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Abstract: The fast detection of Extra Virgin Olive Oil (EVOO) adulteration with poorer
quality and lower price vegetable oils is important for the protection of consumers and
the market of olive oil from fraudulent activities, the latter exhibiting an increasing trend
worldwide during the last few years. In this work, two optical spectroscopic techniques,
namely, Laser-Induced Breakdown Spectroscopy (LIBS) and UV-Vis-NIR absorption spec-
troscopy, are employed and are assessed for EVOO adulteration detection, using the same
set of olive oil samples. In total, 184 samples were studied, including 40 EVOOs and 144 bi-
nary mixtures with pomace, soybean, corn, and sunflower oils, at various concentrations
(ranging from 10 to 90% w/w). The emission data from LIBS, related to the elemental
composition of the samples, and the UV-Vis-NIR absorption spectra, related to the organic
ingredients content, are analyzed, both separately and combined (i.e., fused), by Linear
Discriminant Analysis (LDA), Support Vector Machines (SVMs), and Logistic Regression
(LR). In all cases, very highly predictive accuracies were achieved, attaining, in some cases,
100%. The present results demonstrate the potential of both techniques for efficient and
accurate olive oil authentication issues, with the LIBS technique being better suited as it
can operate much faster.

Keywords: Laser-Induced Breakdown Spectroscopy—LIBS; UV-Vis-NIR absorption
spectroscopy; extra virgin olive oil; edible oils; adulteration; machine learning

1. Introduction
Olive oil, recognized as “liquid gold”, boasts several valuable nutritional constituents,

such as high levels of mono-unsaturated fatty acids (oleic acid), vitamins, and antioxi-
dants. Other components are poly-unsaturated and saturated fatty acids (linoleic and
palmitic acids), present in lower amounts, while minor components such as polyphenols,
tocopherols, and pigments (carotenoids and chlorophylls) further enrich its profile [1–4].
Based on the production process, the olive oils are classified at different grades, reflecting
their final quality (e.g., acidity) and unique characteristics. Extra Virgin Olive Oil (EVOO)
has superior quality (color, taste, aroma) compared to Virgin Olive Oil (VOO), lampante,
refined olive oil, crude olive pomace oil, refined olive pomace oil, and olive pomace oil [5].
EVOO’s high market value, driven by limited availability and demand, makes it vulnerable
to adulteration, often involving more affordable edible oils of lower quality [6]. These
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practices raise ethical and, in some cases, even health problem issues, prompting regula-
tory agencies [7], organizations [8], and scientists [9–12] to search and develop practically
suitable countermeasures.

Conventional analytical techniques such as Gas Chromatography-Mass Spectrometry
(GC-MS) [13–15], High-Performance Liquid Chromatography (HPLC) [16,17], and Fourier
Transform Infrared Spectroscopy (FTIR) [18–20] have been among the main methods used
for assessing olive oil quality. GC-MS and HPLC are particularly valued for their ability
to identify and quantify the different ingredients present in olive oil, including fatty acids
and polyphenols, which are regarded as significant indicators for olive oil characterization.
FTIR spectroscopy has also been widely used for compositional analysis due to its ability to
identify key chemical bonds and structures. Undoubtedly, these methods have contributed
greatly to the assessment of olive oil; nonetheless, they exhibit some limitations. They
are typically time-consuming, often requiring extensive sample preparation, while the
use of organic solvents renders them environmentally unfriendly. Moreover, they require
expensive experimental apparatus and specialized personnel. These limitations often
render these methods less accessible for routine applications. Based on these, optical
spectroscopic techniques are more practical and efficient alternatives for olive oil analysis.

Recently, Laser-Induced Breakdown Spectroscopy (LIBS) has been demonstrated as being
an efficient tool for the rapid and in situ identification of adulteration and the authentication
of olive oil samples. LIBS, a laser-based technique combined with emission spectroscopy, can
provide the elemental analysis of a sample in real-time, without any prior preparation of the
sample [21–25]. This is achieved by the spectral analysis of the light emitted by the micro-
plasma that is generated by focusing a strong enough laser beam onto a sample. The interaction
of the laser light with the sample results in the ablation and the subsequent atomization of
the sample, along with the production of excited atoms/ions and/or small diatomic species
(usually), arising from the fragmentation of larger molecular species present in the plasma,
which upon de-excitation emit characteristic spectral lines [26–29]. The latter can reveal the
elemental composition of the sample in principle. In that context, Gyftokostas et al. [30],
having used LIBS, studied the classification of some different geographical-origin Greek
EVOOs; they achieved accuracies of almost 100%. Similarly, Nanou et al. [31] employed
LIBS to differentiate some EVOOs from their mixtures with edible oils, achieving predic-
tion accuracies between 91 and 99%. Similarly, UV-Vis-NIR absorption spectroscopy can
provide information about the composition of a sample, and the content of the different
ingredients it contains. UV-Vis-NIR absorption spectroscopy has also been proposed for
olive oil analysis [32–38]. Although these techniques were applied separately for olive oil
analysis and adulteration detection, and the corresponding spectral data were analyzed
and processed independently, the latter can be also combined, i.e., in fused form. In that
sense, the combined use of LIBS and UV-Vis-NIR absorption spectroscopy can be a more
efficient approach, merging the complementary information and strengths of both tech-
niques, with LIBS enabling the recognition/identification of key elements and UV-Vis-NIR
absorption spectroscopy providing the content of polyphenols or pigments (carotenoids
and chlorophylls), etc. By combining (i.e., fusing) their spectroscopic data, a more complete
profile of the sample can be obtained. The resulting dataset can then be effectively used by
machine-learning algorithms for the detection of olive oil adulteration and to improve the
overall analysis of its quality.

At this point, it is useful to note that machine learning has demonstrated great poten-
tial for the analysis of food matrices, which are often intricate due to the presence of diverse
natural and/or artificial organic ingredients. Therefore, these matrices frequently exhibit
hidden patterns or relationships that are not straightforwardly apparent by traditional
analysis methods. For example, in the case of olive oil, machine learning can identify rela-
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tionships between characteristics, such as type of cultivar, geographical region, and climatic
conditions, which all influence olive oil’s composition and characteristics. Furthermore,
machine learning can identify subtle spectral differences that may not be observable by the
naked eye, which could indicate quality variations or adulteration. The ability to analyze
food quality rapidly, non-invasively, and reliably makes machine learning particularly
valuable for applications such as routine quality control in foodstuff production.

Due to these advantages, machine learning has been applied in numerous studies for
various food quality tasks, including honey adulteration detection [39], wine authentica-
tion [40], milk quality assessment [41], and several others. Regarding olive oil analysis,
several spectroscopic techniques, including LIBS and UV-Vis-NIR absorption spectroscopy,
as well as others such as NIR [42], Fluorescence [43], and Raman spectroscopies [44], have
been employed for quality control and adulteration detection issues. However, most of
these studies focus on data from individual spectroscopic methods, limiting their ability
to capture the full complexity of olive oil samples. The combination of spectral informa-
tion/data obtained from different spectroscopic techniques remains less explored. The
present study, while independently examining and assessing LIBS and UV-Vis-NIR ab-
sorption spectroscopy to detect olive oil adulteration, also evaluates the effect of using the
combined (fused) LIBS and UV-Vis-NIR absorption spectroscopic data on the detection
of olive oil adulteration. To facilitate direct comparisons, the same set of samples was
used in all cases. In that view, 40 Greek EVOOs of different geographical origins were
blended with some commercial pomace and seed oils, in concentrations from 10 to 90%
w/w (in a total of 144 adulterated samples). The emission and absorption spectra of LIBS
and UV-Vis-NIR absorption techniques were analyzed, both separately and combined,
by Linear Discriminant Analysis (LDA), Support Vector Machines (SVMs), and Logistic
Regression (LR) algorithms, while the generalization and reliability of each algorithm was
evaluated using internal and external validation. To the best of our knowledge, this is the
first work where LIBS and UV-Vis-NIR absorption spectroscopy techniques are applied
and their results concerning the detection of olive oil adulteration are compared, using the
same set of oil olive samples.

2. Materials and Methods
2.1. Samples

For the experiments, 184 samples were used in total. They comprised 40 EVOOs,
collected from four different Greek regions well known for their premium quality olive oil,
namely Achaia (A), Kalamata (K), Crete (C), and Lesvos (L) (i.e., 10 EVOOs from each one
(A1-A10, K1-K10, C1-C10, L1-L10)), and 144 binary mixtures with pomace (P), soybean (SB),
corn (C), and sunflower (SF) oils. One EVOO from each of the four geographical regions
was used for the preparation of the different concentration mixtures (e.g., AC1-AC9, AP1-
AP9, ASB1-ASB9, ASF1-ASF9, and so on). The components of each mixture (i.e., EVOO and
edible oil) were weighed, mixed, and stirred thoroughly for 10–15 min for homogenization.
Then, 10 mL of each mixture was placed in a dark glass bottle and stored in the refrigerator
at a temperature of −2 to −4 ◦C, while the samples were rested at room temperature for
12 h prior to the measurements. The concentrations of the prepared mixtures were between
10 and 90% w/w, with steps of 10%. Table 1 presents the samples’ labels and characteristics.
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Table 1. Samples’ labels and characteristics.

Sample Geographical Origin Adulterant Adulterant
Concentration (% w/w)

A1 to A10 Achaia - -
K1 to K10 Kalamata - -
C1 to C10 Crete - -
L1 to L10 Lesvos - -

AC1 ro AC9 Achaia Corn 10–90
AP1 to AP9 Achaia Pomace 10–90

ASB1 to ASB9 Achaia Soybean 10–90
ASF1 to ASF9 Achaia Sunflower 10–90

KC1 to KC9 Kalamata Corn 10–90
KP1 to KP9 Kalamata Pomace 10–90

KSB1 to KSB9 Kalamata Soybean 10–90
KSF1 to KSF9 Kalamata Sunflower 10–90

CC1 to CC9 Crete Corn 10–90
CP1 to CP9 Crete Pomace 10–90

CSB1 to CSB9 Crete Soybean 10–90
CSF1 to CSF9 Crete Sunflower 10–90

LC1 to LC9 Lesvos Corn 10–90
LP1 to LP9 Lesvos Pomace 10–90

LSB1 to LSB9 Lesvos Soybean 10–90
LSF1 to LSF9 Lesvos Sunflower 10–90

2.2. Experimental Setups

For the LIBS measurements, the 1064 nm output from a Q-switched Nd: YAG laser
(Quanta-Ray INDI, Spectra Physics, USA) operating at a repetition rate of 1–10 Hz was
employed. The pulse duration was 5 ns and the energy per pulse was 80 mJ. The laser
beam was directed perpendicularly on the sample’s free surface and was focused with a
150 mm quartz lens. Approximately 1.5–2 mL of oil was placed in a Petri-like dish, while
an argon flow was applied on the sample’s surface to reduce oil splashing. A 50 mm lens
was used to collect the emitted light, which was then fed to a fiber bundle, connected to a
spectrograph. The spectrograph (AvaSpec-ULS4096CL-EVO, Avantes, The Netherlands)
had a 10 µm entrance slit, a 300 lines/mm grating, and a CCD detector (4096 pixels). The
emission spectra were recorded using time delay (td) and width (tw) of 1.28 µs and 1.05 ms,
respectively, extending from 200 to 1000 nm. In total, 10 LIBS spectra were obtained for
every sample, with each spectrum being the average of 10 measurements.

The absorption spectra of the oil samples, in a 1 mm thick glass cell, were measured
with a double-beam UV-VIS-NIR spectrophotometer (Jasco V-670, Jasco, Japan), and they
were recorded from 350 to 750 nm, using a step of 0.5 nm. For each sample, 10 spectra were
collected (i.e., 10 individual measurements).

2.3. Machine Learning

For the analysis of the spectroscopic data, different machine-learning algorithms were
tested, including Principal Component Analysis (PCA), Linear Discriminant Analysis
(LDA), Support Vector Machines (SVMs), and Logistic Regression (LR) [45–47]. The choice
of PCA was based on its ability to perform dimensionality reduction, transforming the
original variables into fewer orthogonal components, namely the Principal Components
(PCs), while retaining most of the dataset’s variance. In addition, PCA is also effective for
the identification and extraction of patterns, relationships, similarities, and/or differences
between the data. On the other hand, LDA serves both for dimensionality reduction and
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classification purposes. Therefore, presuming Gaussian distributions for each class, and
equal covariance matrices, LDA can determine a projection direction that maximizes the
ratio of between-class variance to within-class variance, effectively creating linear decision
boundaries for class separation. SVMs are commonly used for classification tasks by
finding a hyperplane in an N-dimensional space (where N is the number of features) that
maximizes the margin, or distance, between classes. The support vectors, i.e., the data
points closest to the hyperplane, play a key role in defining this decision boundary. Lastly,
LR is a classification model that estimates class probabilities using a logistic (sigmoid)
function to ensure outputs are constrained between 0 and 1.

For each model, hyperparameter tuning was performed to optimize their performance.
Therefore, for the PCA, the number of PCs was selected based on prior investigation to
retain most of the variance in the data, while reducing dimensionality. In LDA, the key
parameters included the solver (e.g., ‘svd’, ‘lsqr’, or ‘eigen’) and the number of components
chosen. As for the SVMs, the kernel type (e.g., linear or rbf) was tested, along with tuning
of the C and gamma parameters to enhance model performance. Finally, for LR, the penalty
parameter (Lasso regularization, L1) was applied, and the solver (e.g., ‘liblinear’ or ‘saga’)
was optimized accordingly to improve the model’s efficiency. All algorithmic analyses
were implemented in the Python 3.8 programming environment [48], using libraries such
as Scikit-Learn, Pandas, and NumPy. It is useful to note that a standard scaler was applied
to the data, i.e., subtracting the mean value and then scaling them to unit variance.

To evaluate the robustness and reliability of the models developed, both internal and
external validation procedures were applied. For this purpose, the initial dataset was
divided into training and test subsets. During the internal validation process, the training
subset was used, and a “k-fold” cross-validation method was applied. Specifically, the
training data were divided into k subsets, with k-1 used for training and the remaining
1 subset used for testing the model’s performance. This process was repeated k times,
yielding a mean classification accuracy and a standard deviation. In this study, k was set
to 10. For the external validation, the data from a separate set of samples, not being part
of the training process and completely unknown to the algorithms, were used to assess
the final trained models. The resulting prediction accuracy was recorded. Additionally, a
confusion matrix was constructed for each model, which presented the correct predictions
in the diagonal elements and the misclassifications in the off-diagonal elements. Key
performance metrics such as precision and recall, derived from the confusion matrix, were
also calculated. Precision measures the model’s ability to correctly recognize elements of a
class, while recall assesses its ability to accurately distinguish these elements from the rest.

3. Results
3.1. LIBS and UV-VIS-NIR Absorption Spectra

The LIBS spectra of an EVOO sample adulterated with pomace oil at different con-
centrations are illustrated in Figure 1a as an example. As can be seen, several emission
lines are observed, with the most prominent ones being the atomic lines of carbon (C),
hydrogen (H), oxygen (O), nitrogen (N), and the molecular bands of cyanogen (CN) and
C2. The assignments of these emission lines were based on the National Institute of Stan-
dards and Technology (NIST) spectral database [49] and also on previous studies from
our group [30,31]. Table 2 summarizes the most important (for the present work) atomic
emission lines and molecular bands observed and the corresponding wavelengths.
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CN (Δν = +1, 0, −1) 360, 388, and 422  
C2 (Δν = +1, 0, −1) 470, 516, and 559 

The corresponding UV-Vis-NIR absorption spectra are presented in Figure 1b. As can 
be seen, the characteristic absorption bands of chlorophyll (~415.5, 536, 612, and 670.5 nm) 
and carotenoids (i.e., 455.5 and 480.5 nm) are clearly observable in these spectra, in full 
agreement with other studies [50]. 

It is useful to repeat at this point that the LIBS emission spectra (see, e.g., Figure 1a) 
and the corresponding UV-Vis-NIR absorption spectra (see, e.g., Figure 1b) provide com-
plementary information about the samples, i.e., their emission and absorption profiles, 
respectively. However, the former spectra exhibit much smaller variations as the pomace 
oil concentration increases, while the latter present significant variations, as can be easily 

Figure 1. (a) LIBS and (b) UV-Vis-NIR absorption spectra of an EVOO sample (from the Achaia
region) adulterated with pomace oil, in concentrations varying from 10 to 90% w/w.

Table 2. Most important atomic emission lines and molecular bands observed in the LIBS spectra of
the olive oil samples.

Element Wavelength (nm)

C (I) 247.8, 795.2, 906.2, 940.6
O (I) 715.6, 777, 844.6, 926.4
N (I) 742.4, 744.2, 746.8, 818.8, 821.6, 824.2, 862.9, 865.6
Ha and Hβ 656.3 and 486.1
CN (∆ν = +1, 0, −1) 360, 388, and 422
C2 (∆ν = +1, 0, −1) 470, 516, and 559

The corresponding UV-Vis-NIR absorption spectra are presented in Figure 1b. As can
be seen, the characteristic absorption bands of chlorophyll (~415.5, 536, 612, and 670.5 nm)
and carotenoids (i.e., 455.5 and 480.5 nm) are clearly observable in these spectra, in full
agreement with other studies [50].

It is useful to repeat at this point that the LIBS emission spectra (see, e.g., Figure 1a)
and the corresponding UV-Vis-NIR absorption spectra (see, e.g., Figure 1b) provide com-
plementary information about the samples, i.e., their emission and absorption profiles,
respectively. However, the former spectra exhibit much smaller variations as the pomace
oil concentration increases, while the latter present significant variations, as can be easily
observed through a simple inspection of these absorption spectra. In the case of LIBS,
this is attributed to the very similar elemental compositions of the EVOOs and the edible
oils [31], leading to very small changes in the intensities of the observed atomic emission
lines. In contrast, the UV-Vis-NIR absorption spectra, capturing the spectral signatures
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of the different ingredients present in EVOO, exhibit a clear and progressive reduction of
the intensities of the chlorophyll and carotenoids’ characteristic bands increasing pomace
oil concentration. Therefore, it becomes clear that the absorption bands corresponding to
chlorophyll and carotenoids systematically follow a decreasing trend by increasing the con-
centration of pomace oil, as the latter contains much less, if any at all, of these ingredients
(as can be seen from the absorption spectra shown in Supplementary Figure S1). Therefore,
these spectral changes straightforwardly indicate the compositional differences between
pure and adulterated EVOOs.

3.2. Distinguishing Pure EVOOs from Edible Oils’ Adulterated Ones

At first, the possibility of distinguishing the pure EVOOs from their adulterated
counterparts was investigated. All the EVOOs (i.e., A1-A10, K1-K10, C1-C10, L1-L10) were
treated as a single class and all their mixtures with edible oils as another class (i.e., AC1-AC9,
AP1-AP9, ASB1-ASB9, ASF1-ASF9, KC1-KC9, KP1-KP9, KSB1-KSB9, KSF1-KSF9, CC1-CC9,
CP1-CP9, CSB1-CSB9, CSF1-CSF9, LC1-LC9, LP1-LP9, LSB1-LSB9, LSF1-LSF9). The spectral
data of LIBS, UV-Vis-NIR absorption, and their fusion were analyzed by the three machine-
learning (ML) algorithms. For the analysis and the subsequent validation of the models’
performance, two datasets were built, one for internal validation (i.e., training dataset),
comprising 144 samples (i.e., 32 and 112 EVOOs and adulterated ones, respectively), and a
second one for external validation (i.e., a test dataset), consisting of 40 samples (i.e., 8 and
32 EVOOs and adulterated ones, respectively). In all cases, the data were pretreated by
PCA for dimensionality reduction. Therefore, for the LIBS data, the optimum number of
PCs was determined to be between 30 and 70, while for the UV-Vis-NIR absorption data
and the fused data, 10–20 and 50–80 PCs, respectively, were found to be sufficient. For
each spectroscopic dataset and each algorithm, the determined number of PCs to achieve
maximum accuracy is presented in Supplementary Table S1.

The pretreated data were subsequently analyzed by the LDA, SVMs, and LR algo-
rithms. The results of the models using the LIBS, the UV-Vis-NIR absorption data, and
the fused data are reported in Table 3. Therefore, the classification accuracies (resulting
from the internal validation) and the prediction accuracies (resulting from the external
validation) were found to attain remarkably high values for all datasets, ranging between
98–100% and 97–99%, respectively. The obtained results demonstrate the effectiveness of
both techniques for discriminating the pure EVOOs from their adulterated counterparts.

Table 3. Classification and prediction accuracies obtained by the LDA, SVMs, and LR algorithms,
using the LIBS, UV-Vis-NIR absorption, and fused data of EVOOs and their mixtures with edible oils.

LIBS UV-Vis-NIR Absorption Fused Data

Classification (%) Prediction (%) Classification (%) Prediction (%) Classification (%) Prediction (%)

All EVOOs
LDA 100.0 ± 0.0 99.8 98.3 ± 1.1 97.5 99.8 ± 0.4 98.5
SVMs 99.9 ± 0.3 99.8 98.3 ± 1.2 99.8 99.8 ± 0.3 99.8

LR 99.9 ± 0.2 99.8 99.2 ± 0.6 99.8 99.2 ± 0.9 98.8

Crete
LDA 94.7 ± 3.4 94.0 100.0 ± 0.0 98.0 99.7 ± 0.3 100.0
SVMs 98.6 ± 1.9 100.0 100.0 ± 0.0 100.0 100.0 ± 0.0 94.0

LR 98.9 ± 1.8 100.0 100.0 ± 0.0 100.0 99.4 ± 1.1 100.0

Lesvos
LDA 97.2 ± 3.0 97.0 96.9 ± 3.0 100.0 97.1 ± 2.2 94.0
SVMs 95.3 ± 5.1 96.0 99.7 ± 0.9 99.0 99.1 ± 1.3 94.0

LR 94.7 ± 4.4 97.0 99.7 ± 0.9 100.0 97.1 ± 3.1 94.0

Kalamata
LDA 96.4 ± 2.8 97.0 100.0 ± 0.0 100.0 91.7 ± 3.5 98.0
SVMs 96.4 ± 3.5 99.0 100.0 ± 0.0 100.0 94.4 ± 3.0 97.0

LR 93.3 ± 5.4 94.0 99.4 ± 1.1 99.0 92.2 ± 3.7 98.0

Achaia
LDA 98.6 ± 1.9 99.0 99.1 ± 1.3 90.0 93.1 ± 4.5 93.0
SVMs 98.9 ± 1.8 98.0 99.2 ± 1.3 90.0 93.1 ± 2.6 93.0

LR 97.2 ± 3.7 98.0 100.0 ± 0.0 90.0 90.8 ± 2.8 97.0
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A more complete picture concerning the determined prediction accuracies is given by
the respective confusion matrices depicted in Table 4, where the rows denote the actual
classes and the columns the predicted ones. As can be seen, most of the spectra were
successfully classified, and only a few misclassifications were found to occur. In fact, all
three models were found to effectively categorize the spectra of the EVOO samples in their
respective class, while the few misclassifications observed correspond to the spectra of the
adulterated samples (in particular, for the fused data analysis).

Table 4. Confusion matrices constructed for the LDA, SVMs, and LR algorithms, using the LIBS,
UV-Vis-NIR absorption, and the fused data, where all EVOOs are treated as one class while all
EVOO-edible oil mixtures are treated as another class, (the correct classifications are the diagonal
elements (bold characters)).

LDA/SVMs/LR Algorithms

Predicted Class

Actual Class EVOOs Mixtures

LIBS
EVOOs 79/79/79 1/1/1

Mixtures 0/0/0 320/320/320

UV-Vis-NIR absorption EVOOs 70/79/79 10/1/1
Mixtures 0/0/0 320/320/320

Fusion
EVOOs 74/79/80 6/1/0

Mixtures 0/0/5 320/320/315

An additional evaluation of the successful models’ performance is provided by the
precision and the recall scores. The determined values of these metrics for the LDA, SVMs,
and LR algorithms, using the LIBS, UV-Vis-NIR absorption, and fused data, are given in
Supplementary Table S8. As can be seen in this Table, the values of precision and recall
scores were found to range between 0.88 and 1.00 for EVOOS and between 0.98 and 1.00
for the blended samples.

3.3. Determination of the Edible Oil Used for Adulteration

Next, the detection of the edible oil used for EVOOs’ adulteration was attempted.
For this purpose, the EVOOs from one geographical area were taken as one class (as, e.g.,
A1–A10, and so on for the rest), and their adulterated counterparts as four distinct classes
(as, e.g., AC1–AC9, AP1–AP9, ASB1–ASB9, ASF1–ASF9), each one corresponding to a
single edible oil used for adulteration. Therefore, in total, five classes were formed for
each geographical area. Each training dataset contained 36 samples (i.e., 8 EVOOs and
28 adulterated EVOO samples), and each test dataset included 10 samples (i.e., 2 EVOOs
and 2 adulterated EVOOs with each edible oil). Again, as in the previous section, the LIBS,
UV-Vis-NIR absorption spectroscopy, and the fused data were initially treated by PCA, and
the optimum numbers of PCs were determined. In Supplementary Table S1, the complete
results of this investigation are presented. The LDA plots of EVOOs’ discrimination from
their mixtures with the different edible oils, using the LIBS, UV-Vis-NIR absorption, and
combined/fused data, are shown in Figures 2–4. The five classes considered are differently
colored (i.e., yellow, green, cyan, blue, and purple), while the squares and circles correspond
to the training and test data, respectively. The boundaries for discrimination, created by the
LDA algorithm, are also plotted and colored accordingly. From the inspection of the LDA
plots, all EVOOs are excellently distinguished from the blended samples, in all cases. Also,
in general, the mixtures (of the EVOOs with the different edible oils) are well separated
between them. Some minor overlapping observed, mainly between the soybean and the
sunflower blends, is considered rather insignificant.
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The overall results obtained by LDA, using the optimum number of PCs, are presented
in Table 3, summarizing the calculated classification and prediction accuracies. As shown,
the performance of the LDA for the LIBS data was very successful in all cases, as evidenced
by the prediction accuracy values ranging between 94.0 and 99.0%. Slightly better results
were obtained from the LDA analysis of the UV-Vis-NIR absorption data, as in this case
the prediction accuracy values were found to be between 98.0 and 100%. As for the LDA
analysis of the fused data, very satisfactory prediction accuracies were also found, ranging
between 93.0 and 100.0%.

The analysis of the spectroscopic data by the SVM algorithms also resulted in ex-
ceedingly good results (see also Table 3). In more detail, using the LIBS data, prediction
accuracies between 96.0 and 100% were attained while using the UV-Vis-NIR absorption
data, and the combined/fused ones of 90–100% and 93.0–97.0% were obtained. Similarly
satisfactory results occurred for the LR algorithm, where, by using the LIBS data, predic-
tion accuracies of 94.0–100% were achieved, while the use of the absorption data and the
combined data resulted in prediction accuracies of 90.0–100% and 94.0–100%, respectively.

A more detailed insight into the models’ efficiency in discriminating the EVOOs
from their adulterated counterparts is provided by the corresponding confusion matrices
presented in Tables 5–7 (summarizing the classification results for the LDA algorithm) and
in Supplementary Tables S2–S7 (summarizing the classification results for the SVMs and
LR algorithms). As depicted in these Tables, nearly all the spectral data were correctly
assigned to their respective classes. Specifically, the analyses of the LIBS spectra by the
different models resulted in very accurate classification, with very few incorrect predictions
(i.e., 1 to 5 spectra), mostly for the adulterated samples. Similar observations can be
made from the inspection of the confusion matrices of the fused data. In this case, a few
misclassifications occurred concerning the soybean oil-mixed EVOO samples, which the
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models falsely recognized as sunflower oil-mixed EVOO ones. As for the confusion matrices
for the absorption spectra, the models correctly predicted most of the EVOO spectra from
Crete, Lesvos, and Kalamata, and their corresponding mixtures, while they classified
correctly only half of the EVOOs originating from Achaia (i.e., 10 out of 20 spectra).

Table 5. Confusion matrices constructed for the LDA algorithm using the LIBS data, where all the
EVOOs from each region are treated as one class, while the EVOO-edible oil mixtures are treated as
four classes, (the correct classifications are the diagonal elements (bold characters)).

LDA Algorithm

Geographical Origin Actual Class
Predicted Class

EVOOs Corn Oil Pomace Oil Soybean Oil Sunflower Oil

Crete

EVOOs 20 0 0 0 0
Corn oil 0 20 0 0 0
Pomace oil 0 0 18 0 2
Soybean oil 0 0 0 20 0
Sunflower oil 0 1 3 0 16

Lesvos

EVOOs 20 0 0 0 0
Corn oil 0 20 0 0 0
Pomace oil 0 2 18 0 0
Soybean oil 0 0 0 20 0
Sunflower oil 0 0 0 1 19

Kalamata

EVOOs 20 0 0 0 0
Corn oil 0 19 1 0 0
Pomace oil 0 0 20 0 0
Soybean oil 0 0 0 20 0
Sunflower oil 0 0 0 2 18

Achaia

EVOOs 20 0 0 0 0
Corn oil 0 20 0 0 0
Pomace oil 0 0 20 0 0
Soybean oil 0 0 0 19 1
Sunflower oil 0 0 0 0 20

Table 6. Confusion matrices constructed for the LDA algorithm using the UV-Vis-NIR absorption data,
where all the EVOOs from each region are treated as one class, while the EVOO-edible oil mixtures
are treated as four classes, (the correct classifications are the diagonal elements (bold characters)).

LDA Algorithm

Geographical Origin Actual Class
Predicted Class

EVOOs Corn Oil Pomace Oil Soybean Oil Sunflower Oil

Crete

EVOOs 18 0 2 0 0
Corn oil 0 20 0 0 0
Pomace oil 0 0 20 0 0
Soybean oil 0 0 0 20 0
Sunflower oil 0 0 0 0 20

Lesvos

EVOOs 20 0 0 0 0
Corn oil 0 20 0 0 0
Pomace oil 0 0 20 0 0
Soybean oil 0 0 0 20 0
Sunflower oil 0 0 0 0 20

Kalamata

EVOOs 20 0 0 0 0
Corn oil 0 20 0 0 0
Pomace oil 0 0 20 0 0
Soybean oil 0 0 0 20 0
Sunflower oil 0 0 0 0 20

Achaia

EVOOs 10 0 10 0 0
Corn oil 0 20 0 0 0
Pomace oil 0 0 20 0 0
Soybean oil 0 0 0 20 0
Sunflower oil 0 0 0 0 20
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Table 7. Confusion matrices constructed for the LDA algorithm using the fused data, (where all the
EVOOs from each region are treated as one class, while the EVOO-edible oil mixtures are treated as
four classes, (the correct classifications are the diagonal elements (bold characters)).

LDA Algorithm

Geographical Origin Actual Class
Predicted Class

EVOOs Corn Oil Pomace Oil Soybean Oil Sunflower Oil

Crete

EVOOs 20 0 0 0 0
Corn oil 0 20 0 0 0
Pomace oil 0 0 20 0 0
Soybean oil 0 0 0 20 0
Sunflower oil 0 0 0 0 20

Lesvos

EVOOs 20 0 0 0 0
Corn oil 0 20 0 0 0
Pomace oil 0 2 20 0 0
Soybean oil 0 0 0 16 4
Sunflower oil 0 0 0 2 18

Kalamata

EVOOs 20 0 0 0 0
Corn oil 0 20 0 0 0
Pomace oil 0 0 20 0 0
Soybean oil 0 0 0 19 1
Sunflower oil 0 0 0 0 20

Achaia

EVOOs 20 0 0 0 0
Corn oil 0 20 0 0 0
Pomace oil 0 0 20 0 0
Soybean oil 0 0 0 16 4
Sunflower oil 0 0 0 3 17

The precision and recall scores were also determined and are summarized in
Supplementary Tables S9–S11. As shown, both metrics attained values of 1, indicating
the suitability of the implemented models for recognizing the EVOO samples from their
blends, as well as detecting the edible oil used for adulteration.

4. Discussion
In this work, LIBS and UV-Vis-NIR absorption spectroscopy, assisted by machine-

learning tools, were applied to differentiate some EVOOs from their mixtures with edible
oils, and for the identification of the type of edible oil used. The two techniques provide
spectral information related to different fundamental properties of the samples, with LIBS
providing the elemental composition and UV-Vis-NIR absorption spectroscopy providing
its composition (in terms of its molecular constituents/ingredients). The analysis of the
collected emission and absorption spectral data by the machine-learning algorithms yielded
very similar and highly satisfactory results concerning the discrimination of EVOOs from
their mixtures, attaining prediction accuracy as high as 99.8%, as can be seen in Table 3. As
for the detection of the edible oil used for the adulteration of the EVOOs, the prediction
accuracies obtained by LIBS were found to be between 94.0 and 100.0%, and between
90.0 and 100.0% from the UV-VIS-NIR absorption measurements.

For the analysis of the spectroscopic data (i.e., algorithmic training, etc.), the data
of each technique were used separately (i.e., two different datasets) and combined in
a single dataset (i.e., fused data) in a low-level data fusion approach. The data fusion
approach was applied to investigate its effect on the models’ classification performance,
since sometimes data fusion approaches can improve the efficiency of models’ classification
accuracy, compared to their performance using the individual datasets. However, in the
present case, the analysis using the fused data resulted in very similar prediction accuracies
to those obtained by analyzing the LIBS and UV-Vis-NIR absorption spectra separately,
yielding accuracy values between 93.0 and 100.0%, while in a few cases even slightly
lower accuracies were obtained, evidencing that there is not a general rule that the fused
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data will always outperform compared to individual datasets. In fact, the effectiveness
of fusion analysis can vary based on the context and the conditions under which a study
is performed.

Based on the results obtained by the two techniques, it is obvious that they are both
very efficient and can operate successfully, attaining exceptional classification accuracies
for the discrimination of EVOOs from their mixtures with edible oils and the determination
of the edible oil as well. In addition, both techniques are experimentally simple enough,
while they do not require any time-consuming sample preparation procedures. However,
in general, the LIBS technique operates much faster, since only a few seconds are required
to obtain an LIBS spectrum, while the measurement of an absorption spectrum requires
few or several minutes (depending on the number of spectra acquired for averaging and
the scan speed (nm/s) of the spectrophotometer used). Based on these, it can be supported
that the LIBS technique is preferable for on-line and in situ applications concerning olive
oil authentication tasks.

Recently, several studies have reported using LIBS, UV-Vis-NIR absorption spec-
troscopy, Fluorescence spectroscopy, Attenuated Total Reflection Mid-Infrared (ATR-MIR)
spectroscopy, and Near Infrared Reflectance spectroscopy (NIR) for EVOO adulteration
detection. For example, Caceres et al. [51] utilized LIBS to identify the adulteration of some
EVOOs and VOOs with some seed and hazelnut oils. In this study, a Neural Network (NN)
algorithm was applied, resulting in discrimination accuracies of up to 95%. As mentioned
in the introduction, Nanou et al. [31] have also used LIBS for the analysis of some pure
EVOOs and their mixtures with some edible oils, employing LDA, SVMs, LR, and Gra-
dient Boosting (GB) algorithms. Values as high as 99% were reported. In another work,
Milanez et al. [52] utilized UV-Vis-NIR absorption spectroscopy to study some EVOOs
adulterated with soybean oil, aiming to determine the most suitable spectral features for
classification purposes, using a Successive Projections Algorithm (SPA) prior to the imple-
mentation of the LDA algorithm. In the same spirit, as an extension of the previous work,
Milanez et al. [53] employed UV-Vis-NIR absorption and Fluorescence spectroscopies to de-
tect the adulteration of some EVOO samples with soybean oil. They employed some Partial
Least Squares (PLS) and Multiple Linear Regression (MLR) models, which gave R2 values
of up to 0.98. For similar purposes, Didham et al. [54] employed UV-Vis-NIR absorption
and Attenuated Total Reflection Mid-Infrared (ATR-MIR) spectroscopies to analyze some
EVOO samples mixed with sunflower and canola oils. They reported R2 values of up to
0.98 by implementing PLS Discriminant Analysis (PLS-DA). In another work reported by
Castro et al. [55], NIR and UV-Vis-NIR absorption spectroscopies were used to study some
olive oil samples blended with refined sunflower, high oleic sunflower, corn, pomace, and
seed oils. They reported R2 values of up to 0.96 by employing a PLS-DA model.

From the above literature review, it appears that LIBS and UV-Vis-NIR absorption
spectroscopy have not been applied and assessed comparatively previously using the
same set of samples. Regarding this point, the present work is the first one exploring this
issue, to the best of our knowledge, while, in a couple of recent studies employing both
these techniques, the focus was on different aspects of olive oil authentication, such as,
e.g., the discrimination of EVOOs based on geographical and/or cultivar origin
(Gyftokostas et al. [30] and Stefas et al. [35]).

5. Conclusions
In this study, the detection of adulteration of some EVOOs with different lower-

quality edible oils (i.e., pomace, soybean, corn, and sunflower oils) was investigated by
means of LIBS and UV-Vis-NIR absorption spectroscopy. The former technique provides
the elemental composition of the sample by recording the emission of a micro-plasma
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created on its surface, while the latter, measuring the absorption of the different ingredients
of the sample (as, e.g., chlorophyll, carotenoids, etc.), reveals its composition. For the
measurements, 40 EVOOs originating from four Greek regions (i.e., Crete, Lesvos, Kalamata,
and Achaia) renowned for their premium quality EVOOs, and binary mixtures of them
with edible oils, at various concentrations (10 to 90% w/w), were studied. Furthermore, the
possibility of identification of the type of edible oil used for adulteration was examined.

For the analyses of the experimental data of each technique, and of the fused data,
different machine-learning algorithmic models (e.g., LDA, SVMs, and LR) were employed,
while the performance of each model and each technique were thoroughly evaluated
and assessed. The obtained results were found to be highly satisfactory, with prediction
accuracies attaining values of up to 100%. As an example, using the data obtained by LIBS
and UV-Vis-NIR absorption spectroscopy separately, and the fused dataset, the results
concerning the discrimination between pure and adulterated EVOOs were found to exceed
99%. As for the determination of the type of adulterant, both techniques and their fused
data reached accuracies of up to 100% (as, e.g., in the case of pure Cretan EVOOs (C1-C10)
and their adulterated counterparts CC1-CC9, CP1-CP9, CSB1-CSB9, and CSF1-CSF9).

Based on the obtained results (see also Table 3), it becomes evident that both LIBS
and UV-Vis-NIR absorption spectroscopy can very efficiently and accurately detect the
adulterated EVOOs from the unadulterated ones. From a practical point of view, both LIBS
and UV-Vis-NIR absorption spectroscopy are relatively low-cost, simple in operation, and
easy to implement, while they can also be portable. Importantly, they do not require any
sample preparation. LIBS, in particular, being much faster than UV-Vis-NIR absorption
spectroscopy, can be readily used for real-time analysis, allowing for the continuous moni-
toring of the samples’ quality. All these advantages make LIBS more suitable for routine
analysis and quality control in both online and in situ applications.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/foods14020321/s1. Figure S1: UV-Vis-NIR absorption
spectra of an EVOO sample, pomace, corn, soybean, and sunflower oils; Table S1: Optimum number
of PCs used for the analysis of the LIBS, UV-Vis-NIR absorption, and fused data by LDA, SVMs, and
LR algorithms; Table S2: Confusion matrices constructed for the SMVs algorithm, using the LIBS
data (where all the EVOOs from each region treated as one class while the EVOO-edible oil mixtures
treated as four classes); Table S3: Confusion matrices constructed for the LR algorithm, using the LIBS
data (where all the EVOOs from each region treated as one class while the EVOO-edible oil mixtures
treated as four classes); Table S4: Confusion matrices constructed for the SVMs algorithm, using the
UV-Vis-NIR absorption data (where all the EVOOs from each region treated as one class while the
EVOO-edible oil mixtures treated as four classes); Table S5: Confusion matrices constructed for the
LR algorithm, using the UV-Vis-NIR absorption data (where all the EVOOs from each region treated
as one class while the EVOO-edible oil mixtures treated as four classes); Table S6: Confusion matrices
constructed for the SVMs algorithm, using the fused data (where all the EVOOs from each region
treated as one class while the EVOO-edible oil mixtures treated as four classes); Table S7: Confusion
matrices constructed for the LR algorithm, using the fused data (where all the EVOOs from each
region treated as one class while the EVOO-edible oil mixtures treated as four classes); Table S8: Preci-
sion and recall scores for the LDA, SVMs, and LR algorithms, using the LIBS, UV-Vis-NIR absorption,
and fused data (where all EVOOs treated as one class while all EVOO-edible oil mixtures treated as
another class); Table S9: Precision and recall scores for the LDA, SVMs, and LR algorithms, using
the LIBS data (where all the EVOOs from each region treated as one class while the EVOO-edible oil
mixtures treated as four classes); Table S10: Precision and recall scores for the LDA, SVMs, and LR
algorithms, using the UV-Vis-NIR absorption data (where all the EVOOs from each region treated as
one class while the EVOO-edible oil mixtures treated as four classes); Table S11: Precision and recall
scores for the LDA, SVMs, and LR algorithms, using the fused data (where all the EVOOs from each
region treated as one class while the EVOO-edible oil mixtures treated as four classes).
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