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Abstract: Foodborne illnesses pose a significant global health threat, often caused by
pathogens like Escherichia coli, Listeria monocytogenes, and Salmonella spp. The emergence of
antibiotic-resistant strains further exacerbates food safety challenges. This study combines
shotgun metagenomics and culture-based approaches to detect foodborne pathogens and
antimicrobial resistance genes (ARGs) in Malaysian produce and meats from the Kinta
Valley region. A total of 27 samples comprising vegetables, meats, and fruits were analyzed.
Metagenomics provided comprehensive microbial profiles, revealing diverse bacterial
communities with species-level taxonomic resolution. Culture-based methods comple-
mented these findings by identifying viable pathogens. Key foodborne pathogens were
detected, with Listeria monocytogenes identified in meats and vegetables and Shigella flexneri
detected inconsistently between the methods. ARGs analysis highlighted significant resis-
tance to cephalosporins and penams, particularly in raw chicken and vegetable samples,
underscoring the potential public health risks. While deli meats and fruits exhibited a
lower antimicrobial resistance prevalence, resistant genes linked to E. coli and Salmonella
strains were identified. Discrepancies between the methods suggest the need for integrated
approaches to improve the pathogen detection accuracy. This study demonstrates the
potential of metagenomics in advancing food safety research and supports its adoption
as a complementary tool alongside culture-based methods for comprehensive foodborne
pathogen surveillance and ARG profiling in Malaysian food systems.

Keywords: foodborne pathogens; metagenomics; culture-complementary PCR; pathogen
detection; food safety; bacterial diversity; antimicrobial resistance genes (ARGs)

1. Introduction
Foodborne illnesses are a significant global health concern, affecting an estimated

600 million people annually [1]. These diseases are primarily caused by pathogens such
as Escherichia coli, Campylobacter jejuni, Listeria monocytogenes, Salmonella species (spp.),
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and Shigella spp., which enter the human body through the gastrointestinal tract via the
consumption of contaminated or undercooked food and water [2,3]. Detecting these
pathogens in food before consumption is critical for preventing outbreaks and safeguarding
public health.

Traditional culture-based methods, considered the gold standard for pathogen detec-
tion, are valued for their sensitivity, cost-effectiveness, and capacity to yield both qualitative
and quantitative data. However, these methods are labor-intensive, time-consuming, and
require extensive molecular and biochemical validation [4,5]. Furthermore, challenges
such as a limited detection speed, difficulty in resolving complex food matrices, and their
inadequacy in real-time applications underscore the need for alternative approaches.

To address these limitations, various advanced technologies have emerged, including
biosensors [6], molecular-based techniques such as the polymerase chain reaction (PCR)
and next-generation sequencing (NGS) [7], Raman spectroscopy [8], and CRISPR-based
diagnostics [9]. While these methods offer improved sensitivity, specificity, and rapid
detection, practical challenges remain. For instance, their deployment in resource-limited
settings, scalability for routine testing, and cost-effectiveness in real-world applications
remain significant barriers. In this context, metagenomics, particularly shotgun sequenc-
ing, has gained traction as a robust tool capable of addressing some of these constraints
by bypassing culture requirements and providing a comprehensive view of microbial
communities [10]. Studies have demonstrated the utility of metagenomics in identify-
ing pathogens during foodborne outbreaks and characterizing complex microbiomes in
implicated samples [11,12].

In Malaysia, food safety research has revealed the presence of key foodborne pathogens
such as L. monocytogenes, Shiga toxin-producing E. coli (STEC), Salmonella spp., and C. jejuni
in various food products, raising concerns about the prevalence of antibiotic-resistant
strains [13–17]. The overuse of antibiotics in agriculture and healthcare has exacerbated the
emergence of antibiotic-resistant pathogens, complicating treatment efficacy and posing a
critical public health challenge [17–20].

Despite these advances, the application of metagenomics in Malaysian food safety
remains limited. This study investigates the feasibility of shotgun metagenomics for detect-
ing foodborne pathogens in vegetables, meats, and fruits sourced from the Kinta Valley
region, a major agricultural hub in Malaysia encompassing areas like Kampar, Gopeng,
and Ipoh, known for its diverse produce and centralized markets [21–24]. Additionally, the
study integrates culture-based PCR validation to enhance the reliability of metagenomic
findings. A particular emphasis is placed on characterizing antimicrobial resistance genes
(ARGs) within the detected pathogens to assess their potential public health impact. By
addressing the limitations of existing detection technologies, this research aims to position
shotgun metagenomics as a transformative tool for foodborne pathogen detection and to
advance food safety management practices in Malaysia.

2. Materials and Methods
2.1. Sample Collection and Processing

This study analyzed nine sample types, categorized into three groups: vegetables
(lettuce [L], spinach [S], cabbage [C]), meats (roasted chicken [RC], raw chicken [RC], deli
meat [HM]), and fruits (honeydew [H], papaya [P], watermelon [W]). Each sample type was
sourced from three vendors located in Kampar (K), Gopeng (G), and Ipoh (I) in the Kinta
Valley district of Perak, Malaysia. Pooling samples offered a cost-effective approach that
enhanced the likelihood of detecting low-abundance pathogens by consolidating resources
and generalizing findings across a sample group [25]. Samples were chopped into smaller
pieces, and 10 g from each vendor was pooled to form a 30 g composite sample for each
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type. These composite samples were then placed in stomacher bags consisting of 270 mL of
a 0.85% saline solution. The bags were homogenized using a BagMixer (Interscience, Saint-
Nom-la-Bretèche, France) for 2 min before being processed for genomic deoxyribonucleic
acid (gDNA) extraction and culture-based analyses.

2.2. Culture of Foodborne Pathogens

The culture plate method was employed to validate the results obtained from metage-
nomic sequencing. The same samples analyzed via metagenomics were processed to isolate
five different bacterial species, including Campylobacter spp., Escherichia coli, Listeria spp.,
Salmonella spp., and Shigella spp. Isolation procedures were conducted according to the
Bacteriological Analytical Manual (BAM) recommendations (Table 1). Although E. coli is
not considered as a pathogen, it remains as an important indicator for food safety. Each
30 g sample was added to a stomacher bag with 270 mL of specific enrichment media
and homogenized. The mixtures were incubated under specific conditions. Following
incubation, 500 µL of the enrichment broths was aliquoted into 1.5 mL microcentrifuge
tubes and stored at −20 ◦C for subsequent boiled cell DNA extraction. Simultaneously,
the enrichment broths were serially diluted ten-fold using a 0.85% saline solution. These
serial dilutions were plated on selective agar plates using the spread plate method. The
plates were incubated under specific conditions, and the colony morphology was observed
(Table 1). Presumptive positive colonies were confirmed using boiled cell DNA extraction
and conventional PCR.

Table 1. Method of enrichment, incubation, and isolation of five foodborne pathogens.

Bacterial spp.
Enrichment Phase Plating Phase

Colony
MorphologyMedia Broth Incubation

Conditions Agar Incubation
Conditions

Campylobacter Bolton

Anaerobic chamber
with microaerobic

gas-generating pouch
(microaerobic

atmosphere (10% CO2,
5% O2, and 85% N2)),

42 ◦C, 48 h

BFC

Anaerobic
chamber with

anaerobic
gas-generating

pouch, 42 ◦C, 48 h

Gray and flat
with or without

green hue

Escherichia coli EC 42 ◦C, 48 h EMB 42 ◦C, 48 h
Green metallic

sheen with dark
center

Listeria BLEB 30 ◦C, 48 h PALCAM 30 ◦C, 48 h Gray-green with
black halo

Salmonella

BPW; after 24 h
incubation,

aliquoted 1 mL
into 9 mL RV

broth

BPW at 37 ◦C, 24 h
RV at 37 ◦C, 24 h XLD 37 ◦C, 24 h Pink or red with

black center

Shigella Shigella broth

Anaerobic chamber
with anaerobic

gas-generating pouch,
42 ◦C, 20 h

MAC 35 ◦C, 20 h Pale or colorless

Footnotes: BFC: Blood-free Campylobacter agar; EC: Escherichia coli broth; EMB: Eosin–methylene blue agar;
BLEB: Buffered Listeria enrichment broth; BPW: Buffered peptone water; XLD: Xylose–lysine–deoxycholate agar;
RV: Rappaport–Vassiliadis broth; MAC: MacConkey agar.
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2.3. Bacterial Spiking for Mock Community Creation

Bacteria spiking was performed using lettuce [L], raw chicken meat [RC], and honey-
dew [H] samples. The bacterial suspension’s Optical Density (OD) at 600 nm was measured
using a UV–visible spectrophotometer (GENESYS 10S; Thermo Scientific, Waltham, MA,
USA) and adjusted to 0.4, equivalent to approximately 2.04 × 108 CFU/mL [26]. A 1 mL
aliquot of each bacterial strain (E. coli ATCC BAA-197, C. jejuni ATCC 33560, L. monocy-
togenes ATCC 19115, S. enterica subspecies enterica serovar Typhimurium ATCC 700408,
and Sh. flexneri ATCC 29903) was mixed with homogenized samples for 1 min before
gDNA extraction. The step was repeated for validation with culture approaches. Addition-
ally, 100 µL of the 10X diluted suspensions were spread on tryptic soy agar (TSA) plates
and incubated as per the conditions in Table 1, and bacterial colonies were enumerated
post-incubation.

2.4. Boiled Cell DNA Extraction and PCR

To extract DNA, 500 µL of the incubated enrichment broths (from Section 2.2) was
centrifuged, and the resulting pellet was resuspended in 200 µL of distilled water. Con-
currently, pure cultures of suspected bacterial colonies from tryptic soy agar (TSA) were
picked using an inoculating loop and dissolved in 200 µL of distilled water in a new mi-
crocentrifuge tube. The suspensions were thoroughly mixed through vortexing. The cell
suspensions were heated at 100 ◦C for 10 min in a heat block (Major Science Co., Ltd.,
Taoyuan, Taiwan). The tubes were then frozen at −20 ◦C for 10 min. After freezing, the
tubes were centrifuged for 3 min, and the supernatant was carefully transferred into a new
1.5 mL microcentrifuge tube, with the pellet being discarded. This supernatant served as
the DNA template for the PCR assay. The positive strains used in the PCR were E. coli
ATCC BAA-197, C. jejuni ATCC 33560, L. monocytogenes ATCC 19115, S. enterica subspecies
enterica serovar Typhimurium ATCC 700408, and Sh. flexneri ATCC 29903. Nine sets of
forward and reverse primer pairs were used for the PCR detection of Campylobacter spp., E.
coli, Listeria spp., Salmonella spp., and Shigella spp. (Table 2).

Table 2. Target genes and primer sequences used in this study.

Targeted Gene Primer Sequence 5′ to 3′ Amplicon
Size Reference

Campylobater spp. (cadF) cadF-F: TTG AAG GTA ATT TAG ATA TG
cadF-R: CTA ATA CCT AAA GTT GAA AC 400 bp [27]

C. jejuni (hipO) hipO-F: GAA GAG GGT TTG GGT GGT G
hipO-R: AGC TAG CTT CGC ATA ATA ACT TG 735 bp [27]

E. coli (uidA) uidA-F: TAT GGA ATT TCG CCG ATT TT
uidA-R: TGT TTG CCT CCC TGC TGC GG 166 bp [27]

Listeria (16S rRNA) U1: CTC CAT AAA GGT GAC CCT
LI1: CAG CMG CCG CGG TAA TWC 938 bp [28]

L. monocytogenes (hlyA) LM1: CCT AAG ACG CCA ATC GAA
LM2: AAG CGC TTG CAA CTG CTC 702 bp [28]

Salmonella (random
fragment)

ST11: GCC AAC CAT TGC TAA ATT GGC GCA
ST15: GGT AGA AAT TCC CAG CGG GTA CTG G 429 bp [28]

S. Typhimurium (fliC) Fli15: CGG TGT TGC CCA GGT TGG TAA T
Typ04: ACT GGT AAA GAT GGC T 620 bp [28]



Foods 2025, 14, 352 5 of 24

Table 2. Cont.

Targeted Gene Primer Sequence 5′ to 3′ Amplicon
Size Reference

Shigella spp. (set1A) Shig1: TGG AAA AAC TCA GTG CCT CT
Shig2: CCA GTC CGT AAA TTC ATT CT 309 bp [29]

S. flexneri (ipaH) ShET1A-F: TCA CGC TAC CAT CAA AGA
ShET1A-R: TAT CCC CCT TTG GTG GTA 423 bp [29]

Footnotes: cadF: Campylobacter adhesin to fibronectin; hlyA: hemolysin A; set1A: Shigella enterotoxin 1A; ipaH:
invasion plasmid antigen H; hipO: hippuricase; fliC: flagellin; uidA: beta-glucuronidase.

2.5. gDNA Extraction

The gDNA for metagenomic analysis was extracted using the Nucleospin Food Kit
(Macherey-Nagel, Düren, Germany) with slight modification [11]. Briefly, the cell suspen-
sion from the samples (from Section 2.2) was centrifuged to collect the pellet, which was
resuspended in 550 µL of preheated buffer CF (65 ◦C). After mixing for 15 s, 10 µL of
proteinase K was added, and the suspension was incubated at 65 ◦C for 30 min. Following
incubation, the mixture was centrifuged at 11,000× g for 10 min. The clear supernatant
(400 µL) was transferred to a microcentrifuge tube. An equal volume of ethanol and buffer
C4 (400 µL each) was added, vortexed for 30 s, and aliquoted onto a NucleoSpin® Food
Column. The tube was centrifuged at 11,000× g for 1 min to bind the DNA. The column
was washed twice: first with 400 µL of buffer CQW, then with 700 µL of buffer C5, fol-
lowed by an additional 200 µL of buffer C5 to ensure complete removal. Each wash was
followed by centrifugation at 11,000× g, and the flow-through was discarded. For DNA
elution, 50 µL of preheated elution buffer CE (70 ◦C) was pipetted onto the membrane
and incubated at room temperature for 5 min before centrifuging it at 11,000× g for 1 min.
This step was repeated to elute a total of 100 µL of DNA. The integrity of the extracted
DNA was confirmed through agarose gel electrophoresis, showing a single band. The DNA
concentration and purity were measured using a NanoDrop™ 1000 spectrophotometer
(Thermo Scientific, Waltham, MA, USA), ensuring a concentration of at least 50 µg/mL, an
A260/280 ratio between 1.8 and 2.0, and an A260/230 ratio of at least 1.8 before proceeding
with library preparation.

2.6. DNA Library Preparation and Sequencing

The DNA samples were processed using the Illumina DNA Prep kit (Illumina, San
Diego, CA, USA) according to the manufacturer’s recommendations. Briefly, 30 µL of the
gDNA sample (from Section 2.4) was pipetted into a 96-well PCR plate and subjected to
tagmentation at 55 ◦C for 15 min. Subsequent steps included stopping the tagmentation,
purifying the tagmented DNA, amplifying the library, purifying the amplified library, and
normalizing, pooling, and quantifying the library. Finally, sequencing was performed on
the Novaseq 6000 platform with 150 bp paired end reads (Illumina, San Diego, CA, USA).

2.7. Bioinformatics Analysis

The raw sequencing data were uploaded to the Chan Zuckerberg (CZ) cloud-
based metagenomic platform, utilizing the CZID Illumina mNGS Pipeline v8.3 (https:
//chanzuckerberg.zendesk.com/hc/en-us (accessed on 21 March 2024)). The quality con-
trol of the metagenomic reads was performed using the Fastp tool [30]. Rarefaction analysis
was performed on all samples, demonstrating that the sequencing depth for each sample in
this study was adequately represented and tabulated in Table 3. Rarefaction, a method first
proposed by Sanders and refined by Hurlbert in the 1970s [31,32], adjusts for differences in
library sizes across samples by subsampling reads to an even depth without replacement,

https://chanzuckerberg.zendesk.com/hc/en-us
https://chanzuckerberg.zendesk.com/hc/en-us
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enabling fair comparisons of alpha diversity metrics across ecosystems [33]. Host and
duplicate reads were filtered using Bowtie2 and Hisat2, respectively [34,35]. The reads
were then aligned to the National Centre for Biotechnology Information non-redundant
(NCBI NR) database using Minimap2 and Diamond [36,37]. Short sequencing reads were
assembled into contigs using SPAdes, with Bowtie2 associating reads with each assembled
contig [38]. The assembled contigs were validated using the BLAST against the NCBI refer-
ence database. Data visualization, including heatmap generation, was conducted using
the Python libraries Matplotlib (https://matplotlib.org/stable/users/index.html (accessed
on 20 May 2024)), Seaborn (https://seaborn.pydata.org/ (accessed on 20 May 2024)) for
plotting, and Pandas (https://pandas.pydata.org/docs/user_guide/index.html (accessed
on 15 June 2024)) for data manipulation. To evaluate the agreement and discrepancies
between metagenomics and culture-based methods for pathogen detection, two statistical
analyses were performed: McNemar’s test and Cohen’s Kappa. These tests were carried
out using IBM SPSS version 27.0.1, with the results data from Tables 4 and 5 serving as
the input.

Table 3. Sequencing data output for each sample.

Location Sample Total Number of
Sequenced Reads

Kampar Cabbage 34,642,353
Spinach 37,129,548
Lettuce 39,626,617

Gopeng Cabbage 47,778,289
Spinach 46,992,789
Lettuce 41,050,773

Ipoh Cabbage 36,873,538
Spinach 36,372,744
Lettuce 32,172,185

Kampar Raw Chicken Meat 31,217,785
Cooked Chicken Meat 31,364,518

Deli Meat 25,829,333
Gopeng Raw Chicken Meat 32,086,390

Cooked Chicken Meat 38,798,640
Deli Meat 50,473,078

Ipoh Raw Chicken Meat 36,587,717
Cooked Chicken Meat 64,105,433

Deli Meat 29,364,161
Kampar Honeydew 35,030,608

Papaya 38,853,325
Watermelon 41,443,821

Gopeng Honeydew 41,913,941
Papaya 33,164,209

Watermelon 29,072,423
Ipoh Honeydew 31,864,779

Papaya 30,559,471
Watermelon 25,019,535

An ARG pipeline was implemented following the completion of the data pre-
processing workflow. Unlike the taxonomy assignment process, the assembly workflow for
the ARG pipeline followed a distinct approach. Reads were mapped against the Compre-
hensive Antibiotic Resistance Database (CARD) using KMA (https://card.mcmaster.ca/,
accessed on 20 May 2024), while contigs were assembled using SPAdes [38]. The assembled
contigs were then analyzed for homology against the CARD using the Basic Local Align-
ment Search Tool (BLAST) (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 20 May

https://matplotlib.org/stable/users/index.html
https://seaborn.pydata.org/
https://pandas.pydata.org/docs/user_guide/index.html
https://card.mcmaster.ca/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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2024). The results obtained were consolidated to provide ARG information, quality control
(QC) matrices, and predictions for the pathogen of origin.

Table 4. Detection of mock community in vegetable, meat, and fruit samples using metagenomics
analysis and culture-dependent methods.

Detection
Method/Sample

Foodborne Pathogen

Escherichia Campylobacter Listeria Salmonella Shigella

Metagenomics
Vegetable + + / + +

Meat + + / + +
Fruit + + + + +

Culture and PCR
Vegetable + + + + +

Meat + + + + +
Fruit + + + + +

Footnotes: +: Detected; /: Not Detected.

Table 5. The number of samples detected using a metagenomics analysis and culture-dependent
methods.

Detected with Culture Not Detected with Culture

Detected with Metagenomics 34 [True Positive (TP)] 1 [False Positive (FP)]
Not Detected with Metagenomics 16 [False Negative (FN)] 84 [True Negative (TN)]

Footnotes: sensitivity = TP/TP+FN; specificity = TN/TN+FP; positive predictive value = TP/TP+FP; negative
predictive value = TN/TN+FN.

3. Results
3.1. Quality Control of Raw Reads

Rarefaction analysis confirmed that the sequencing depth was sufficient for each
sample, with Q30 quality scores exceeding 90%, ensuring reliable downstream analysis [39].
The rarefaction curves reached a plateau state after a specific number of reads, leveling
off at total read counts ranging approximately from 50 million to 300 million (Figure S1;
Supplementary Materials). Read counts varied across the sample types, with vegetables
yielding the highest count (352,638,836 reads), followed by fruits (306,922,112 reads) and
meats (225,248,544 reads) (Table 3). Achieving high read counts, ideally at least 1 million
reads per sample, is critical for accurate taxonomic and functional profiling [40].

3.2. Mock Community
3.2.1. Comparison Between Metagenomic and Culture-Based Results

A mock community was prepared using five bacterial strains: Campylobacter jejuni
ATCC 33560, Escherichia coli ATCC BAA-17, Listeria monocytogenes ATCC 19115, Salmonella
enterica subspecies enterica serovar Typhimurium ATCC 700408, and Shigella flexneri ATCC
29903. These strains were introduced into vegetable, meat, and fruit samples.

The detection of these five pathogens using metagenomics analysis, alongside a bacte-
rial culture complemented with PCR, are summarized in Tables 4 and 5. L. monocytogenes
was not successfully detected in vegetable and meat samples through metagenomics anal-
ysis but was identified using the culture-dependent method. The other four foodborne
pathogens were detected in all three sample types with both detection techniques.

The performance of metagenomics compared to the culture method was evaluated
using results data from Tables 4 and 5. Metagenomics demonstrated a sensitivity of 68%,
reflecting its capability to detect the majority of pathogens identified using the culture
method, though some pathogens were not captured. The specificity was 99%, indicating
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that metagenomics rarely produced false positives. A positive predictive value (PPV) of
97% suggests that positive detections by metagenomics are highly reliable. Similarly, the
negative predictive value (NPV) of 84% highlights that most negative results were accurate,
though a small proportion of false negatives were present. These findings underscore that
metagenomics is a highly specific method for pathogen detection, with opportunities for
further optimization to improve the sensitivity.

The significant result from McNemar’s test (p < 0.001) underscores the discrepancies
between the two methods, emphasizing the need for enhanced metagenomic workflows to
improve the pathogen detection accuracy. Additionally, Cohen’s Kappa statistic was used
to assess the agreement between metagenomics and culture-based methods for pathogen
detection. The analysis yielded a Kappa value of 0.712 (p < 0.001), indicating substantial
agreement between the two methods. This result demonstrates that while the methods are
not perfectly aligned, their detection outcomes exhibit a high level of consistency beyond
what would be expected by chance.

3.2.2. Antimicrobial-Resistant Gene (ARG) Profiles

The three samples spiked with mock community bacteria were screened for ARGs,
with the results presented in Tables 6 and 7. Among the five bacteria in the mock community,
two were identified as being associated with antimicrobial resistance: E. coli ATCC BAA-
197 and S. Typhimurium ATCC 700408. E. coli ATCC BAA-197 is an extended-spectrum
beta-lactamases (ESBL)-producing bacterium, while S. Typhimurium ATCC 700408 exhibits
resistance to ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline.

Table 6. Detection of ARGs of E. coli ATCC BAA-197 in vegetable, meat, and fruit samples using
metagenomics analysis.

Sample
ARGs of E. coli ATCC BAA-197

TEM-12 sul1 AAC(3)-IIe SCO-1 APH(3′)-Ia aadA1 catA

Vegetable / + + + + / /
Meat / + + + + + /
Fruit / + + + + + /

Footnotes: TEM-12: Extended-spectrum class A beta-lactamase; sul1: Sulfonamide-resistant dihydropteroate
synthase; AAC(3)-IIe: Aminoglycoside N-acetyltransferase; SCO-1: Class A beta-lactamase; APH(3′)-Ia: Aminogly-
coside O-phosphotransferase; aadA1: Aminoglycoside nucleotidyltransferase; catA: Type A-1 chloramphenicol
O-acetyltransferase. +: Detected; /: Not detected.

Table 7. Detection of ARGs of S. Typhimurium ATCC 700408 in vegetable, meat, and fruit samples
using metagenomics analysis.

Sample
ARGs of S. Typhimurium ATCC 700408

sul1 aadA16 floR CARB-2

Vegetable + + + /
Meat + + + /
Fruit + / + /

Footnotes: sul1: Sulfonamide-resistant dihydropteroate synthase; aadA16: Aminoglycoside nucleotidyltransferase;
floR: Chloramphenicol/florfenicol efflux MFS transporter; CARB-2: Carbenicillin-hydrolyzing class A beta-
lactamase. +: Detected; /: Not detected.

The ARG profile of E. coli ATCC BAA-197 included seven distinct ARGs: TEM-12, sul1,
AAC(3)-IIe, SCO-1, APH(3′)-Ia, aadA1, and catA. In contrast, S. Typhimurium ATCC 700408
carried four ARGs: sul1, aadA16, floR, and CARB-2. Metagenomic analysis revealed that
most of the ARGs present in the mock community were detected in the spiked food samples.
Specifically, five ARGs (sul1, AAC(3)-IIe, SCO-1, APH(3′)-Ia, and floR) were consistently
identified across all three spiked food samples. However, TEM-12, catA, and CARB-2 were
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not detected. Furthermore, the aminoglycoside nucleotidyltransferase genes aadA1 and
aadA16 were absent in the vegetable and fruit samples, respectively. These findings warrant
further validation through phenotypic assays for ARGs in future studies.

3.3. Metagenomic Analysis of Microbial Community
3.3.1. Microbial Composition in Vegetables

The bacterial composition at the genus level in vegetable samples is illustrated in
Figure 1. Pectobacterium was consistently detected in all vegetable samples, albeit at varying
abundances. In samples L1K and S2G, its relative abundance was below 1%, whereas in
sample C1K, it accounted for 27%. Specific species such as Pectobacterium brasiliense, P.
polaris, and P. carotovorum were particularly prevalent in six vegetable samples, including
C1K, S1K, L2G, C3I, L3I, and S3I. Notably, two Pectobacterium species were among the
dominant bacteria in sample L2G. Pseudomonas was another prevalent genus, detected
across all samples and dominating the cabbage sample from Gopeng (C2G) with a relative
abundance of 78%. Various Pseudomonas species were identified, including P. otitidis, P.
mendocina, P. azotoformans, P. oryzihabitans, P. putida, P. lurida, P. fluorescens, and P. simiae
(Table S1; Supplementary Materials). Sample C2G exhibited a predominance of four distinct
Pseudomonas species, while P. otitidis, P. mendocina, and P. azotoformans were particularly
abundant in samples L1K, S1K, and C2G, respectively. Klebsiella was detected in all samples,
with relative abundances ranging from less than 1% to 16%. Pathogenic Klebsiella species
such as K. pneumoniae were detected but at lower levels. Similarly, Enterobacter, including
pathogenic species such as Enterobacter cloacae and E. roggenkampii, was prominent in
samples S2G, L3I, and S3I, with E. cloacae being especially abundant in sample S2G.
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Figure 1. Major bacterial genera found in vegetable samples (Pseudomonas, Pectobacterium, Enterobacter,
Klebsiella, Pantoea). C1K: Cabbage from Kampar; S1K: Chinese Spinach from Kampar; L1K: Lettuce
from Kampar; C2G: Cabbage from Gopeng; S2G: Chinese Spinach from Gopeng; L2G: Lettuce from
Gopeng; C3I: Cabbage from Ipoh; S3I: Chinese Spinach from Ipoh; L3I: Lettuce from Ipoh.

Other genera such as Citrobacter, Kluyvera, Acinetobacter, Pantoea, and Leclercia were also
detected in varying proportions, with each genus contributing significantly to the microbial
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diversity. The category “Others” accounted for 4% to 26% of the relative abundance,
highlighting a diverse range of less common bacterial genera. This comprehensive profiling
of bacterial communities underscores the diversity and complexity of microbial populations
present in vegetable samples, with potential implications for food safety, spoilage, and
agricultural practices.

3.3.2. Microbial Composition in Meats

At the genus level, the bacterial diversity in meat samples revealed notable variations
across the six analyzed samples (CB1K, RC1K, CB2G, RC2G, CB3I, RC3I), as illustrated in
Figure 2. Aeromonas exhibited wide-ranging abundances, from 0.01% in RC1K to 67% in
CB1K, and was particularly prominent in raw chicken samples. Pseudomonas was detected
in all meat samples except for the deli meat sample HM2G. Other significant genera
included Vibrio and Lactococcus, which were dominant in RC1K (83%) and HM2G (67%),
respectively. The “Others” category contributed to between 0.5% and 12% of the microbial
communities, with the lowest percentage in HM2G and the highest in RC2G.
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Figure 2. Major bacterial genera found in meat samples (Aeromonas, Pseudomonas, Vibrio, Lactococcus,
Leuconostoc). CB1K: Raw chicken from Kampar; RC1K: Roasted chicken from Kampar; HM1K: Deli
meat from Kampar; CB2G: Raw chicken from Gopeng; RC2G: Roasted chicken from Gopeng; HM2G:
Deli meat from Gopeng; CB3I: Raw chicken from Ipoh; RC3I: Roasted chicken from Ipoh; HM3I: Deli
meat from Ipoh.

The five most abundant bacterial species in the meat samples (Table S2; Supplementary
Materials), including Aeromonas species, such as A. veronii, A. salmonicida, and A. hydrophila,
were predominant in the raw chicken samples (CB1K, CB2G, CB3I). A. veronii was the most
abundant species in CB1K and CB2G and the second most abundant in CB3I, while A.
hydrophila was particularly prevalent in CB3I. In roasted chicken samples (RC1K, RC2G,
RC3I), Acinetobacter species, such as Ac. baumannii, Ac. calcoaceticus, Ac. johnsonii, and Ac.
tandoii, were frequently identified. Conversely, the deli meat samples (HM2G, HM3I) were
dominated by Leuconostoc species, including Le. citreum, Le. carnosum, and Le. mesenteroides.
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Le. citreum and Le. carnosum were the most abundant in HM2G, while HM3I displayed a
higher abundance of Le. carnosum and Le. mesenteroides.

3.3.3. Microbial Composition in Fruits

The microbial composition of fruit samples revealed distinct bacterial profiles, with
the five most abundant genera depicted in Figure 3. Leuconostoc was consistently present
across all fruit samples, with relative abundances ranging from 1% to 20%. The genus
Enterobacter showed a wide abundance range (3–95%), being the most dominant in the
papaya sample from Kampar (P1K), in which it had a 95% relative abundance. Rouxiella
was notably dominant in sample P3I, comprising 88% of the microbial community. Pantoea
was detected in all fruit samples, with abundances ranging from 0.4% to 15%. The “Others”
category contributed to between 0.2% and 12% of the microbial communities, a lower range
than that observed in vegetable samples.
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Figure 3. Major bacterial genera found in fruit samples (Enterobacter, Leuconostoc, Rouxiella, Pantoea,
Acinetobacter). H1K: Honeydew from Kampar; P1K: Papaya from Kampar; W1K: Watermelon from
Kampar; H2G: Honeydew from Gopeng; P2G: Papaya from Gopeng; W2G: Watermelon from Gopeng;
H3I: Honeydew from Ipoh; P3I: Papaya from Ipoh; W3I: Watermelon from Ipoh.

Enterobacter species (En. cloacae, En. hormaechei, En. asburiae, and En. roggenkampii)
were abundant in most fruit samples, except for H1K (Table S3; Supplementary Materials).
Sample H2G exhibited significant levels of En. asburiae, En. roggenkampii, and En. cloacae.
Additionally, fruit samples from Gopeng (W2G, H2G, P2G) displayed consistently high
abundances of Acinetobacter species, such as Ac. seifertii and Ac. baumannii. Leuconostoc
species (Le. lactis and Le. garlicum) were abundant in six fruit samples (W1K, H1K, P1K,
W2G, P2G, P3I). Notably, Le. lactis was prevalent in all samples except W1K, where Le.
garlicum showed higher levels.

3.4. Comparative Analysis of Foodborne Pathogens in Vegetables, Meat, and Fruits Using
Metagenomics and Culture Methods

The detection of foodborne pathogens in vegetable, meat, and fruit samples using
metagenomics and culture methods complemented by PCR is detailed in Figure 4. Although
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E. coli is not considered as a pathogen, some of its strains are potentially pathogenic, and
the bacterium is an important indicator of hygiene levels in food safety [41]. Thus, this
study included E. coli in the comparative analysis.
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Figure 4. The detection of foodborne pathogens in vegetable, meat, and fruit samples using metage-
nomics and culture approaches (green represents detection by both approaches; orange indicates
detection by neither approach; purple shows a discrepancy in the approaches). +: positive detection;
/: no detection.

3.4.1. Vegetables

Both techniques detected E. coli and S. Typhimurium in all vegetable samples acquired
from the three different locations. C. jejuni was only detected in vegetables from Kampar
using both techniques. Cabbage samples from Kampar and Gopeng (C1K, C2G) and a
lettuce sample from Gopeng (L2G) tested positive for Sh. flexneri using both techniques, but
it was absent in the remaining samples. L. monocytogenes was detected in four samples (C1K,
S1K, L1K, C2G) using both approaches and in sample L2G using culture methods only.

3.4.2. Meats

Neither approach detected C. jejuni in meat samples. Two deli meat samples (HM1K,
HM2G) were positive for L. monocytogenes. S. Typhimurium was detected in all meat
samples except the deli meat samples (HM1K, HM2G, HM3I). Culture methods detected
E. coli in sample HM3I and Sh. flexneri in sample RC2G, which were not detected by
metagenomics. Both techniques detected E. coli in six samples (CB1K, RC1K, CB2G, RC2G,
CB3I, RC3I) and Sh. flexneri in two samples (CB2G, RC3I).

3.4.3. Fruits

E. coli was detected in all fruit samples using both techniques, whereas C. jejuni was not
detected in any fruit samples. L. monocytogenes was not detected in any fruit samples using
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either method. Metagenomics detected S. Typhimurium in all fruit samples, while culture
methods found the watermelon sample from Kampar to be negative. The papaya sample
from Ipoh was positive for Sh. flexneri according to culture methods but not according to
metagenomics. Discrepancies were noted in Sh. flexneri detection, with one sample out of
nine being inconsistent. Notably, sample W1K was positive for metagenomics but negative
for culture analysis.

3.5. Antimicrobial Resistance Gene (ARG) Profiles

Metagenomics analysis was employed to predict antimicrobial resistance profiles
across 27 food samples, categorizing resistance genes by antibiotic classes (Figure 5). The
darker color gradients in the figure represent a higher abundance of specific resistance
genes. Resistance genes associated with aminocoumarin, glycylcycline, and phosphonic
acid were the least prevalent among all samples.
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Approximately half of the samples exhibited resistance genes linked to lincosamide,
macrolide, peptide, phenicol, and rifamycin antibiotics. In contrast, resistance genes associ-
ated with aminoglycoside, carbapenem, cephamycin, diaminopyrimidine, disinfectants,
fluoroquinolone, monobactam, penem, sulfonamide, and tetracycline were more commonly
detected, highlighting a broader presence across the sample set.

The highest occurrences of resistance genes were observed for the cephalosporin and
penam antibiotic classes. Notably, 83% of the cephalosporin resistance genes were predicted
to be linked to Klebsiella aerogenes and Klebsiella pneumoniae. Penam resistance genes were
predominantly associated with bacteria such as Acinetobacter spp. and Escherichia coli.

3.5.1. High ARG Abundance

The raw chicken sample from Gopeng (CB2G) and spinach sample from Kampar (S1K)
displayed a higher abundance of resistance genes compared to other samples. Specifi-
cally, S1K showed darker regions for fluoroquinolone, macrolide, and phenicol resistance,
indicating elevated resistance levels to these antibiotic classes.

3.5.2. Low ARG Abundance

Samples with a lower ARG abundance included deli meat and certain fruit samples,
such as HM2G, HM3I, L2G, P1K, P3I, W1K, W2G, and W3I. Deli meat samples (HM1K and
HM2G) exhibited the lowest occurrence of resistance genes across the dataset.

3.5.3. Fluoroquinolone Resistance

Darker shaded regions for fluoroquinolone resistance were prominent in samples C3I,
CB2G, S1K, and S2G, indicating a higher prevalence of resistance genes associated with
this antibiotic class.

These results provide insights into the variability of ARG distribution across different
food matrices and geographical sources, suggesting potential risks and the need for targeted
interventions to mitigate the spread of antimicrobial resistance in food systems.

4. Discussion
4.1. Mock Community
4.1.1. Metagenomic and Culture-Based Methods

Metagenomic analysis successfully detected L. monocytogenes in fruit samples but not
in vegetables or meat, in contrast to culture-dependent methods (Tables 4 and 5). This
discrepancy may be attributed to the higher detection limits required for metagenomic
analysis, where a low pathogen abundance can result in non-detection. Additionally, the
target pathogen may have been excluded due to the filtering of low-quality reads [31,32].
Nonetheless, both methods consistently identified four other foodborne pathogens across
vegetables, meats, and fruits (Tables 4 and 5).

4.1.2. ARG Profiles

The screening of ARGs focused on identifying resistance profiles within the mock
community. Beta-lactamase-associated genes, such as SCO-1, were detected in all spiked
food samples (Table 6). Additionally, ARGs linked to sulfonamide and aminoglycoside
were identified. Two ARGs (sul1 and floR) from S. Typhimurium ATCC 700408 were
detected in all food samples (Table 7). Although the carbenicillin-hydrolyzing class A
beta-lactamase gene (CARB-2) was not detected, related ARGs such as CARB-1 and CARB-3
were identified.

The overall accuracy of ARG detection in the mock community was 67%. According
to a study by Mahfouz and colleagues [42], while the Comprehensive Antibiotic Resistance
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Database (CARD) exhibited a low very major error rate of 1.17%, its accuracy could be
further enhanced by improving the completeness and quality of its curated data. Overall,
the majority of ARGs present in the ATCC strains were successfully identified through
metagenomics. These findings underscore the potential of metagenomic analysis for
detecting ARGs. Although Malaysian researchers have investigated and validated the
application of metagenomics for ARG detection, its adoption within the food safety industry
remains limited [43,44].

4.2. Metagenomic Analysis of Microbial Community
4.2.1. Microbial Composition in Vegetables

The microbial communities in vegetable samples were dominated by genera within
Proteobacteria, with notable contributions from Pectobacterium, Pseudomonas, Klebsiella, and
Enterobacter (Figure 1). Pectobacterium species (P. brasiliense, P. polaris, and P. carotovorum) are
well-known plant pathogens, producing cell wall-degrading enzymes that lead to tissue
maceration and rot in vegetables like cabbage, celery, and leeks [45–48]. The prevalence
of Pectobacterium species in multiple samples, including L2G and C1K, highlights their
significant role in vegetable spoilage and postharvest losses.

Pseudomonas spp., such as P. otitidis, P. mendocina, and P. azotoformans were promi-
nent in different samples, suggesting niche adaptations [49,50]. While many Pseudomonas
species contribute to plant health through nutrient production, others, including P. otitidis
and P. oryzihabitans, exhibit pathogenic traits linked to agricultural diseases and human
infections [51,52]. On the other hand, Klebsiella pneumoniae is a potential contaminant
with implications for public health due to its role in nosocomial infections and increasing
antibiotic resistance. Similarly, Enterobacter cloacae is an emerging concern for its resistance
to third-generation antibiotics; it also demonstrates beneficial plant growth-promoting
activities, including nitrogen fixation and phosphate solubilization, which are valuable for
sustainable agriculture [53].

Other genera, including Citrobacter, Kluyvera, Acinetobacter, Pantoea, and Leclercia,
contributed to the microbial diversity, albeit at lower abundances. These genera, along with
the “Others” category, reflect the complexity of vegetable-associated microbial communities,
encompassing both spoilage agents and potentially beneficial microorganisms (Figure 1).

The consistent detection of these genera across samples underscores the dual role of
the vegetable microbiome in promoting plant health and presenting food safety challenges.
Addressing contamination risks, such as those posed by irrigation water and posthar-
vest handling, while leveraging beneficial microbial traits, could improve agricultural
productivity and reduce spoilage and health risks [54].

4.2.2. Microbial Composition in Meats

The bacterial composition of meat samples reflects distinct microbial profiles influ-
enced by processing methods and meat types, with significant implications for food safety,
spoilage, and public health (Figure 2).

Aeromonas species, notably A. veronii, A. hydrophila, and A. salmonicida, were highly
abundant in raw chicken samples (Figure 2), indicating their critical role in meat spoilage
and contamination. These bacteria, commonly found in freshwater environments, possess
virulence factors such as endotoxins, cytotoxins, and proteolytic enzymes, contributing
to their pathogenicity and spoilage potential [55]. For instance, A. salmonicida is closely
associated with spoilage in chilled meats due to its proteolytic activity [56]. The presence
of these species highlights the vulnerability of raw chicken to contamination, emphasizing
the need for stringent hygiene practices during processing and storage.
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Pseudomonas, another prominent genus, was detected in most samples, reflecting its
ubiquity in meat environments. Known for its high spoilage potential, P. aeruginosa can sur-
vive in raw, processed, and vacuum-packaged meats, even post-thermal processing [57,58].
Its persistence underscores its adaptability and the challenges it poses for ensuring meat
quality and safety. Acinetobacter species, prevalent in roasted chicken samples, present
significant concerns due to their ability to harbor antibiotic resistance genes. Strains such
as Ac. johnsonii and Ac. baumannii are known to produce biofilms and secrete proteases,
contributing to spoilage and posing public health risks [59]. A. baumannii is a critical top-
priority pathogen listed by the World Health Organization [60]. The identification of these
strains in food highlights the potential of meat products as reservoirs for antibiotic-resistant
bacteria [61].

In deli meats, Leuconostoc species (Le. citreum, Le. carnosum, and Le. mesenteroides)
were dominant (Figure 2). These bacteria demonstrate a dual role in meat products. While
their antimicrobial properties, attributed to organic acid production, offer potential as
bio-preservatives, their spoilage traits, including exopolysaccharide production, can lead to
undesirable changes such as slime formation and texture alteration [62]. The prevalence of
Le. carnosum in refrigerated and high-salt environments explains its abundance in processed
deli meats and underscores its adaptability to such conditions [63]. The “Others” category,
representing diverse and less abundant bacterial genera, further underscores the complexity
of microbial communities in meat samples. While some of these bacteria may contribute
to spoilage, others could have beneficial roles, warranting further investigation into their
functional characteristics.

This study highlights the critical need for targeted interventions to mitigate contamina-
tion risks in meat processing and storage. Improved hygiene practices, effective cold chain
management, and the potential utilization of beneficial bacteria as natural preservatives
could collectively enhance meat safety and quality while reducing spoilage and health risks.

4.2.3. Microbial Composition in Fruits

The microbial diversity in fruit samples highlights the significant roles of Proteobacte-
ria and Firmicutes in shaping the quality, safety, and potential risks associated with fresh
produce (Figure 3).

Proteobacteria, particularly Enterobacter species, are integral to the fruit microbiome,
influencing both beneficial and detrimental outcomes. En. cloacae are linked to melon
necrosis, where its fermentative activity can cause rind damage and fruit bursting [64,65].
Conversely, other Enterobacter species, such as En. hormaechei and En. asburiae, can benefit
fruit crops. En. hormaechei enhances plant growth by solubilizing essential nutrients like
potassium and calcium [66], while En. asburiae has shown potential in inhibiting harmful
pathogens in cantaloupes [67]. These findings underscore the dual roles of Enterobacter
species in fruit ecosystems, balancing spoilage risks with potential agricultural benefits.

The consistent presence of Acinetobacter species, particularly Ac. seifertii and Ac.
baumannii, in Gopeng fruit samples is noteworthy (Figure 3). While Ac. baumannii is known
for its biofilm formation and environmental resilience, its association with agricultural
products highlights its adaptability [68]. Similarly, Ac. seifertii, typically implicated in
serious infections, is increasingly recognized in agricultural contexts, warranting further
investigation into its transmission routes and implications for food safety [69].

Firmicutes, represented by Leuconostoc species, play diverse roles in fruit ecosystems.
Le. lactis contributes to fruit preservation by reducing weight loss and decay, particu-
larly in strawberries, through sugar breakdown and the production of fermentation by-
products [63]. This characteristic also makes it integral to the fermentation of plant-based
foods. In contrast, Le. garlicum thrives in extreme environments, such as garlic surfaces,
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due to its resilience and enzymatic capabilities [70]. While its role in fruits remains under-
explored, its detection in papaya and watermelon samples underscores its adaptability to
diverse plant matrices.

The diversity within the “Others” category suggests the presence of less dominant but
potentially influential bacterial taxa. Although these taxa comprise a smaller proportion of
the microbial community, their functional contributions, whether in spoilage, preservation,
or plant–microbe interactions, merit further exploration.

This study emphasizes the intricate interplay between microbial diversity and fruit
quality. Targeted microbial management strategies, including improved postharvest han-
dling and the potential biocontrol applications of beneficial microbes like Le. lactis and
En. hormaechei, could mitigate risks while enhancing the nutritional and sensory attributes
of fruits.

4.3. Comparison Between Metagenomic and Culture-Based Results

The detection outcomes for E. coli, C. jejuni, S. Tyhimurium, and Sh. flexneri in veg-
etable samples showed consistency between metagenomics and culture methods (Figure 4).
However, a notable discrepancy emerged in the detection of L. monocytogenes, where
metagenomics failed to identify its presence in one lettuce sample. Previous studies using
spiked spinach samples reported a detection accuracy of 94% for E. coli using metagenomic
sequencing [71]. In contrast, our study demonstrated higher detection accuracy for E. coli
in vegetables, but the accuracy for L. monocytogenes was limited to 89%. Discrepancies
were more pronounced in meat samples, where the detection accuracy was 89% for both
E. coli and Sh. flexneri. Similarly, in fruit samples, the detection accuracy was 89% for
S. Typhimurium and Sh. flexneri. Factors such as the number of pathogens present, the
complexity of the food matrix, and the interference from host DNA further exacerbate the
challenges of pathogen identification through metagenomics, as previously noted in food
production environments [72].

4.4. Foodborne Pathogen Detection Consistency

C. jejuni showed the highest detection consistency, being consistently detected in all
27 samples across both approaches (Figure 4). E. coli, L. monocytogenes, and S. Typhimurium
had a detection accuracy of 96% (26 out of 27 samples), while Sh. flexneri had the lowest
accuracy at 93% (25 out of 27 samples). The inconsistency in the results may stem from
factors such as the sensitivity of metagenomics, the detection of non-viable bacteria, and
the sample complexity. Previous studies have achieved detection sensitivity for Shiga
toxin-producing E. coli (STEC) at 10 colony forming units (CFUs) per 100 g of a sample [73].
However, this study’s methodology, which omitted the enrichment step, might have
affected the sensitivity [74].

As for the unexpected inverse relationship between Salmonella-positive and Listeria-
positive samples, it may be attributed to the competition between microbial species in
the food matrix or differences in environmental niches that favor the survival of one
pathogen over the other. While the sampling was conducted randomly, these biological
and environmental factors could have influenced the microbial composition of the samples.

Metagenomics does not discriminate between viable and non-viable bacteria, thus po-
tentially detecting dead bacteria, which can be useful for source-tracking investigations [75].
While DNA-binding dyes like propidium monoazide can mitigate this issue, they were not
used in this study due to their impact on sequencing results [76]. Additionally, complex
background microbiota from human and environmental sources can interfere with the
sensitivity and results [77].
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4.5. Antimicrobial Resistance Gene (ARG) Profiles

The elevated resistance to cephalosporins and penams observed in foodborne
pathogens is linked to several interconnected factors, including the widespread use of
these antibiotics in human medicine and agriculture (Figure 5). This practice facilitates the
emergence and proliferation of resistant strains, as seen with E. coli and Salmonella, which
frequently carry resistance to β-lactam antibiotics such as cephalosporins [78]. Agricultural
antibiotic usage exacerbates resistance development, further contributing to the transmis-
sion of ARGs through the food chain. Surveillance data highlight significant resistance
trends, such as resistance to quinolones and cephalosporins in Salmonella enterica and to
quinolones and macrolides in Campylobacter spp., underscoring the critical need to regulate
antibiotic use in animal farming to mitigate resistance dissemination [79,80].

4.5.1. Variability of ARGs by Sample Type

Deli meats and fruits generally exhibited lower occurrences of ARGs compared to
vegetables and raw chicken. This may be attributed to the stringent hygiene and safety
measures often applied during the processing and handling of deli meats. Deli meats have
been processed, and the curing process (including the addition of preservatives and a high
salt content) could lower the survival chances of these ARG pathogens [81–84].

Studies using high-throughput techniques and qPCR have shown that while tetracycline-
resistant (TR) Enterobacteriaceae can be detected in meat samples, their abundance is often
reduced in products subjected to robust safety protocols. Conversely, environmental sources
like river sediments and wastewater outputs tend to harbor a higher diversity and prevalence
of ARGs [40,85].

Raw chicken and vegetable samples, however, demonstrated substantial resistance,
particularly to cephalosporins and penams. In Malaysia, a notable 25% of S. enterica isolates
have shown resistance to ceftriaxone, a third-generation cephalosporin [86]. Similarly,
cephalosporin-resistant Enterobacterales, including E. coli and K. pneumoniae, have been
identified in raw meat globally. In the U.S., 5.6–10.8% of meat samples tested positive for
resistant strains, further underscoring the role of meat as a significant reservoir of ARGs [87].
Additionally, Listeria isolates from Malaysian vegetable farms and retail markets exhibited
total resistance to penicillin G, while Salmonella isolates from poultry and vegetable farms
displayed widespread resistance to ampicillin and amoxicillin [88,89].

4.5.2. Resistance Trends in Specific Antibiotic Classes

Resistance genes associated with aminocoumarin, glycylcycline, and phosphonic acid
classes were among the least prevalent in this study. For aminocoumarins, their limited use
and specificity against bacterial gyrase restrict their application, which may explain the
low occurrence [90]. Glycylcycline resistance, including tigecycline resistance genes, was
similarly rare. A study in China found a low prevalence (0.65%) of tigecycline resistance in E.
coli from food sources, although higher levels (9.35%) were observed in Enterobacterales from
porcine origins, highlighting the variability of resistance across bacterial sources [91,92].

Phosphonic acid resistance, particularly fosfomycin resistance, was also minimally
detected. However, its growing prevalence in Campylobacter and Salmonella is concern-
ing, as these pathogens can transmit resistance to humans through food, complicating
the treatment of infections [93,94]. Despite its low occurrence in this study, fosfomycin
remains a valuable antibiotic for treating certain infections, emphasizing the importance of
continuous monitoring and judicious antibiotic use to prevent resistance escalation.
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4.5.3. Implications and Future Considerations

The observed resistance patterns reflect the complex interplay between antibiotic
use, agricultural practices, and food safety regulations. The widespread resistance to
cephalosporins and penams necessitates stricter controls on antibiotic usage, particularly
in agricultural settings. Simultaneously, the lower prevalence of resistance in less utilized
antibiotic classes such as glycylcyclines and phosphonic acids highlights potential areas for
strategic intervention to safeguard these antibiotics. Overall, these findings underscore the
importance of an integrated “One Health” approach to addressing antimicrobial resistance
through enhanced surveillance, judicious antibiotic use, and improved hygiene practices
across the food production chain.

4.6. Novelty and Impact on Malaysian Food Safety Research

The integration of metagenomics with culture-based methods, while explored glob-
ally, has not been extensively applied in the Malaysian context, where unique dietary
habits, agricultural practices, and environmental conditions shape the microbial profile of
food [95,96]. This study provides novel insights by focusing on foodborne pathogens and
ARGs in the Kinta Valley, an agricultural hub with diverse produce and centralized markets.
By characterizing microbial communities and ARGs in vegetables, meats, and fruits specific
to this region, the study offers a localized perspective that is crucial for understanding and
managing food safety challenges in Malaysia.

4.7. Limitations and Future Directions

Nonetheless, challenges remain, including the absence of standardized procedures
and approaches, which often result in discrepancies among studies. Metagenomics pre-
dominantly provides data in terms of the relative abundance, limiting its ability to directly
correlate with quantitative measures like colony forming units (CFUs) [7]. Additionally,
current metagenomic techniques cannot differentiate viable and non-viable organisms
without supplementary methods such as DNA-binding dyes [76]. Constrained sample
sizes, often dictated by the high costs of metagenomic analyses, further necessitate the
aggregation of samples and restrict the geographical scope of sampling. This study was
based on 27 samples from three geographical locations, which may limit the generalizability
of the findings. Expanding the study’s geographical and sample scopes would add depth
to the overall findings in the near future.

4.8. Shotgun Metagenomics for Foodborne Pathogen Detection in Malaysia

Despite these limitations, shotgun metagenomics has proven effective in detecting
foodborne pathogens in vegetables, meats, and fruits, providing species-level taxonomic
resolution. This study demonstrates the capability of metagenomics to highlight significant
food safety concerns in Malaysia and underscores its potential for widespread application
in the nation’s food safety sector. By validating metagenomic findings with culture-based
PCR, this research enhanced the robustness and reliability of pathogen detection, setting a
precedent for future studies.

Future investigations could complement metagenomics with quantitative methods
like qPCR, cultures, and flow cytometry to overcome existing limitations and improve the
detection accuracy and reliability [97]. As technological advancements continue to reduce
costs, the integration of metagenomics into standard workflows for food safety monitoring
is becoming increasingly feasible. Despite current obstacles, metagenomics remains a pow-
erful tool for simultaneous pathogen detection and microbial community profiling, making
it indispensable for advancing food safety and security in Malaysia. This combination of a
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regional focus, methodological rigor, and forward-looking recommendations affirms this
manuscript’s contribution and its potential to inform public health interventions.

5. Conclusions
This study highlights the potential of shotgun metagenomics as a powerful tool for

food safety management. By achieving the key objectives, it demonstrated the feasibility
of using metagenomics to detect foodborne pathogens with species-level accuracy, profile
microbial communities in various food samples, and predict antimicrobial resistance genes
(ARGs). While metagenomics showed an overall detection accuracy of 83% for pathogens,
distinct microbial profiles and trends were observed across vegetables, meats, and fruits,
with notable genera including Klebsiella, Lactococcus, and Enterobacter. Additionally, ARGs
linked to cephalosporin and penam antibiotics were predominantly found in raw chicken
and vegetable samples. This dual capability of shotgun metagenomics—to profile micro-
bial communities and predict ARGs—offers valuable insights for advancing foodborne
pathogen detection and enhancing food safety practices.
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