan Assay Kit (Mixed Linkage) was purchased from Megazyme International
LTD, Bray, Co. Wicklow, Ireland. Ethanol (95%, v/v) was provided by Fuyu Fine Chemical
Co., Ltd. (Tianjin, China). Methanol, trifluoroacetic acid, acetic acid, and dichloromethane
were purchased from ANPEL Laboratory Technologies (Shanghai) Inc. (Shanghai, China).
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Monosaccharide standards (fucose, rhamnose, arabinose, galactose, glucose, xylose, man-
nose, fructose, ribose, galacturonic acid, glucuronic acid, mannuronic acid, and guluronic
acid), sodium hydroxide, sodium acetate trihydrate, dimethyl sulfoxide, sodium borodeu-
teride and acetic anhydride were purchased from Sigma-Aldrich Chemical Co. (St. Louis,
MO, USA). Sodium nitrate (AR grade) was purchased from Sinopharm Group Co., Ltd.
(Shanghai, China).

2.2. Pretreatment of HB Samples

HB was ground using a laboratory mill and then sieved through a 0.50 mm screen to
obtain HB flour. The HB flour (50 g) was then suspended in 500 mL of aqueous ethanol
and stirred under backflow for 4 h. The mixture was filtered to obtain the precipitate and
heated to a constant weight in an oven at 60 ◦C. The obtained samples were crushed for
further analysis.

2.3. Extraction and Quantification of β-Glucan

The extraction of β-glucan was determined using a previously reported method with
minor modifications [11,19]. Please refer to the Supplementary Materials.

The β-glucan crude extract was defined as BBG, WBG, and LBG, depending on the
colors of black, white, and blue, respectively. All extraction processes were repeated three
times. Images of the β-glucan samples are presented in Figure 1.
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Figure 1. Images of β-glucan extracting from different colors of highland barley (BBG indicates
black highland barley β-glucan; LBG indicates blue highland barley β-glucan; WBG indicates white
highland barley β-glucan).

2.4. Purity, Moisture Content (MC) and Color Variation in B-Glucan

The purity of BBG, WBG, and LBG was determined using the Congo red method [15,20],
while the water content and color variation in samples were analyzed following our re-
ported method [21]. Please refer to the Supplementary Materials.

2.5. Molecular Structure Analysis
2.5.1. Monosaccharide Composition

The monosaccharide composition analysis of BBG, WBG, and LBG was deter-
mined according to the method described by Bai et al. [19]. Please refer to the
Supplementary Materials.
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2.5.2. Methylation Analysis

The methylation analysis of BBG, WBG, and LBG was analyzed following the method
described by Li et al. [22]. Please refer to the Supplementary Materials.

2.5.3. Molecular Weight Determination

The molecular weight of BBG, WBG, and LBG was measured following the method
described by Du et al. [23]. Please refer to the Supplementary Materials.

2.5.4. XRD

The crystalline structure and relative crystallinity of β-glucan samples were examined
using a previously reported method [24]. Please refer to the Supplementary Materials.

2.5.5. FT-IR

The FT-IR spectra of the β-glucan sample were obtained following our previous
method [24]. Please refer to the Supplementary Materials.

2.6. Particle Morphology Analysis
2.6.1. SEM

The β-glucan samples were fixed on a conductive carbon tape and coated with Au/Pd.
Subsequently, they were observed through a Hitachi scanning electron microscope (Tokyo,
Japan) at a voltage of 5 kV [25].

2.6.2. Particle Size Distribution Determination

The particle size analysis of β-glucan was performed using a Microtrac MRB equipped
with a dynamic light scattering system (Microtrac Inc., Montgomeryville, PA, USA) with
a refractive index of 1.67 and a focusing time of 30 s. At room temperature, the samples
were dispersed uniformly into a flowing aqueous cuvette. The test was initiated when the
sample concentration reached the standard concentration.

2.7. Physicochemical Properties
2.7.1. RVA

The viscosity curve of the β-glucan samples was measured following the standard
13 min program [26]. Details can be found in the Supplementary Materials.

2.7.2. Rheological Measurements

The dynamic rheological properties of β-glucan were analyzed according to the
method of Iqbal et al. [27] with modifications. Details can be found in the
Supplementary Materials.

2.7.3. TGA

The thermogravimetric analysis of the β-glucan samples was performed according to
our previous method [26].

2.8. Statistical Analyses

All experimental data were evaluated by running the ANOVA procedure and employ-
ing Duncan’s multiple range test (p < 0.05).

3. Results and Discussion
3.1. Characteristics of β-Glucan

The extractability, purity, and MC of BBG, LBG, and WBG are shown in Table 1.
The β-glucan extractability of black, blue, and white highland barley varieties was 4.94%,
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3.32%, and 4.47%, respectively. Moreover, black highland barley exhibited the highest
extractability of β-glucan. These results correspond with the findings published by Bai
et al. [19]. The purity of BBG, LBG, and WBG was all greater than 80%, while the MC values
of all the β-glucan samples were less than 12%, indicating the extraction method in this
study was effective.

Table 1. Extractability, purity, and MC of BBG, LBG, and WBG (BBG indicates black highland
barley β-glucan; LBG indicates blue highland barley β-glucan; WBG indicates white highland barley
β-glucan).

Sample Extractability/% Purity/% MC (%)

BBG 4.94 ± 0.09 b 89.06 ± 1.99 b 10.91 ± 0.29 a

WBG 4.47 ± 0.18 b 82.37 ± 1.23 a 11.84 ± 0.09 b

LBG 3.32 ± 0.24 a 83.69 ± 1.74 a 11.85 ± 0.22 b

The values correspond to the mean ± standard deviation (n = 3). Different letters in the same column indicate
significant differences (p < 0.05).

The color variation in BBG, LBG, and WBG is shown in Table 2. L* (0 (black) to 100
(white)), a* (−80 (greenness) to 100 (redness)) and b* (−80 (blueness) to 70 (yellowness))
reflect whiteness, redness, and yellowness, respectively, while ∆E indicates the color
difference [21]. There were significant differences among all the β-glucan samples for b*
(ranging from 9.37 to 11.60) and ∆E values, which might be closely related to appearance
and consumer acceptance. Interestingly, LBG had the highest L* value of 83.38, indicating
that it showed an opaque white color.

Table 2. Color variation in BBG, LBG, and WBG (BBG indicates black highland barley β-glucan; LBG
indicates blue highland barley β-glucan; WBG indicates white highland barley β-glucan).

Sample L* a* b* ∆E*

BBG 72.40 ± 0.07 b 1.94 ± 0.01 ab 10.72 ± 0.01 c 17.31 ± 0.08 a

WBG 82.36 ± 1.76 a 3.29 ± 0.75 a 11.60 ± 1.05 a 7.11 ± 0.16 c

LBG 83.38 ± 0.01 a 1.41 ± 0.04 b 9.37 ± 0.09 b 6.25 ± 0.01 b

The values correspond to the mean ± standard deviation (n = 3). Different letters in the same column indicate
significant differences (p < 0.05).

3.2. Molecular Structure Analysis
3.2.1. Monosaccharide Composition and Methylation Analysis

The monosaccharide composition chromatograms of the standards and the BBG, LBG,
and WBG samples are shown in Figure 2. Furthermore, the percentage of the monosac-
charides is displayed in Table 3. Monosaccharide standards (fucose, rhamnose, arabinose,
galactose, glucose, xylose, mannose, fructose, ribose, galacturonic acid, glucuronic acid,
mannuronic acid, and guluronic acid) were employed to identify and measure the cor-
responding peaks in the monosaccharide composition analysis of different colors of HB.
There were three peaks in the elution curves of BBG, LBG, and WBG shown on the standard
substance graph, which were related to arabinose, glucose, and xylose. As expected, the
extracted BBG, LBG, and WBG mainly comprised glucose, regardless of the color. The other
impurities were probably the source of the trace levels of xylose and arabinose [19].

According to Table 4, there were seven different linkage patterns in the GC-MS spec-
trum of methylated alditol acetates obtained from BBG and WBG. Meanwhile, LBG had six
linkage patterns. Among the samples, 4-Glc(p), 3-Glc(p), and t-Glc(p) accounted for a larger
proportion (>90%) of the total methylated residues, indicating that the extracted β-glucan
mainly comprised three forms of sugar linkages. Additionally, there was no 3,4-Glc(p)
in LBG.
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Table 3. Monosaccharide composition (molar ratio/%) of BBG, WBG, and LBG (BBG indicates
black highland barley β-glucan; LBG indicates blue highland barley β-glucan; WBG indicates white
highland barley β-glucan).

Sample Arabinose Glucose Xylose

BBG 1.47% 96.75% 1.78%
WBG 1.52% 96.65% 1.83%
LBG 1.71% 95.97% 2.32%

Table 4. Methylation analysis of BBG, LBG, and WBG (BBG indicates black highland barley β-glucan;
LBG indicates blue highland barley β-glucan; WBG indicates white highland barley β-glucan).

Sample Linkage Patterns Derivative Name RT Molar Ratios (%)

BBG

t-Ara(f) 1,4-di-O-acetyl-2,3,5-tri-O-methyl arabinitol 6.001 1.61
t-Glc(p) 1,5-di-O-acetyl-2,3,4,6-tetra-O-methyl glucitol 8.800 6.97
4-Xyl(p) 1,4,5-tri-O-acetyl-2,3-di-O-methyl xylitol 11.409 1.25
3-Glc(p) 1,3,5-tri-O-acetyl-2,4,6-tri-O-methyl glucitol 11.976 17.37
4-Glc(p) 1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl glucitol 13.918 66.39

3,4-Glc(p) 1,3,4,5-tetra-O-acetyl-2,6-di-O-methyl glucitol 16.064 1.42
4,6-Glc(p) 1,4,5,6-tetra-O-acetyl-2,3-di-O-methyl glucitol 18.153 4.99
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Table 4. Cont.

Sample Linkage Patterns Derivative Name RT Molar Ratios (%)

WBG

t-Ara(f) 1,4-di-O-acetyl-2,3,5-tri-O-methyl arabinitol 5.987 1.59
t-Glc(p) 1,5-di-O-acetyl-2,3,4,6-tetra-O-methyl glucitol 8.779 6.19
4-Xyl(p) 1,4,5-tri-O-acetyl-2,3-di-O-methyl xylitol 11.391 1.30
3-Glc(p) 1,3,5-tri-O-acetyl-2,4,6-tri-O-methyl glucitol 11.980 20.94
4-Glc(p) 1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl glucitol 13.961 64.50

3,4-Glc(p) 1,3,4,5-tetra-O-acetyl-2,6-di-O-methyl glucitol 16.050 1.44
4,6-Glc(p) 1,4,5,6-tetra-O-acetyl-2,3-di-O-methyl glucitol 18.138 4.04

LBG

t-Ara(f) 1,4-di-O-acetyl-2,3,5-tri-O-methyl arabinitol 5.983 1.32
t-Glc(p) 1,5-di-O-acetyl-2,3,4,6-tetra-O-methyl glucitol 8.779 6.04
4-Xyl(p) 1,4,5-tri-O-acetyl-2,3-di-O-methyl xylitol 11.391 1.17
3-Glc(p) 1,3,5-tri-O-acetyl-2,4,6-tri-O-methyl glucitol 11.976 22.23
4-Glc(p) 1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl glucitol 13.957 66.87

4,6-Glc(p) 1,4,5,6-tetra-O-acetyl-2,3-di-O-methyl glucitol 18.142 2.37

3.2.2. Molecular Weight Distribution Analysis

The multi-angle laser light scattering (LS), refractive index (RI), and molar mass curves
of BBG, LBG, and WBG are presented in Figure 3. There were two peaks that emerged
within the elution time from 10 to 30 min in the LS profiles of BBG and WBG, while the
LS profiles of LBG exhibited three peaks, suggesting the presence of larger aggregates of
β-glucan in the NaNO3 solution, especially for the LBG sample [28]. Moreover, peak II
that emerged at approximately 20 min could be due to the flexible individual chains of
β-glucan [29]. These findings could demonstrate that the samples were unevenly dispersed
in the NaNO3 solution through the presence of two forms of larger aggregates and flexible
individual chains. The disappearance of peak II in the BBG and WBG samples might be
related to the formation of intermolecular interaction among the side chains of β-glucan,
thus forming a loose network [28].

There were three peaks of RI signal in the BBG, LBG, and WBG curves, but these peaks
emerged at different elution times and in different peak areas. In addition, the solvent peak
of the mobile phase (NaNO3 solution) emerged at nearly 37 min. As shown in Table 5,
the molecular weight (Mw) of BBG was 55.87 kDa, which was lower than that of LBG
(65.19 kDa) and WBG (81.59 kDa). It was also previously reported that the Mw (648.2 kDa)
of β-glucan extracted from the inner fraction of HB was higher than that extracted from the
HB outer bran (58.59 kDa) [17]. Moreover, the reduced polydispersity (Mw/Mn) values
of LBG, BBG, and WBG were 2.83, 2.36, and 2.23, respectively, indicating a more uniform
molecule distribution of β-glucan [19]. Additionally, the findings illustrated that the β-
glucan extracted from different colored varieties of highland barley showed different sizes
and conformations [30].

Table 5. Analysis of molecular weight data of three β-glucans (BBG indicates black highland bar-
ley β-glucan; LBG indicates blue highland barley β-glucan; WBG indicates white highland barley
β-glucan).

Sample Mn (kDa) Mw (kDa) Polydispersity
(Mw/Mn)

BBG 24.35 ± 0.17 b 55.87 ± 0.24 a 2.36 ± 0.05 a

WBG 36.75 ± 0.15 c 81.59 ± 0.18 c 2.23 ± 0.07 a

LBG 22.54 ± 0.13 a 65.19 ± 0.08 b 2.83 ± 0.09 b

The values correspond to the mean ± standard deviation (n = 3). Different letters in the same column indicate
significant differences (p < 0.05).
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3.2.3. XRD Analysis

The XRD patterns and relative crystallinity (RC) of BBG, LBG, and WBG are shown
in Figure 4. It is evident that the diffraction patterns of BBG, WBG, and LBG all exhibited
a wide peak at 2θ = 20◦, indicating the formation of the relatively regular crystalline and
amorphous forms during the extraction and purification process [29]. A similar result was
also observed by Bai et al. [19], who reported that there was a broader peak at 2θ = 20◦ in
the crystalline region of β-glucan after heat fluidization and microwave treatments. In fact,
the crystalline structure of the β-glucan samples was significantly affected by the extraction
method. The barley β-glucan extracted assisting with the high-speed centrifugal vortex
method showed a narrower peak than the control sample [31]. Furthermore, new weak
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peaks at approximately 2θ = 13◦ were observed for BBG, WBG, and LBG, leading to the
conclusion that there were multiple crystal-like structures and lattice types in the crystalline
portion [19]. It should be noted that the RC values of all samples ranged from 0.48 to 0.52%,
which were much lower than that of hull-less barley β-glucan (RC = 28.37%) with a high
Mw (3100 kDa) [32]. Li et al. [32] concluded that a high molecular weight and a dense
micrographic network contributed to the formation of crystalline structures.
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indicates blue highland barley β-glucan; WBG indicates white highland barley β-glucan).

3.2.4. FT-IR Analysis

The FT-IR spectra curves of BBG, LBG, and WBG are shown in Figure 5. All the
sample spectra exhibited a similar trend, suggesting that there were little changes in the
functional groups of β-glucan among the different colored HB varieties. The peaks in the
region of 3343–3325 cm−1 were due to the asymmetric stretching vibration of hydroxyl
O-H resulting from the interactions between glycosidic linkages within the polysaccharide
chain [33], while the peaks around 2881 cm−1 were attributed to C-H stretching vibration
on saturated carbons [34]. Furthermore, it was observed that the characteristic peaks
representing hydroxyl O-H of BBG, LBG, and WBG emerged at 3343.3 cm−1, 3325.6 cm−1,
and 3322.7 cm−1, respectively. According to the harmonic oscillator model [35], the inter-
and intra-molecular hydrogen bonding interactions between hydroxyl groups within the
polysaccharide chain were in the following order: WBG > LBG > BBG. Meanwhile, the
chemical shift value around 1654.2 cm−1 was due to the asymmetric stretching of C=O,
which has also been reported to be due to the binding of β-glucan to water [36]. Additionally,
the vibration peaks between 1017.9 and 1155.4 cm−1 were related to the C-O-C stretching of
glycosidic linkages [37]. Interestingly, the intensity of these two peaks was in the following
order: LBG > WBG > BBG, which indicated that more molecular chains of β-glucan were
broken depending on the color during the heat extraction processing. This result could
also be explained by the harmonic oscillator model mentioned above, which proposes that
molecular interaction is enhanced with a decrease in the peak frequency. Furthermore, the
absorption peak at approximately 893.6 cm−1 was associated with the stretching vibrations
of the β-linked glycosidic bond [19,38]. Due to the absence of 3,4-Glc(p), the strongest
intensity of this characteristic “anomeric region” was observed in LBG, indicating that the
β-linkage of pyranose obtained from blue highland barley had more opportunity to form
stronger hydrogen bonds [39,40].
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3.3. Particle Morphology Analysis of β-Glucan
3.3.1. Morphology Observation

The SEM morphologies of BBG, LBG, and WBG are shown in Figure 6. Generally, all
the β-glucan samples exhibited rough surfaces, which showed spheroidal aggregates of
different sizes. This may be due to the greater molecular weight of β-glucans extracted by
means of hot water without seriously damaging its molecular structure. Similar results
have been proposed by Dong et al. [37], who found that thermal processing (steaming or
microwave) could hinder the aggregation of oat β-glucan. As shown in Figure 6, it can also
be concluded that there were many obvious round aggregates in LBG, while WBG and
BBG were mostly composed of large and compact aggregates. Cory et al. [41] suggested
that it may also be related to the growing environment and gene regulation. Ma et al. [42]
reported that there were compact aggregated clusters with honeycomb-like structures in
yeast β-glucan.
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3.3.2. Particle Size Distribution Determination

The particle size distribution curves and parameters (D(4,3), D(3,2), D10, D50, and D90)
of the BBG, WBG, and LBG samples are shown in Figure 7 and Table 6, respectively. Particle
size distribution is an important factor affecting the aggregation state and conformation
of β-glucan [43]. Specifically, the D50 values of WBG, BBG, and LBG were 112.75 µm,
112.15 µm, and 87.93 µm, respectively. The D(4,3) values of WBG, BBG, and LBG were in
descending order with 130.60 µm, 127.75 µm, and 107.70 µm, respectively. Meanwhile, the
WBG, BBG, and LBG samples exhibited D(3,2) values of 55.94 µm, 56.57 µm, and 40.72 µm,
respectively. The closer the values of D(3,2) and D(4,3), the more regular the shape of the
sample particles; this means that the particle size distribution is more concentrated [44].
These results indicated that LBG provided the best dispersion in water, which was similar
to the finding observed by SEM.
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Figure 7. Particle-size distribution of BBG, LBG, and WBG (BBG indicates black highland bar-
ley β-glucan; LBG indicates blue highland barley β-glucan; WBG indicates white highland barley
β-glucan).

Table 6. Particle size parameters of BBG, LBG, and WBG (BBG indicates black highland barley
β-glucan; LBG indicates blue highland barley β-glucan; WBG indicates white highland barley
β-glucan).

Sample D10 (µm) D50 (µm) D90 (µm) D(4,3) (µm) D(3,2) (µm)

BBG 24.90 ± 0.56 a 112.15 ± 0.55 a 244.15 ± 1.45 a 127.75 ± 0.05 a 56.57 ± 0.68 a

WBG 25.60 ± 1.02 a 112.75 ± 1.15 a 253.65 ± 4.15 a 130.60 ± 2.10 a 55.94 ± 2.09 a

LBG 17.21 ± 0.21 b 87.93 ± 0.16 b 220.1 ± 1.3 b 107.70 ± 0.60 b 40.72 ± 0.46 b

The values correspond to the mean ± standard deviation (n = 3). Different letters in the same column indicate
significant differences (p < 0.05).

3.4. Physicochemical Properties
3.4.1. Rapid Viscosity Analysis (RVA)

The gelatinization performance of BBG, LBG, and WBG measured by RVA is shown
in Figure 8. Meanwhile, the pasting parameters (pasting temperature, PT; peak viscosity,
PV; trough viscosity, TV; final viscosity, FV; breakdown, BD; and setback, SB), reflecting
the molecular structure evolution of β-glucan during the heating cycle, are presented in
Table 7. The BBG and WBG samples displayed similar pasting profile shapes, which were
distinctly different from that of LBG, thus indicating a significant change in their pasting
parameters. Specifically, the highest PV value of 296.5 cP was observed in BBG, followed
by WBG (295 cP) and LBG (183 cP). As shown in the thermal stability results, LBG showed



Foods 2025, 14, 316 12 of 17

the strongest water-binding capacity among all the β-glucan samples, thus exhibiting a
poor ability to form a network gel structure and a low PV value during the heating cycle.
Correspondingly, the ability of the sample to swell and bind water was positively correlated
with the gelatinization temperature [45]. Therefore, the PT values of BBG, WBG, and LBG
were in the descending order of 73.38 ◦C, 72.95 ◦C, and 70.18 ◦C, respectively. Furthermore,
the stability and degradation of the β-glucan paste during the heating–cooling cycle are
reflected by the BD and SB values [46]. As shown in Table 7, LBG had the lowest BD and
SB values of 78.5 and 170.5, respectively, indicating that the stability of LBG paste was
higher than that of BBG and WBG pastes. Moreover, the paste viscosity was positively
influenced by particle size [47]. These observations were also consistent with the particle
size distribution results.
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Figure 8. Rapid viscosity analysis of BBG, LBG, and WBG (BBG indicates black highland bar-
ley β-glucan; LBG indicates blue highland barley β-glucan; WBG indicates white highland barley
β-glucan).

Table 7. Pasting properties of BBG, LBG, and WBG (BBG indicates black highland barley β-glucan;
LBG indicates blue highland barley β-glucan; WBG indicates white highland barley β-glucan).

Sample PV (cP) TV (cP) BD (cP) FV (cP) SB (cP) PT (◦C)

BBG 296.5 ± 4.95 b 147 ± 1.41 c 149.5 ± 3.54 c 399 ± 1.31 c 252 ± 2.9 c 73.38 ± 0.04 c

WBG 295 ± 2.46 b 142 ± 0.73 b 153 ± 0.73 b 399.5 ± 0.28 b 257.5 ± 0.55 b 72.95 ± 1.76 b

LBG 183 ± 1.41 a 104.5 ± 0.71 a 78.5 ± 2.12 a 275 ± 1.41 a 170.5 ± 0.71 a 70.18 ± 0.08 a

The values correspond to the mean ± standard deviation (n = 3). Different letters in the same column indicate
significant differences (p < 0.05).

3.4.2. Rheological Measurements

The dynamic rheological data of BBG, WBG, and LBG are shown in Figure 9. The inter-
chain relationships between polysaccharides can be understood through the observation of
rheological behavior. β-glucan with a 4% concentration mainly manifests as intermolecular
entanglement and gel formation in an aqueous solution [39]. In dynamic rheological
behavior analysis, the storage modulus (G′) characterizes the strength of the gel and the
loss modulus (G′′) indicates the change in the viscosity of the sol, which could be employed
to investigate the viscoelastic properties of mixed gel systems. The G′ values of WBG
and LBG were higher than the G′′ values, indicating that their fluids showed a weak gel
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structure [48]. Interestingly, the G′ value of the BBG fluid was lower than the G′′ value,
which is a typical characteristic of an entangled viscoelastic liquid, indicating that it could
be used in jam food systems with high viscosity maintenance requirements. In addition,
both WBG and LBG had higher dynamic modulus (G′ and G′′ values) than BBG, suggesting
stronger viscoelastic behaviors. The gelation process of grain β-glucan was found to depend
on the molar mass and aggregation state of β-glucan molecules.
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remained stable. Li et al. [49] concluded that this phenomenon was due to the same di-
rectional movement of β-glucan molecules and the destruction of molecular entangle-
ment caused by strong shear action. The shear viscosity of β-glucan dispersion was re-
lated to the average molecular weight, concentration, and composition [50]. The WBG 
and LBG samples with a large molecular weight showed a higher shear viscosity than the 
BBG sample. This may be due to the stronger intermolecular interactions and the higher 
entanglement among molecular chains in the WBG and LBG samples with a high Mw. 
Similarly, β-glucan extracted from the HB core with a high Mw exhibited higher apparent 
viscosity than that extracted from the outer bran due to the stronger molecular chain 
entanglements [17]. Furthermore, the flow behavior index (n) of the different samples 
was less than 1, indicating that all samples were pseudoplastic fluids. The gel-like prop-
erties of high-molecular-weight β-glucan suggest potential applications in food pro-
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Figure 9. Apparent viscosity (A) and dynamic rheological (B,C) curves of BBG, WBG, LBG (BBG
indicates black highland barley β-glucan; LBG indicates blue highland barley β-glucan; WBG indicates
white highland barley β-glucan).

As shown in Figure 9, the viscosity of WBG and LBG decreased significantly with
increasing shear rate, exhibiting shear-thinning flow behavior, while the viscosity of BBG
remained stable. Li et al. [49] concluded that this phenomenon was due to the same
directional movement of β-glucan molecules and the destruction of molecular entanglement
caused by strong shear action. The shear viscosity of β-glucan dispersion was related to the
average molecular weight, concentration, and composition [50]. The WBG and LBG samples
with a large molecular weight showed a higher shear viscosity than the BBG sample. This
may be due to the stronger intermolecular interactions and the higher entanglement among
molecular chains in the WBG and LBG samples with a high Mw. Similarly, β-glucan
extracted from the HB core with a high Mw exhibited higher apparent viscosity than
that extracted from the outer bran due to the stronger molecular chain entanglements [17].
Furthermore, the flow behavior index (n) of the different samples was less than 1, indicating
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that all samples were pseudoplastic fluids. The gel-like properties of high-molecular-
weight β-glucan suggest potential applications in food processing, cosmetics, and drug
delivery [51].

3.4.3. Thermal Property Measurement

The thermogravimetric (TG) and differential thermogravimetric (DTG) spectra of BBG,
LBG, and WBG are shown in Figure 10. There were two distinct stages of weight loss
shown in the curves of all samples. The DTG curve was derived from TGA, representing
the rate of weight loss. The initial weight loss was observed between 50 ◦C and 130 ◦C,
which was related to the release of water from the samples [52]. More interestingly, the
first maximum mass loss rates were observed in the BBG, LBG, and WBG samples at
temperatures of 75.7 ◦C, 84.6 ◦C, and 75.4 ◦C, respectively, revealing that LBG had the
strongest water-binding capacity. In a previous study, it was also reported that the stable
weight loss of β-glucan at high temperatures (<200 ◦C) was caused by non-covalent bond
breaking [53]. Meanwhile, the significant weight loss occurring in the 180–350 ◦C range
was attributed to the decomposition of β-glucan. The shapes of the DTG curves for BBG,
LBG, and WBG exhibited narrow peaks, indicating that all the samples had a more uniform
molecular weight distribution [31]. As expected, the pyrolysis temperatures of the three
BG samples almost overlapped, suggesting that there was little difference in the molecular
structure among the different colored samples. Specifically, as illustrated in Figure 9B, the
highest pyrolysis temperature was found in LBG (303.3 ◦C) followed by WBG (301.9 ◦C)
and BBG (301.7 ◦C).
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β−glucan).

4. Conclusions
Our present work showed that HB β-glucan mainly comprised glucose, regardless of

the color. However, there were still many differences in the molecular structure parameters
of the BBG, LBG, and WBG samples. 4-Glc(p), 3-Glc(p), and t-Glc(p) accounted for a larger
proportion (>90%) of the total methylated residues. Additionally, there was no 3,4-Glc(p)
in LBG. The Mw values of β-glucan extracted from the different colored HB varieties were
in the following order: WBG > LBG > BBG, which resulted in different physicochemical
properties for BBG, LBG, and WBG. Specifically, LBG presented the best dispersion in water
and the highest pyrolysis temperature. Meanwhile, WBG and LBG samples, with large
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molecular weight, showed a higher shear viscosity than the BBG sample. Interestingly, the
G′ value of the BBG fluids was lower than the G′′ value, which is a typical characteristic of
entangled viscoelastic liquids. In summary, the gel-like properties of high-molecular-weight
β-glucan suggest potential applications in food processing, cosmetics, and drug delivery.
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