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Abstract: Citrus fruits, classified under the Rutaceae family and Citrus genus, are valued 

for their high nutritional content, attributed to their rich array of natural bioactive com-

pounds. To ensure both quality and nutritional value, precise non-destructive testing 

methods are crucial. Among these, computer vision and spectroscopy technologies have 

emerged as key tools. This review examines the principles and applications of computer 

vision technologies—including traditional computer vision, hyperspectral, and multi-

spectral imaging—as well as various spectroscopy techniques, such as infrared, Raman, 

fluorescence, terahertz, and nuclear magnetic resonance spectroscopy. Additionally, data 

fusion methods that integrate these technologies are discussed. The review explores in-

novative uses of these approaches in Citrus quality inspection and grading, damage de-

tection, adulteration identification, and traceability assessment. Each technology offers 

distinct characteristics and advantages tailored to the specific testing requirements in Cit-

rus production. Through data fusion, these technologies can be synergistically combined, 

enhancing the accuracy and depth of Citrus quality assessments. Future advancements in 

this field will likely focus on optimizing data fusion algorithms, selecting effective pre-

processing and feature extraction techniques, and developing portable, on-site detection 

devices. These innovations will drive the Citrus industry toward increased intelligence 

and precision in quality control. 

Keywords: Citrus fruit; computer vision; spectroscopy; data fusion; non-destructive  

quality assessment 

 

1. Introduction 

Citrus refers to a group of fruits within the genus Citrus, part of the Rutaceae family, 

including species such as mandarin orange, orange, grapefruit, lemon, lime, and citron 

[1–3]. These plants originated in the tropical and subtropical regions of Asia and Oceania 

and are now among the most widely cultivated and popular fruit crops globally, with 

Citrus planting area and production volume leading the world. China holds the top 
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position in overall Citrus production, while the United States and Brazil are the largest 

producers of oranges [4,5]. Citrus fruits are nutrient-rich, containing carbohydrates, or-

ganic acids, vitamins, minerals, and dietary fiber, as well as natural bioactive compounds 

like pectin, flavonoids, and carotenoids [5,6]. These nutrients are vital for maintaining hu-

man health, and their appealing flavor and substantial health benefits make them highly 

popular among consumers [7]. 

As market demand for Citrus grows, quality characteristics influencing consumer 

choices have become increasingly important. Citrus quality assessment at harvest gener-

ally considers two dimensions: external attributes (e.g., color, size, shape, and visible de-

fects) and internal qualities (e.g., soluble solids content, acidity, maturity, and firmness) 

[8]. Traditional assessments rely on manual inspection and chemical testing, which are 

often destructive, time-consuming, costly, and subjective, limiting their ability to support 

a consistent fresh Citrus supply [9,10]. With labor shortage in agriculture, the Citrus in-

dustry requires fast, non-destructive, and cost-effective technologies. Non-destructive 

testing (NDT) methods, such as computer vision and spectroscopy, have shown promise 

due to their accuracy, cost-efficiency, and minimal sample preparation needs [11,12]. 

However, current NDT methods are generally limited in scope. Integrating computer vi-

sion with spectroscopy offers a pathway to multivariate, high-precision Citrus quality as-

sessments, advancing the industry toward more comprehensive and efficient quality con-

trol. 

The application of computer vision and spectroscopy in Citrus quality assessment 

and grading has been partially addressed in prior reviews. For instance, Peng et al. exam-

ined the use of machine vision for detecting Citrus pests and diseases, as well as for har-

vest identification and grading [13]. Palei et al. reviewed the current research landscape, 

limitations, and recommendations in Citrus disease detection and fruit grading [14]. 

Dhiman et al. assessed various classification models for visual disease detection in Citrus 

fruits [15]. Additionally, Cavaco et al. explored the use of Vis/NIR spectroscopy in as-

sessing Citrus fruit quality and maturity, broadening the research scope in this field [8]. 

However, these reviews either focus solely on computer vision or only consider spectros-

copy applications for internal quality detection, lacking a comprehensive exploration of 

their combined use. 

This paper addresses this gap by reviewing recent advancements in both computer 

vision and various spectroscopic techniques for non-destructive Citrus quality assess-

ment. It provides an overview of the basic principles, typical configurations, and primary 

applications of these technologies. Furthermore, the paper briefly introduces the data-pro-

cessing processes in computer vision and spectroscopy, and it discusses the applications 

of these non-destructive technologies in Citrus quality detection and grading, damage de-

tection, Citrus adulteration identification, and ensuring traceability. Finally, this paper an-

alyzes the characteristics of computer vision and spectroscopy technologies in Citrus qual-

ity evaluation, discusses the advantages and disadvantages of using different data fusion 

techniques in Citrus quality detection, and explores the future directions and prospects of 

Citrus quality assessment. 

2. Computer Vision Techniques 

Computer vision (CV) is a technology that enables computers to analyze and process 

visual information, drawing on principles from image processing, signal processing, neu-

ral networks, and machine learning [16]. This field integrates multiple disciplines, includ-

ing image processing, computer science, and pattern recognition, exemplifying the nature 

of interdisciplinary research. With technological advancements, CV has expanded to en-

compass traditional computer vision, as well as multispectral and hyperspectral imaging 

techniques. 
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2.1. Traditional Computer Vision Techniques 

Traditional CV technology is a rapidly developing branch of artificial intelligence 

that utilizes computers and cameras to replace conventional visual measurement and as-

sessment methods [13]. A classical CV system consists of illumination devices, image ac-

quisition equipment (including cameras and lenses), image acquisition cards, and com-

puters, which respectively provide functions of uniform illumination, image acquisition, 

and image processing [17]. The simplified scheme of the CV system is shown in Figure 

1A. This technology converts the acquired target data into image signals using Charge-

Coupled Device (CCD) or Complementary Metal–Oxide–Semiconductor (CMOS) cam-

eras and transmits them to computers to obtain digital morphological information of the 

objects to be measured, thereby enabling measurement, classification, and recognition of 

the target data [18,19]. 

 

Figure 1. Simplified scheme of a computer vision system: (A) traditional computer vision, (B) hy-

perspectral imaging, and (C) multispectral imaging. 

CV technology has been widely adopted in the external inspection of Citrus fruits 

due to its simplicity, low cost, and high detection efficiency. This technology not only pre-

cisely detects the external quality characteristics of Citrus fruits, such as color, size, shape, 

and texture, enabling efficient grading and classification [20]; it also facilitates the meas-

urement of Citrus weight [21] and volume [22] through visual methods. Furthermore, 

changes in Citrus peel color can be utilized to assess the maturity of the fruit [23]. In prac-

tical applications, CV technology accurately identifies Citrus fruits within complex tree 

canopies, thereby providing a robust foundation for fruit-picking systems [24]. Addition-

ally, this technology detects physical defects in Citrus fruits and classifies them [25]. In 

detecting Citrus diseases, such as Huanglongbing (HLB) [26], Anthracnose [27], Canker 

[28], and Black Spot [29], and performing later-stage detection of Citrus decay [30], this 

technology has demonstrated remarkable accuracy, making significant contributions to 

reducing losses and ensuring steady market supply. 

2.2. Hyperspectral Imaging Technology 

Hyperspectral imaging (HSI) technology combines spectroscopy, imaging science, 

and image-processing techniques, merging two-dimensional imaging with spectral tech-

nologies [31,32]. It captures spectral data across multiple contiguous frequency bands in 

the 200–2500 nm range for each pixel, thus providing rich spectral features [33,34]. HSI 

systems integrate both imaging and spectroscopy into a single platform, enabling the sim-

ultaneous acquisition of spatial image and spectral data. A typical HSI setup includes a 

light source, sample platform, imaging spectrometer, camera, computer with data-pro-

cessing software, and motion control devices, all contained within a black chamber [35], 

as shown in Figure 1B. Various light sources, such as halogen lamps, LEDs, and lasers, are 

used in HSI systems [36]. Light is dispersed by a series of wavelength-dispersion devices 
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before being captured by the camera, and the resulting data are processed on the com-

puter [37]. 

In the Citrus industry, HSI technology has become essential for detecting both the 

quality and the internal and external defects, facilitating quick identification of damage 

[37,38]. It detects external characteristics by acquiring spatial data on shape, size, and vis-

ible defects while simultaneously measuring internal quality attributes through spectral 

reflectance or transmittance across various wavelength bands [39]. These internal features 

include soluble solids content (SSC) [35], sugar content [40], acidity [40], and flavonoid 

compound [41], which are critical for assessing and grading Citrus quality. Additionally, 

analyzing the distribution of nutritional components helps determine quality grade and 

ripeness [42]. HSI technology also allows for the rapid detection of both internal and ex-

ternal defects, facilitating quick identification of damage [38]. When integrated with Geo-

graphic Information Systems (GISs) and Global Positioning Systems (GPSs), HSI can be 

used to monitor conditions like chlorophyll deficiency, water status [43], and disease prev-

alence [44] in Citrus orchards, supporting plant health monitoring, yield enhancement, 

and disease prevention and control [45]. In conclusion, HSI technology is vital in the Citrus 

industry for non-destructive quality assessment, detecting both internal and external de-

fects, and enhancing grading, making it an essential tool for optimizing Citrus production. 

2.3. Multispectral Imaging Technology 

Multispectral imaging (MSI) is a spectral imaging technique that captures reflection 

or emission spectra in a few discrete bands, such as visible light and near-infrared, to cre-

ate images [46,47]. The hardware configuration of MSI systems is similar to that of hyper-

spectral systems. Still, MSI typically uses 3 to 20 spectral bands, resulting in lower require-

ments for optical design, sensor accuracy, and data-processing capabilities. In addition to 

commercial multispectral cameras, spectral filters are commonly employed for band se-

lection, as shown in Figure 1C [48]. 

The reduced number of bands and simpler data processing make MSI systems more 

efficient and cost-effective, especially for large-scale remote-sensing applications [49]. MSI 

is well-suited for tasks that require spectral information without excessive detail, such as 

monitoring Citrus vegetation [50], detecting water stress [51], identifying Citrus defects 

[4], assessing Citrus maturity [52], and detecting diseases [53]. 

2.4. Summary of Computer Vision and Related Imaging Technologies 

Other imaging techniques, including micro X-ray fluorescence imaging (micro-XRF), 

Raman imaging, fluorescence imaging, magnetic resonance imaging (MRI), X-ray imag-

ing, and thermal imaging, have also been explored for Citrus quality assessment. Specifi-

cally, Tian et al. used micro-XRF imaging technology to observe the impact of HLB disease 

on the distribution of elements such as Zn in Citrus plant leaves, finding a significant re-

duction in Zn concentration in leaves infected with HLB [54]. Cai’s team successfully char-

acterized and identified fungal decay in Citrus fruits using Raman scattering spectral im-

aging [55]. Siregar et al. employed fluorescence imaging to detect mechanical damage in 

Citrus fruits [56]. Zur et al. utilized MRI to predict fruit splitting in Nova Citrus, achieving 

predictions up to two months prior to the actual occurrence of splitting [57]. Hsiao’s team 

constructed visual grayscale images using X-ray imaging technology and analyzed 

changes in lemon quality and maturity through quantitative statistical methods [58]. Ad-

ditionally, Gan and his team developed an active thermal imaging system that accurately 

estimates the number of unripe fruits based on thermal images of Citrus tree canopies [59]. 

These research findings not only enrich the application of computer vision technology in 

the agricultural field but also provide powerful technical support for quality inspection 

and disease prevention in Citrus and other fruits. 
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3. Spectroscopy Techniques 

Spectroscopy techniques are crucial in NDT for Citrus quality evaluation. These 

methods are non-invasive, fast, and highly accurate, offering precise insights into the 

chemical composition of Citrus fruits, including SSC, titratable acidity (TA), and vitamins 

[60]. Common spectroscopic techniques include infrared spectroscopy, Raman spectros-

copy, fluorescence spectroscopy, terahertz spectroscopy, and nuclear magnetic resonance 

spectroscopy. Each of these techniques possesses unique detection principles and appli-

cable ranges, collectively providing robust technical support for the precise evaluation of 

fruit quality. 

3.1. Infrared Spectroscopy 

Infrared spectroscopy (IR) is a spectral analysis technique based on the principle of 

molecular vibrational interactions. Different organic molecules in Citrus samples possess 

unique vibrational modes. When these molecules are excited by infrared radiation, they 

absorb or scatter light at specific wavenumbers or wavelengths, producing characteristic 

spectra [61]. IR spectroscopy is divided into three distinct regions according to the elec-

tromagnetic spectrum: the near-infrared (NIR) region, spanning from 780 nm to 2500 nm; 

the mid-infrared (MIR) region, ranging from 2500 nm to 25,000 nm; and the far-infrared 

(FIR) region, extending from 25,000 nm to 1,000,000 nm. An IR system typically consists 

of a light source, a spectral dispersing device, a sample chamber, a detector, and a com-

puter data-processing system [62], as shown in Figure 2A. Halogen lamps effectively ex-

cite the sample and generate spectral information. The spectral dispersing device decom-

poses the infrared radiation emitted by the source into components of different wave-

lengths, which then interact with the sample in the sample chamber. Common detectors 

convert optical signals into electrical signals, which are transmitted to the computer data-

processing system for analysis and processing, ultimately producing the infrared spectral 

data of the sample. 

IR spectroscopy is widely used to analyze various components in Citrus fruits, such 

as SSC [63], acidity [11], vitamin content [64], and flavonoids [65], providing essential data 

for the quality grading and classification of Citrus. Additionally, changes in infrared spec-

tral absorption and scattering can help detect defects [66] and identify biochemical 

changes caused by diseases. This capability offers crucial technical support for early dis-

ease detection, enabling timely intervention to reduce losses and improve disease man-

agement strategies [67]. This information plays a crucial role in assessing fruit quality, 

optimizing cultivation management, and guiding market sales. 

Visible–near infrared (Vis-NIR) spectroscopy, which covers the range from 400 nm 

to 2500 nm, combines both visible and near-infrared bands, and it captures color infor-

mation in the visible spectrum while revealing internal chemical and physical properties 

of materials via the spectral characteristics of the NIR band [8,68]. Vis-NIR spectroscopy 

is valuable for detecting parameters such as sugar content, acidity, SSC, maturity, and 

defects in Citrus fruits [69]. 
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Figure 2. Simplified scheme of different spectral systems: (A) infrared spectroscopy, (B) Raman 

spectroscopy, (C) fluorescence spectroscopy, (D) terahertz spectroscopy (M1–M5: reflecting mirrors, 

EM1–EM2: off-axis elliptic mirrors), and (E) nuclear magnetic resonance spectroscopy. 

3.2. Raman Spectroscopy 

Raman spectroscopy is based on the principle of Raman scattering [70]. A laser source 

is directed at sample molecules, causing the laser light to scatter off the molecular bonds 

of the analyte. The resulting inelastic scattered light is then collected and processed to 

generate the Raman spectrum [71]. A Raman spectroscopy system primarily consists of a 

laser source, a sample chamber, optics, a spectral dispersion device, a detector, and a com-

puter data-processing system [72]. Commonly used laser sources include helium–neon 

lasers (He-Ne) and diode lasers, which excite the sample and generate Raman scattering. 

The spectral dispersion device separates the scattered light into different wavelengths, 

with common devices including diffraction gratings and interferometers. The detector 

converts the scattered light into electrical signals, which are processed and visualized by 

the computer system to yield the Raman spectral data. A simplified scheme of the Raman 

spectroscopy system is shown in Figure 2B. 

Raman spectroscopy has demonstrated significant advantages in analyzing chemical 

components in Citrus fruits, enabling quantitative analysis of sugars, acidity, carotenoids, 

and flavonoids, among other antioxidant substances [73,74]. This provides a scientific ba-

sis for assessing the maturity and freshness of Citrus fruits [75], as well as for variety clas-

sification [76]. Surface-enhanced Raman spectroscopy (SERS) technology provides a more 

precise means for the detection of trace components in Citrus fruits, including the detec-

tion of pesticide residues in Citrus [72,77,78]. The combination of micro-imaging technol-

ogy with SERS allows for a deeper understanding of changes in the chemical structure 

within fruit tissues [73]. Additionally, Raman spectroscopy can be utilized to detect dis-

eases in Citrus, such as fungal infections [55] or HLB [79]. In summary, Raman spectros-

copy is a powerful technique for analyzing chemical components and detecting diseases 

in Citrus fruits. 
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3.3. Fluorescence Spectroscopy 

Fluorescence is the emission of light from fluorophore after the absorption of UV or 

VIS light [80]. The principle of fluorescence spectroscopy involves the absorption of light 

by atoms or particles within a substance (e.g., ultraviolet light), causing them to transition 

to an excited state and subsequently releasing energy in the form of light at a longer wave-

length [81,82]. A typical fluorescence spectroscopy system consists of a light source, sam-

ple chamber, optical system, detector, and data-processing system, as shown in Figure 2C. 

Light sources such as LEDs, xenon lamps, and lasers emit stable, specific wavelengths of 

light to excite the sample. The sample chamber holds the sample, while the optical system 

includes lenses, filters, spectrometers, and other components that focus and disperse both 

excitation and fluorescence light, ensuring signal clarity. Detectors like photomultiplier 

tubes (PMTs), filter photodiodes, and CCDs capture the fluorescence signals. The data-

processing system analyzes and processes the data to measure fluorescence intensity and 

wavelength, facilitating the generation of charts and reports for accurate interpretation. 

Fluorescence spectroscopy, as a spectral technique, holds significant potential in Cit-

rus fruit quality assessment and detection due to its high sensitivity and non-destructive 

nature. Citrus fruits contain various fluorescent compounds, including chlorophyll, flavo-

noids, and carotenoids, which contribute to their characteristic fluorescence [81]. Fluores-

cence spectroscopy is highly effective in measuring the fluorescence intensity of these 

compounds, which can be used to assess key parameters, such as SSC, acidity [83], and 

vitamin C content, in Citrus fruits. At different maturity stages, Citrus fruits exhibit dis-

tinct fluorescence characteristics, allowing for the inference of their nutritional composi-

tion and ripeness based on fluorescence signals [83–85]. In summary, fluorescence spec-

troscopy demonstrates significant importance and broad application potential in various 

fields, including Citrus quality assessment. 

3.4. Terahertz Spectroscopy 

Terahertz (THz) spectroscopy operates within the frequency range from 0.1 THz to 

10 THz [61]. It is a novel detection technology that combines the properties of both micro-

waves and infrared radiation, offering low photon energy and strong penetration capabil-

ities [86,87]. These unique characteristics make THz spectroscopy particularly well-suited 

for identifying intermolecular interactions and detecting subtle vibrational modes within 

both intermolecular and intramolecular structures, thereby providing rich vibrational in-

formation [88]. A typical THz spectroscopy system consists of a light source, a terahertz 

radiation emitter, a sample chamber, a detector, optical components, a computer, and 

spectral processing software. Figure 2D illustrates the configuration of a THz spectros-

copy system. The light source often includes photoconductive antennas, quantum cascade 

lasers (QCLs), or THz pulse sources, which emit THz radiation. The radiation is directed 

onto the sample through optical components. The interaction of the THz radiation with 

the sample can result in absorption, scattering, or transmission, which is then detected by 

sensors, like superconducting bolometers or photoconductive detectors. These detectors 

convert the detected signals into electrical signals, which are subsequently processed by a 

computer. 

Due to its exceptional penetration ability, THz spectroscopy allows for the non-inva-

sive analysis of the internal structure and composition of Citrus fruits, including the de-

tection of sugars, flavonoids [88], and vitamin C content. This capability provides valuable 

support for assessing the overall quality of Citrus fruits. Additionally, THz spectroscopy 

is sensitive to water content, making it useful for measuring moisture levels, detecting 

freeze injury, and assessing low-temperature stress in Citrus fruits [89]. It also has been 

applied to detect biological and chemical substances, such as carbendazim in oranges [87]. 
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Therefore, it opens up new possibilities for quality control and advanced scientific man-

agement in the Citrus industry. 

3.5. Nuclear Magnetic Resonance Spectroscopy 

Nuclear magnetic resonance (NMR) spectroscopy is based on the interaction of 

atomic nuclei with electromagnetic radiation when exposed to a uniform external mag-

netic field [49]. An NMR system typically consists of a magnet system, radiofrequency 

transmission and reception components, a sample chamber, a detection coil, a computer 

system, and data-processing software, as shown in Figure 2E. These components work 

together to enable nuclei with magnetic moments to absorb RF energy at specific frequen-

cies under a magnetic field, undergoing energy transitions and emitting NMR signals. 

These signals are captured and processed to provide detailed information about the type, 

quantity, and chemical environment of the nuclei within the Citrus fruits sample. 

NMR technology is particularly effective in detecting a wide range of components in 

Citrus fruits, such as sugars, amino acids, organic acids, and flavonoids [90–92]. It enables 

precise classification based on variety, geographical origin [93], and even the presence of 

adulteration [94]. This capability is essential for evaluating the quality, maturity [95], and 

chemical composition of Citrus varieties [92]. Moreover, NMR plays a crucial role in de-

tecting and preventing Citrus diseases [96]. It not only accurately diagnoses Citrus dis-

eases, but when combined with metabolomics analysis, it also identifies metabolic 

changes associated with these diseases [97]. Additionally, NMR helps monitor changes in 

key chemical components during Citrus growth, providing insights into plant health, 

growth status, and internal dynamics, which are valuable for variety optimization and 

improving cultivation practices [95]. In summary, NMR spectroscopy technology exhibits 

significant application value in various aspects, including Citrus quality assessment, dis-

ease detection, and cultivation management. 

3.6. Summary of Spectral Technologies 

Several other spectral-based techniques can also be used for Citrus detection, includ-

ing time-resolved spectroscopy [98] and Laser-Induced Breakdown Spectroscopy (LIBS) 

[99]. Kurata et al. predicted the SSC and acidity of grapefruits by analyzing the changes 

in time-resolved curves and compared the results with those obtained using traditional 

NIR methods [98]. The findings indicated that the prediction accuracy was higher than 

that of conventional NIR measurements. Yao et al. achieved 100% detection accuracy for 

Citrus HLB by combining LIBS technology with Principal Component Analysis (PCA) and 

a Multilayer Perceptron Neural Network model [99]. With its high efficiency, accuracy 

and non-destructive detection characteristics, spectroscopy technology plays an irreplace-

able role in the internal quality inspection of the Citrus industry, providing strong tech-

nical support for improving quality, ensuring Citrus fruits’ safety, and promoting the 

healthy development of the industry. 

4. Computer Vision Analysis and Chemometrics 

4.1. Computer Vision Analysis 

Computer vision techniques are commonly utilized for the detection and classifica-

tion of Citrus fruits, involving steps such as image preprocessing, feature extraction, and 

classifier training. Image preprocessing encompasses denoising, image enhancement, 

color transformation, and segmentation, with the objective of enhancing the accuracy of 

subsequent processing stages [100]. In the feature extraction phase, methodologies such 

as the Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBPs), and color 

histograms are utilized to extract Citrus-related features, including color, size, shape, 
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texture, and defects. Simultaneously, these methods facilitate the separation of the target 

from the background, thereby aiding the classification process [101]. Regarding image 

modeling, traditional machine-learning approaches, such as support vector machine 

(SVM), Random Forest (RF), K-Nearest Neighbor (KNN), and Decision Tree (DT), rely 

heavily on manually extracted features. Consequently, they are well-suited for classifica-

tion tasks that involve low-dimensional or straightforward features. However, these 

methods often struggle to capture intricate patterns and nonlinear characteristics [102] 

[102]. In stark contrast, deep-learning models, notably Convolutional Neural Network 

(CNN) and ResNet, automatically extract complex features from raw images. These mod-

els exhibit exceptional performance in managing diverse datasets and achieving high-pre-

cision classification. Furthermore, object detection models, such as YOLO, possess the ca-

pability to swiftly locate and classify Citrus fruits. 

4.2. Chemometrics 

Chemometrics utilizes mathematical and statistical methods to analyze spectral data 

and extract information related to target properties, primarily consisting of three compo-

nents: data preprocessing, feature extraction, and modeling. Spectral data preprocessing 

minimizes interference, enhances data consistency, and highlights relevant information, 

thus laying the foundation for subsequent modeling. Common preprocessing methods 

include baseline correction, Savitzky–Golay filtering (SG), normalization, Standard Nor-

mal Variate transformation (SNV), and Multiplicative Scatter Correction (MSC), as well 

as first- and second-order derivative methods. The choice of preprocessing techniques de-

pends on the characteristics of the data, and studies have shown that combining multiple 

preprocessing methods can further enhance data quality. High-dimensional spectral data 

typically contain significant redundant information, and dimensionality reduction and 

feature selection are key to improving modeling efficiency and accuracy. Common dimen-

sionality reduction techniques include Principal Component Analysis (PCA) and Partial 

Least Squares (PLS), while discriminant analysis methods, such as Linear Discriminant 

Analysis (LDA), and feature selection algorithms, like Successive Projections Algorithm 

(SPA) and Genetic Algorithm (GA), are also employed. Deep-learning techniques, such as 

CNN, have shown potential in feature extraction [49]. The most suitable technique should 

be selected based on the specific features of the Citrus fruit. Chemometric modeling estab-

lishes quantitative relationships between spectral data and target chemical properties 

(such as SSC, TA, and moisture content) and performs excellently in Citrus quality grading 

and defect detection. Regression methods, such as Partial Least Squares Regression 

(PLSR), Principal Component Regression (PCR), and Support Vector Regression (SVR), 

are commonly used for quantitative prediction, while classification methods, including 

Discriminant Analysis (DA), SVM, and KNN, are employed for quality grading. Multi-

variate calibration models based on chemometrics, such as Partial Least Squares Discri-

minant Analysis (PLS-DA) and multi-class SVM, effectively analyze the internal and ex-

ternal quality of Citrus fruits and have been successfully applied to predict SSC, TA, and 

damage defects. 

5. Quality Detection Applications for Citrus Fruits 

5.1. Citrus Quality Detection and Grading 

Both external and internal characteristics determine the quality of Citrus fruits. Ex-

ternal quality includes factors such as color, size, weight, shape, external damage, and the 

presence of diseases. In contrast, internal quality encompasses parameters like SSC, TA, 

ripeness index, firmness, and internal damage. The classification and grading of Citrus 



Foods 2025, 14, 386 10 of 36 
 

 

fruits can be based on these external and internal attributes, either individually or through 

a combination of both [103]. 

5.1.1. Citrus External Quality Detection 

The external appearance of Citrus fruits, as the first impression for consumers, di-

rectly influences marketability [104]. As a result, external quality is a critical factor in de-

termining the desirability of Citrus fruits [64]. The primary external characteristics influ-

encing consumer purchasing decisions include color, size, shape, texture, and defects [8]. 

Currently, the visual features of Citrus fruits, such as color, shape, and texture, can 

be represented by digital color images represented in the form of a matrix of RGB channel 

values in CV technology. By extracting the relevant features from these images, multivar-

iate models can be applied for classification, recognition, and prediction of Citrus fruit 

quality. For example, S. Benallie et al., employed CV techniques to evaluate the color, size, 

and firmness of bergamot peel, achieving a classification accuracy of 78.86% using LDA, 

demonstrating the efficacy of computer vision for classifying external features of Citrus 

fruits [20]. The variation in peel color of Citrus fruits not only reflects varietal characteris-

tics but also correlates with fruit maturity. During ripening, changes in internal compo-

nents impact peel color, which is closely associated with flavor. Thus, peel-color changes 

can be used to assess both fruit maturity and flavor. For instance, Barkah’s study success-

fully utilized peel color to determine the maturity and flavor of Pontianak Siam oranges 

[23]. Furthermore, the relationship between peel color and sweetness—critical indicators 

of fruit quality—has been explored. Al-Sammarraie et al. studied the correlation between 

the RGB values of oranges and their sweetness, identifying the machine-learning algo-

rithm with the highest predictive accuracy [105]. This underscores the potential of artifi-

cial intelligence in fruit quality assessment, offering valuable support for quality control 

in related industries and enhancing consumer satisfaction. 

Accurate measurement of fruit size is essential in Citrus quality assessment, typically 

involving the evaluation of dimensions, volume, and weight. Non-contact measurement 

methods have been developed to facilitate this process. For example, Wang et al. em-

ployed the YOLOv5 model for rapid and accurate fruit recognition, achieving an accuracy 

rate of 95.6% [106]. To overcome occlusion issues caused by branches and leaves, they also 

implemented Cycle GAN technology, achieving an overall error of 10.12%, which meets 

high-throughput detection requirements. In comparison to 2D vision techniques, 3D re-

construction offers superior accuracy for determining fruit volume. Jadhav et al. utilized 

3D reconstruction in a multi-camera setup to classify Citrus fruits based on volume and 

maturity characteristics, ensuring reliable results [22]. Weight measurement is another 

critical aspect of Citrus fruit grading. Phate et al., developed a CV system to correlate 

weight with physical attributes, employing models such as Dimension Analysis (DA), 

Normal Regression (NR), and Feedforward Artificial Neural Networks (FFANNs) to pre-

dict fruit weight. The NR model exhibited the best performance [21]. In subsequent re-

search, they introduced a weight estimation model using a polynomial kernel SVM clas-

sifier and an optimized Adaptive Neuro-Fuzzy Inference System (ANFIS), providing ro-

bust support for the design of sorting, grading, and packaging systems for sweet oranges 

[107]. 

In automated fruit classification, visual systems are often integrated with conveyor 

belts, forming advanced sorting systems that classify and grade fruits based on color, size, 

shape, and texture [108]. This significantly reduces labor costs [9]. Chakraborty et al. mod-

ified the lightweight Deep Convolutional Neural Network (DCNN) model “SortNet”. 

They deployed it on edge devices, achieving real-time classification and weight grading 

of Citrus fruits with accuracies of 97.0% and 91.3%, respectively. This system provides 

strong support for automation in packaging operations [9]. In the design of grading 
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systems, it is crucial to balance performance, cost, power consumption, and hardware ca-

pabilities. M.A. Núño-Maganda et al., proposed a visual system based on a Field-Pro-

grammable Gate Array (FPGA) hardware architecture. They used DT algorithms for clas-

sification, demonstrating excellent performance [109]. By combining multiple features, the 

accuracy of Citrus fruit classification can be significantly improved. For example, Bhar-

gava et al., extracted color, statistical, texture, and geometric features from images to 

achieve a maximum detection accuracy of 98.48% for oranges and three other fruits [110]. 

Further, a Multilayer Perceptron (MLP) model combined with feature fusion techniques 

achieved an accuracy of 98.14% in classifying eight Citrus fruit varieties [111]. These ad-

vancements are critical for promoting the automation and intelligence of sorting, grading, 

and packaging processes in the Citrus processing industry. Table 1 presents the prepro-

cessing techniques, feature selection and extraction methods, modeling techniques, and 

their optimal performance for these computer vision and spectroscopy technologies in 

Citrus quality assessment. 

Table 1. Application of computer vision and spectroscopy in Citrus fruits’ quality assessment. 

Detection 

Technology 
Sample 

Measurement 

Properties 
Preprocessing 

Feature Selection 

and Extraction 

Modeling 

Technology 
Best Performance Reference 

Computer 

vision 

Three kinds 

of berga-

mots 

Peel color, di-

mensional fea-

tures, and 

hardness 

White balance, color cor-

rection, standardization 

RGB to Hunter L, 

a, b, shape, PCA 
LDA Accuracy = 80.49% [20] 

Computer 

vision 

Pontianak 

Siam or-

anges 

Fruity flavor Digitization RGB KNN Accuracy = 80% [23] 

Computer 

vision 
Oranges 

Color and 

sweetness 

Contrast, sharpening, 

smoothing, edge detec-

tion, filtering 

RGB 

KNN, DT, 

SVM, Neural 

Network, LR 

LR: accuracy = 97% [105] 

Computer 

vision 
Oranges Size measuring 

Data augmentation, find 

contour, crop, resize, me-

dian filter 

Binary image, 

CNN, Cycle 

GAN, RGB, HSV, 

YCrCb, contours 

YOLOv5, 

PLS 

Accuracy = 95.6%, 

the overall error = 

10.12% 

[106] 

Computer 

vision 

Oranges 

and other 

fruits 

Size and ma-

turity 

OTSU, voxel mapping, 

projection matrix estima-

tion 

RGB to HSV, con-

tours, 3D recon-

struction, volume 

conversion 

FRBC 
Classification accu-

racy = 98.5% 
[22] 

Computer 

vision 

Sweet lime 

fruit 
Weight 

Median filter, grayscale 

conversion, OTSU, binari-

zation 

Canny, 1D, 2D 
DA, NR, 

FFANN 

R2 = 0.9931, MAPE = 

2.306% 
[21] 

Computer 

vision 

Sweet lime 

fruit 
Weight 

Channel separation, me-

dian filter, grayscale, 

OTSU 

1D, 2D 

SVM, GA-

ANFIS, PSO-

ANFIS 

R2p = 0.9536, RMSEP 

= 4.3113 
[107] 

Computer 

vision 
Citrus fruits 

Surface feature 

and weight 
Image resizing - SortNet 

Classification accu-

racy = 97%, grader 

accuracy = 91.3% 

[9] 

Computer 

vision 
Citrus fruits 

Fruit segmen-

tation, color, 

and size classi-

fication 

Histogram equalization, 

rotation, zoom 
- DT 

Segmentation accu-

racy = 97%, color ac-

curacy = 94%, size ac-

curacy = 90% 

[109] 

Computer 

vision 

Oranges, 

avocados, 

bananas 

and apples 

Grading and 

classification 

Background separation, 

image scaling, Gaussian 

filtering, fuzzy segmenta-

tion 

Color, statistical, 

texture, geomet-

ric features 

KNN, SVM, 

SRC, ANN 
Accuracy = 98.48% [110] 
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Computer 

vision 

Grapefruit, 

Moussami, 

Malta, 

lemon, 

Kinnow, 

Local 

lemon, 

Fuetrells, 

and Malta 

Shakri 

Classification 

ROI, Binary, histogram, 

texture, spectral, data 

augmentation 

CFS 

MLP, RF, J48 

and Naive 

Bayes 

MLP: accuracy = 

98.14% 
[111] 

Computer 

vision 

Bam, Blood, 

and Thom-

son orange 

pH Threshold segmentation 

Color, texture, 

histogram, mo-

ments, shape 

ANN-PSO, 

MLP 

Bam: R2 = 0.950, 

Blood: R2 = 0.935, 

Thomson: R2 = 0.957 

[40] 

HSI 
Nanfeng 

mandarin 
SSC SGS-MSC 

BOSS, CARS, 

IRIV 

PLSR, 

LSSVM 

R2p = 0.9376, RMSEP 

= 0.3986 
[35] 

HSI Pomelo 
Sugar, vitamin 

C, organic acid 
ROI - RBF-PLS 

Sugar: R2T = 0.872, 

RMSET = 1.404%; 

Vitamin C: R2T = 

0.872, RMSET = 

61.540 mg/kg; or-

ganic acid: R2T = 

0.866, RMSET = 1.573 

g/kg 

[33] 

HSI 
Pomelo 

fruits 

Naringin con-

tent 
SG - PLS 

R2CV = 0.933, 

RMSECV = 0.345 
[41] 

VIS/NIR, 

computer 

vision, elec-

tronic nose 

“Luogang” 

Orange 

TSSC, and wa-

ter content 
SG GA CNN-PLSR 

TSSC: R2 = 0.8580, 

RMSE = 0.4276; water 

content: R2 = 0.7013, 

RMSE = 0.0063 

[112] 

Vis/NIR 

“Gannan” 

navel or-

ange 

SSC 
Smoothing, MSC, SNV, 

1D 
SPA, CARS, GA PLS 

R2p = 0.9165, RMSEP 

= 0.5684 
[113] 

Vis/NIR 

Unshiu, 

Cheonhye-

hyang, Hal-

labong 

Sugar content MSC, SNV, SG, MM - 

PLSR, VIP-

PLSR, Full-

ANN, PCA-

ANN, PLS-

ANN, 1D-

CNN, En-

semble 

Type-1, 2, 3, 

4 

R2T = 0.839, RMSET = 

0.516 
[114] 

Vis/NIR 
“Shatian” 

pomelo 

Water content 

and granula-

tion degree 

1D, SR, LM, IM, SG, MSC 
RCA, MI-SPA, 

GA, PCA, LDA 
PLSR 

R2v = 0.712, RMSEV = 

0.0488; accuracy = 

100% 

[115] 

Vis/NIR Pomelo SSC SNV, MSC, 2D CARS, SPA, PCA PLSR, SVR 
R2v = 0.85, RMSE = 

0.98 
[63] 

NIR 
“Fino” lem-

ons 
TSS, and TA MSC 

Spectral conver-

sion 

PLS-R, PLS-

DA 

TSS: R2 = 0.84, 

RMSEP = 0.42; TA: R2 

= 0.72, RMSEP = 0.45 

[11] 

NIR 

Red Blood, 

Mosambi, 

and Succari 

oranges 

Brix, TA, Brix: 

TA, BrimA, 

and sweetness 

classification 

SG PCA 

PLSR, Tree, 

Ensemble, 

KNN, LDA, 

SVM 

Brix: R2 = 0.57, TA: R2 

= 0.73, Brix: TA: R2 = 

0.66, BrimA: R2 = 

0.55, classification ac-

curacy = 80.03% 

[116] 

NIR Citrus fiber 

Total polyphe-

nol, total flavo-

noid, oxygen 

radical 

Fixed block mean, poly-

nomial subtract (1st or-

der), smoothing 

PCA GLM R2 = 0.96 [65] 
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absorbance ca-

pacity values, 

and the pH 

NIR 

Oranges, 

lemons, 

clemen-

tines, tange-

rines, and 

Tahiti limes 

Ascorbic acid, 

dehydroascor-

bic acid, total 

vitamin C, sol-

uble solids, to-

tal acidity, and 

juiciness 

SNV, SG, 1D, 2D, MSC, 

normalization 
PCA LDA, PLSR 

Vitamin C: R2 = 0.77–

0.86 
[64] 

NIR 

“Sai Num 

Pung” tan-

gerine fruit 

MC, SSC, TA, 

and granula-

tion rate 

SNV, MSC, normaliza-

tion, derivatives 
PCA 

PLS, LDA, 

QDA, PLS-

DA, KNN, 

SSOM 

Predictive ability = 

93.7%, model stabil-

ity = 95.3%, correctly 

classified = 94.0% 

[117] 

NIR, MIR 
“Valencia” 

oranges 

Vitamin C, cit-

ric acid, total 

and reducing 

sugar content 

Mean center, SNV, SG, 

normalization 
- PLS 

MIR models had 

lower prediction er-

rors than NIR models 

[118] 

THz 

Valencia 

sweet or-

ange 

Naringin, and 

hesperidin 
MSC, SNV, 1D, 2D - PLSR 

Naringin: R2 = 0.99, 

RMSEP = 2.97%; hes-

peridin: R2 = 0.97, 

RMSEP = 4.48% 

[88] 

NMR 

Lemons, 

tangerines, 

oranges, 

and grape-

fruits 

Specific amino 

acids, sugars, 

and organic ac-

ids 

- PCA OPLS-DA 

Valencia oranges had 

the highest concen-

tration of ascorbic 

acid (>2 mM) 

[119] 

NMR 

8 Citrus va-

rieties 

grown in 

Uruguay 

Sugar, citric 

acid 

Zero padding, Fourier 

transform, phase correc-

tion, baseline correction, 

normalization 

PCA 
PLS-DA, 

OPLS-DA 

Sweetening 

power/citric acid: R2 

= 0.79 

[95] 

Computer 

vision 
Citrus 

Chlorophyll, 

sugar, TSS, pH, 

weight, vol-

ume 

Grayscale, OTSU, mor-

phological operations, 

watershed 

Dominant color 

method, Color 

and texture char-

acteristics 

PCR, PLSR, 

MLR, ANN 

Ch a: accuracy = 

70.38%; Ch b: accu-

racy = 79.72%; TSS: 

accuracy = 78.94%; 

sugar: accuracy = 

73.97%; weight: accu-

racy = 68.68%; vol-

ume: accuracy = 

48.98%; pH: accuracy 

= 63.11% 

[120] 

UV-Vis-NIR Citrus 

Chlorophyll, 

sugar, TSS, pH, 

weight and 

volume 

SNV, spectral average PCA 
ANN, MLP, 

PLSR, PCR 

Ch a: accuracy = 

76.71%; Ch b: accu-

racy = 82.86%; TSS: 

accuracy = 87.88%; 

sugar: accuracy = 

77.33%; weight: accu-

racy = 62.47%; vol-

ume: accuracy = 

18.98%; pH: accuracy 

= 80.64% 

[121] 

Computer 

vision, UV-

Vis-NIR 

spectros-

copy, ultra-

sound, and 

Citrus fruits 

Chlorophyll, 

sugar, TSS, pH, 

weight and 

volume 

Baseline correction, seg-

mentation, noise elimina-

tion, amplitude and time 

of flight extraction, scal-

ing and normalization, 

color and texture extrac-

tion, multiple to single 

PCA 

Statistical 

modeling 

methods 

(MLR, PCR, 

PLSR) and 

Five Differ-

ent ANN 

TSS accuracy = 

95.64%; chlorophyll 

(Ch a accuracy = 

96.78%, Ch b accu-

racy = 97.76%); sugar 

accuracy = 97.36%; 

pH accuracy = 

[122] 
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electronic 

nose 

spectrum conversion, at-

tenuation and propaga-

tion delay conversion 

modeling 

methods 

78.31%; weight accu-

racy = 91.45%; Vol-

ume accuracy = 

36.64% 

Computer 

vision 
Orange Maturity 

OTSU, histogram pattern, 

thresholding, binarization 

RGB, L*, a*, b, 

HSV 

LR, DT, RF, 

SVM 

SVM: accuracy = 

88.71% 
[123] 

Computer 

vision 
Lemon Maturity 

Image resizing, filter, 

color space conversion, 

grayscale, OTSU 

ROI 

VGG, Res-

Net, Dense-

Net, 

NASNet 

Large, Mo-

bileNet, In-

ception V3 

VGG: accuracy = 

96.134% 
[124] 

Computer 

vision 
Grapefruit Maturity 

RGB to Y’CbCr, elliptical 

boundary model segmen-

tation, morphological op-

erations 

Color area selec-

tion, ellipse fit-

ting, Douglas–

Peucker algo-

rithm 

Polynomial 

Fitting 

Total correct recogni-

tion rate = 93.5% 
[125] 

Computer 

vision 
Tangerine Maturity Data augmentation MSSS 

YOLOv5, 

ResNet34 
Accuracy = 95.07% [126] 

Computer 

vision 
Citrus Maturity 

RGB, HIS, graying, 

OTSU, binarization, mor-

phological operations 

Area evaluation, 

Canny, corner 

detection, edge 

labeling algo-

rithm, extract 

contour frag-

ments, Hough 

transform 

Morphologi-

cal charac-

teristics sta-

tistics 

Accuracy = 97.44% [24] 

Computer 

vision 

Citrus or-

chard 

Fruit produc-

tion, and fruit 

size 

ROI, data augmentation CNN 
Faster R-

CNN, LSTM 

Estimate error = 

7.22% 
[127] 

Computer 

vision 

Ponkan 

mandarins 
Freshness 

Image masking, data aug-

mentation 
ResNet-18 CNN 

Prediction accuracy = 

95.6% 
[128] 

NIR 

“Orta-

nique” Cit-

rus 

pH, SSC, TA, 

and MI 

SNV, PSNV, MSC, Norris 

derivative, SPLINE, SG, 

CR 

- PLS 

pH: R2 = 0.80; 

SSC: R2 = 0.79; 

TA: R2 = 0.73; 

MI: R2 = 0.69 

[129] 

Fluores-

cence spec-

troscopy 

Satsuma 

mandarin 

Brix–acid ratio, 

and maturity 
- - CNN, PCR Absolute error = 2.48 [83] 

Vis-NIR, 

fluorescence 

spectros-

copy  

Mandarin 

Batu 55 or-

anges 

SSC, TA, and 

maturity 
MA, SG, SNV, MSC PCA PLSR 

R2 = 0.91, RMSE = 

2.4555 
[84] 

Computer 

vision, fluo-

rescence im-

aging 

Mandarin 

Batu 55 or-

anges 

Maturity, SSC, 

acidity, firm-

ness, and Brix–

acid ratio 

MA, SG, SNV, MSC PCA DCNN 

Acidity: R2 = 0.83; 

Brix–acid ratio: R2 = 

0.94; SSC: R2 = 0.86; 

firmness: R2 = 0.91 

[130] 

Vis-NIR, 

fluorescence 

spectros-

copy 

Pontianak 

Siam or-

anges 

TSS, acidity, 

firmness, and 

maturity 

MA, SG PCA ANN 

TSS: R2 = 0.89; acid-

ity: R2 = 0.96; firm-

ness: R2 = 0.97; ma-

turity: R2 = 0.99 

[131] 

Computer 

vision 

Sour lem-

ons 
Defect 

ROI, normalization, data 

augmentation 
- 

CNN, KNN, 

ANN, 

Fuzzy, SVM, 

DT 

Accuracy = 100% [25] 

Computer 

vision 
Citrus fruits 

Peel defects, 

and fruit 

Image stitching, data aug-

mentation 

Image-processing 

technology 

Yolo-FD, 

PSO-ELM 

Yolo-FD: average ac-

curacy = 98.7%; PSO-
[10] 



Foods 2025, 14, 386 15 of 36 
 

 

morphological 

characteristics 

ELM: accuracy 

91.42%, R2 = 0.9044, 

MSE = 0.8497 

HSI 
“GuanXiMi

You” Citrus 
Granulation 

Image correction, data 

augmentation 
- 

LS-SVM, BP-

NN, CNN, 

CNN with 

batch nor-

malization 

Training set accuracy 

= 100% 
[38] 

HSI Citrus SSC, and TA OTSU, MSC 
CARS, SPA, 

CARS-SPA 

PLS, MLR, 

LS-SVM 

R2p = 0.911, RMSEP = 

0.4032 
[132] 

MSI 
“Nanfeng” 

mandarins 
Defects Image calibration PCA 

Defect detec-

tion algo-

rithm based 

on PC-2 im-

age and ratio 

image com-

bined with 

simple 

threshold 

method 

Classification accu-

racy = 96.63% 
[4] 

Fluores-

cence imag-

ing 

Citrus 
Epidermal de-

fects 

Mark, scale, crop and add 

noise 

CBAM, FPN, 

PAN 
YOLOv5 

Map = 95.5%, preci-

sion = 94.0%, recall = 

95.1% 

[133] 

Vis/NIR 
“Orah” or-

anges 

Freezing dam-

age 
DCM CARS, SPA,  

PLSDA, 

SVM, CNN 

Overall accuracy = 

91.96% 
[66] 

Vis/NIR, 

computer 

vision 

Honey 

pomelos 

SSC, TA, and 

moisture con-

tent 

Normalization, SG, MSC PCA 
LDA, SVM, 

GRNN 

Moving average = 

0.9950, classification 

sensitivity = 0.9750, 

classification specific-

ity = 0.9934 

[134] 

Computer 

vision 

Citrus 

leaves 
HLB 

Threshold segmentation, 

connectivity analysis, 

morphology, fitted el-

lipse, affine transformed 

GLCM, grayscale 

histogram 
MLP, RF, LR 

Reflection modes ac-

curacy = 96.67%, 

transmission modes 

accuracy = 88.33% 

[135] 

Computer 

vision 

Pomelo 

trees 
Canker - - 

CitrusNet, 

SVM 
Accuracy = 92.33% [28] 

Computer 

vision 
Citrus 

Ripeness level, 

and Black Spot 
Data augmentation, CAE - 

GoogleNet, 

ResNet18, 

ResNet50, 

ShuffleNet, 

Mo-

bileNetv2, 

Dense-

Net201 

Ripeness level accu-

racy = 99.5% and 

Black Spot disease F-

measure = 100% 

[29] 

Computer 

vision 

Oranges, 

bananas, 

and apples 

Rottenness 
Normalization, data aug-

mentation 
- 

CNN, Mo-

bileNetV2 

Validation set accu-

racy = 99.61% 
[30] 

Computer 

vision 
Citrus 

Citrus disease 

defects 
DCP, KF-2D-Renyi 

Extract texture, 

edge, and shape 

features 

ABC-SVM 
Average recognition 

rate = 98.45% 
[27] 

Computer 

vision 
Citrus Disease 

Normalization, image 

brightness adjustment, 

contrast enhancement 

 CNN Accuracy = 89.1% [103] 

Computer 

vision 
Citrus 

Common Cit-

rus diseases 

Noise filtering, data aug-

mentation, image seg-

mentation 

ECN, DOA 
DOA-ECN-

DSSAE 
Accuracy = 98.4% [136] 

SIRI 
Four types 

of Citrus 
Rot Image demodulation - CNN 

Overall classification 

accuracy = 90.6% 
[137] 
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HSI 

Sugar Belle 

leaves and 

immature 

fruit 

Citrus canker 

in various dis-

ease stages 

- - RBF, KNN 

RBF: asymptomatic 

accuracy = 94%; early 

accuracy = 96%; late 

accuracy = 100% 

[44] 

HSI Citrus 
Citrus Black 

Spot 
SG, spectral calibration PLS analysis KNN 

Healthy samples: ac-

curacy = 100%; early 

disease samples: ac-

curacy = 93.8%; late 

disease samples: ac-

curacy = 80.2% 

[138] 

HSI Oranges Rot 
Correction, ROI, thresh-

old segmentation 
PCA 

PLS-DA, BP-

ANN 

Overall classification 

accuracy = 96.6% 
[139] 

MSI 
Citrus fruit 

trees 

Healthy and 

HLB-infected 

trees 

Image stitching, liner 

stretch 

PCA, autoen-

coder 

SVM, KNN, 

LR, Naive 

Bayes, Ada-

Boost, Neu-

ral Network 

AdaBoost: accuracy = 

100% 
[53] 

MSI 
Navel or-

ange 
Rot BEMD PCA 

Improved 

watershed 

segmenta-

tion 

Rotten fruits: accu-

racy = 97.3%; healthy 

fruits: accuracy = 

100% 

[140] 

MSI 

Newhall 

navel or-

ange 

Rot Image correction 
BOSS, BOSS-SPA, 

PCA 
PLS-DA 

BOSS-PLS-DA: accu-

racy = 97.1%; BOSS-

SPA-PLS-DA: accu-

racy = 100% 

[141] 

Vis/NIR 

Thompson 

and Jaffa or-

anges 

Black rot, pH, 

TA, and SSC 
SG, MN, SNV, CFS PCA SVM, BPNN 

Thompson accuracy 

= 93%, Jaffa accuracy 

= 97% 

[69] 

NIR Citrus 
Hidden mold 

infection 

De-bias, detrend, 1D, 2D, 

CWT, MM, MSC, SNV 
PCA 

PCA-FLD, 

SIMCA, 

SVM, PLS-

DA 

Detection accuracy = 

100% 
[67] 

Raman 

Orange and 

grapefruit 

leaves 

Health, nutri-

tional deficien-

cies, early and 

late HLB infec-

tion 

Baseline correction, data 

normalization 
- OPLS-DA 

Grapefruit: detection 

rate = 98%; orange 

tree: detection rate = 

87% 

[79] 

Raman Mandarin 
Carotenoids 

and corruption 

Polynomial smoothing 

and filtering, poly base-

line correction 

PCA 
LDA, KNN, 

SVM 

A. alternate: Rp2 = 

1.000; A. niger: Rp2 = 

0.900; P. italicum: Rp2 

= 0.800 

[55] 

Fluores-

cence imag-

ing, MSI  

Navel or-

ange 
HLB Correction, ROI - 

Mo-

bileNetV3 

Total accuracy = 

96.5% 
[142] 

NIR, com-

puter vision 
Citrus Citrus diseases 

Data augmentation, nor-

malization 
- Faster-CNN 

Canker accuracy = 

97%, Scab accuracy = 

95%, Melanosis accu-

racy = 99%, HLB ac-

curacy = 97%, Black 

Spot accuracy = 97%, 

healthy accuracy = 

97% 

[143] 

NIR 

Limone 

Costa 

d’Amalfi 

and Limone 

di Sorrento 

Lemon equato-

rial diameter, 

peel thickness, 

juice yield, 

color; SSC, TA, 

pH, mineral 

MSC, SNV, 1D, 2D PCA, MLR, LDA 
PCA, MLR, 

LDA 

Distinguish between 

breeds and geo-

graphical origins 

[144] 
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content, and 

cation molar 

concentration 

NIR 

Different 

types of 

lemon juice 

Adulteration 
Mean centering, self-scal-

ing processing 
PCA 

VIP-PLS-

DA, CPANN 
Accuracy = 96% [145] 

NMR 
Sweet or-

ange 

62 ingredients 

in sweet or-

ange 

FT, phase adjustment, 

baseline correction 
PCA 

PLS-DA, 

OPLS-DA 

Accurate classifica-

tion of sweet oranges 

of different geo-

graphical origins 

[92] 

NMR 

Citrus juice 

from San 

Pedro and 

Entre Ríos, 

Argentina 

TA, carbohy-

drate, and sig-

nal from the 

ethanol region 

- PCA 
PCA, PLS-

DA 
Accuracy = 100% [93] 

NMR 

Orange and 

other four 

kinds of 

pure juice 

Relative per-

centage of pure 

juice 

Noise reduction, baseline 

correction, and normali-

zation 

Non-targeted ap-

proach 
PLS 

Orange: R2P = 0.950, 

RMSEP = 4.435 
[94] 

1D: first derivative; 2D: second derivative; LR: Logistic Regression; CFS: correlation-based feature 

selection; SRC: Sparse Representation Classifier; GAN: Generative Adversarial Network; OTSU: 

OTSU Thresholding; SR: Square root Method; LM: Logarithm Method; IM: Inverse Method; RCA: 

Regression Coefficient Algorithm; MI-SPA: Mutual Information–Successive Projections Algorithm; 

MM: Min–Max Normalization; QDA: Quadratic Discriminant Analysis; SSOM: Supervised Self-Or-

ganizing Map; OPLS-DA: Discriminant Analysis of Orthogonal Partial Least Squares; MLR: Multi-

ple Linear Regression; PSNV: Piecewise Standard Normal Variate; SPLINE: Spline Smoothing; CR: 

Continuum Removal; CAE: Convolutional Autoencoder; MSSS: Maximum Symmetric Surround Sa-

liency Detection; CBAM: Convolutional Block Attention Module; FPN: Feature Pyramid Network; 

PAN: Path Aggregation Network; DCM: Diameter Correction Method; PSO-ELM: Particle Swarm 

Optimization–Extreme Learning Machine; MN: Mean Normalization; GLCM: grey-level co-occur-

rence matrix; DCP: Dark Channel Prior; ABC-SVM: artificial bee colony–support vector machine; 

BEMD: Bidimensional Empirical Mode Decomposition. 

5.1.2. Citrus Internal Quality Detection 

Consumer satisfaction with Citrus fruits is influenced not only by their external ap-

pearance but also by their internal quality and flavor. Citrus fruits are rich in various nu-

trients, including carbohydrates, organic acids, vitamins, and flavonoids [3,146]. Key in-

dicators for assessing the internal quality of Citrus fruits include SSC, TA, and the Brix–

acid ratio [147]. Through spectral data analysis, researchers can non-destructively detect 

these components, enhancing industry competitiveness and profitability [132]. 

SSC plays a crucial role in determining the sweetness and overall nutritional value of 

Citrus fruits [35]. Traditional detection methods, such as refractometers, are often ineffi-

cient and may damage the samples, which has led to an increasing preference for spectral 

analysis [148]. For example, NIR spectroscopy has been used for SSC detection [63]. Tian 

et al. developed an effective predictive model for SSC using a portable Vis/NIR spectrom-

eter and SNV-SPA-PLS algorithm [113]. Luo et al., applied HSI to predict SSC in 

“Nanfeng” mandarin, utilizing preprocessing techniques like MSC and SG, followed by 

modeling with PLSR and least-squares support vector machine (LSSVM) [35]. Their BOSS-

CARS-PLSR model, which combined various wavelength selection techniques, achieved 

a coefficient of determination of 0.9376, demonstrating excellent predictive performance. 

Feature-level data fusion has also made significant advancements in the detection of in-

ternal quality. For example, Xu et al. explored the optimal combination of techniques for 

measuring total soluble solid content (TSSC) in “Luogang” oranges by integrating Vis-
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NIR spectroscopy, near-infrared spectroscopy, computer vision, and electronic nose tech-

nologies [112]. Through preprocessing and feature fusion using techniques such as SG, 

GA, mutual information fusion (MIF), and CNN, followed by PLSR modeling, the results 

showed that the fusion of Vis/NIR spectroscopy and computer vision was the optimal 

strategy for TSSC detection, significantly enhancing accuracy over traditional single-de-

tection methods. This approach provides valuable insights into the internal quality detec-

tion of other fruits as well. 

The unique flavor profile of Citrus fruits stems from the sweetness provided by their 

abundant sugars (including fructose and glucose), the acidity imparted by citric and malic 

acids, and the distinctive aroma conferred by volatile compounds. Furthermore, these 

fruits encompass plant-based chemicals such as alkaloids and flavonoids, which introduce 

subtle notes of bitterness and astringency [2]. Volatile compounds are the primary source 

of Citrus’s enticing aroma [5]. In flavor assessment, Serna-Escolano et al., successfully pre-

dicted the total soluble solids (TSS) and TA levels of “Fino” lemons using NIR spectros-

copy and PLSR models [11]. Kim et al., developed predictive models for sugar content 

across multiple Citrus varieties using Vis/NIR technology [114], while Zeb’s team explored 

short-wave NIR spectroscopy for classifying sweetness [116]. 

It is noteworthy that NIR spectroscopy, while widely used, has some limitations in 

spectral resolution compared to MIR spectroscopy. Studies on the vitamin C, citric acid, 

total sugars, and reducing sugar content in “Valencia” oranges demonstrated that the 

MIR-PLSR model exhibited superior correlation and lower error compared to NIR spec-

troscopy, underscoring the advantages of MIR in detecting specific components [118]. Ad-

ditionally, hyperspectral imaging technology in the NIR range has been effectively used 

for the rapid and quantitative detection of sugars, vitamin C, and organic acids in pomelo 

fruits [33]. Sabzi et al. combined computer vision systems, artificial neural networks 

(ANNs), and particle swarm optimization (PSO) techniques to predict the pH levels of 

Citrus fruits, showcasing the potential of integrating multiple technologies for internal 

quality assessment [40]. Fourier transform (FT) and PCA have proven robust for data pre-

processing and discrimination in internal quality analysis. Gedikoğlu et al. employed FT 

and PCA with infrared spectroscopy to evaluate polyphenol and flavonoid content, as 

well as antioxidant activity, in Citrus fibers [65]. Similarly, terahertz spectroscopy has 

shown potential in detecting flavonoids, with Feng et al. demonstrating the relationship 

between the concentrations of hesperidin and naringin and terahertz spectra using PLSR 

[88]. The predictive models for these flavonoids achieved coefficients of determination of 

0.99 and 0.97, respectively, surpassing the precision of NIR hyperspectral measurements 

[41]. 

Vitamin C, a vital nutrient in Citrus fruits, is commonly detected using traditional 

methods, such as titration, fluorescence, and high-performance liquid chromatography 

(HPLC). However, these methods are limited in accuracy and require chemical reagents 

[64]. Santos’s team successfully employed NIR spectroscopy to predict vitamin C content 

in various Citrus fruits, achieving correlation coefficients between 0.77 and 0.86, indicating 

promising potential for further research [64]. 

Moisture loss is a critical factor influencing Citrus fruit quality. Xu’s team applied 

Vis/NIR spectroscopy for post-harvest moisture detection in “Shatian” pomelos [115]. By 

using SG and MSC for preprocessing, along with GA for feature selection and PLSR for 

modeling, they achieved high accuracy in moisture content detection (R2 value of 0.712 

and RMSE of 0.0488 in the validation set). Another study emphasized that fluctuations in 

moisture content, SSC, and TA could play a significant role in the granulation process of 

fruits, providing important information for improving fruit quality control and optimiz-

ing storage practices [117]. 



Foods 2025, 14, 386 19 of 36 
 

 

NMR spectroscopy has proven to be a powerful tool in Citrus fruit analysis. The Villa-

Ruano team identified 35 metabolites through NMR metabolomics, emphasizing key 

amino acids, sugars, and organic acids as differential metabolites among Citrus varieties 

[119]. Similarly, Migues and colleagues assessed changes in chemical composition at var-

ious harvest stages, offering valuable information for Citrus breeding and providing es-

sential support for juice quality control [95]. 

5.1.3. Citrus Physicochemical Quality Detection 

The quality of Citrus fruits is generally determined by a combination of various phys-

ical and chemical parameters, including color, shape, size, texture, SSC, and TA [149]. By 

integrating these parameters, a comprehensive evaluation of Citrus fruit quality can be 

achieved. The rapid advancement of microelectromechanical system (MEMS) technology 

has accelerated the adoption of non-destructive testing methods, leading to an increase in 

the popularity of portable testing instruments for on-site quality assessment. 

Srivastava et al. developed a low-cost, portable handheld machine vision system that 

integrates seamlessly with smartphones, facilitating efficient data visualization and stor-

age [120]. Through a smartphone application, the system enables real-time analysis of var-

ious Citrus quality parameters, such as chlorophyll content, sugar content, TSS, weight, 

pH, and volume. This portable system allows for immediate predictions and monitoring 

in the field, enhancing the flexibility and accessibility of Citrus quality evaluation. 

Additionally, Srivastava’s team developed a smartphone-based portable spectrome-

ter that utilizes UV-Vis-NIR spectroscopy to perform rapid, non-destructive testing of Cit-

rus quality parameters and predict the attributes mentioned above [121]. In further re-

search, Srivastava et al. investigated the use of four non-destructive sensing technolo-

gies—machine vision, UV-Vis-NIR spectroscopy, ultrasound, and electronic nose—inte-

grating high-level, medium-level, and low-level data fusion techniques for analysis [122]. 

Specifically, high-level fusion employed a DT algorithm to combine results from multiple 

sensor technologies, enabling accurate predictions of key fruit quality parameters. In me-

dium-level fusion, chlorophyll content and volume were predicted, while low-level fusion 

was applied to predict TSS, pH, and weight. This hybrid data fusion model demonstrated 

exceptional performance in predicting a range of quality parameters. It not only provided 

accurate assessments of Citrus fruit quality but also showed considerable potential for 

supporting harvest decision-making, thus underscoring the critical role of integrating 

multidisciplinary sensor technologies. This integration enhances both the efficiency and 

scope of quality detection in Citrus fruits. 

5.1.4. Citrus Quality-Based Ripening and Harvesting Detection 

Determining the maturity of Citrus fruits is crucial for optimal harvesting, storage, 

and sales, yet it remains a significant challenge in Citrus quality assessment [8]. The Brix–

acid ratio, defined as the ratio of SSC to TA, is an important indicator for evaluating the 

maturity of Citrus fruits [150]. As fruits ripen, both their physical properties and chemical 

indicators undergo substantial changes. Therefore, selecting the ideal harvest time re-

quires a comprehensive evaluation of maturity indices, external fruit characteristics, and 

market demand, among other factors [123,128,129]. 

The Citrus peel color is widely used for maturity assessment due to its practical ac-

ceptance and ease of application. Zakiyyah et al. utilized color indices in conjunction with 

a SVM model to predict Citrus maturity, achieving an accuracy of 88.71% [123]. Addition-

ally, transfer learning, a powerful machine-learning strategy, can significantly enhance 

model efficiency and generalization. By leveraging transfer learning, a Citrus maturity 

prediction accuracy of over 96% was achieved even with a small sample size [124]. This 
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approach offers new insights and technical support for the ongoing monitoring of Citrus 

maturity. 

In addition to peel color, changes in the internal chemical composition of Citrus fruits 

are pivotal for determining maturity [11]. For example, the Pires team used short-wave 

NIR reflection spectroscopy to perform non-destructive evaluations of internal quality at-

tributes in Ortanique Citrus, developing predictive models for parameters such as pH, 

SSC, TA, and the maturity index (MI) [129]. Furthermore, as the internal composition of 

Citrus changes, its fluorescence spectral characteristics also shift. Combining fluorescence 

spectroscopy with CNN, the fluorescence values of Citrus peel were used to estimate the 

Brix–acid ratio in the fruit pulp, achieving an absolute prediction error of just 2.48, sur-

passing the accuracy of traditional methods [83]. 

The fusion of data from multiple non-destructive testing technologies can further im-

prove prediction accuracy. For instance, Riza et al. combined Vis-NIR reflectance spec-

troscopy with fluorescence spectroscopy and applied data fusion techniques, resulting in 

a maturity model with a determination coefficient of 0.91—significantly higher than using 

either spectrum alone [84]. Additionally, by overlaying reflectance images with fluores-

cence images into a six-channel input array and integrating this with a DCNN regression 

model, Riza and colleagues improved detection accuracy [130]. Sandra et al. also devel-

oped a sensor data fusion method combining Vis-NIR and fluorescence spectroscopy with 

ANN, successfully achieving precise detection of key parameters such as TSS, acidity, 

hardness, and maturity in Pontianak Siam oranges [131]. 

In precision agriculture, accurately identifying fruit maturity while the fruit is still on 

the tree is essential for efficient management. Liu et al. developed a machine vision algo-

rithm based on the elliptical boundary model for Citrus maturity detection [125], while 

Chen et al. used CNN and visual saliency maps to detect maturity with high accuracy 

[126]. To overcome challenges like uneven lighting and fruit occlusion in orchard envi-

ronments, Chen and colleagues integrated an improved Hough transform with deep-

learning techniques to enhance accuracy [24]. Additionally, estimating Citrus yield is cru-

cial for growers to maintain competitiveness and make informed decisions. Apolo-Apolo 

et al. employed drone UAV imagery combined with deep learning to accurately predict 

the fruit size and total yield of individual Citrus trees [127]. 

Predicting freshness is equally important in the storage, transportation, and whole-

sale management of Citrus fruits. Traditional visual inspection methods often produce 

significant inaccuracies. Yu et al. explored a method that combines visible-light imaging 

with CNN to predict Citrus freshness, achieving an impressive prediction accuracy of 

95.6%. This approach offers strong technical support for more refined management of the 

fruit market [128]. 

5.2. Citrus Damage Detection 

Citrus damage encompasses both physical and biological damages that affect the 

fruit’s quality, marketability, and safety [137]. Physical damage includes issues like cracks, 

bruises, and frost damage, which compromise the fruit’s appearance and integrity. Bio-

logical damage caused by bacteria, fungi, and other microorganisms leads to lesions, rot, 

and other quality-degrading issues. Consequently, effective damage detection is crucial 

for maintaining Citrus fruit quality and ensuring food safety. 

5.2.1. Citrus Defect Detection 

NDT techniques play a vital role in detecting physical defects in Citrus fruits, such as 

spots, cracks, shape abnormalities, bruises, granulation, and frost damage [8]. These de-

fects not only affect the visual appeal of the fruit but may also influence its internal quality 
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and storage life [133]. Early defect detection in the Citrus supply chain is, therefore, essen-

tial for minimizing post-harvest losses and improving product quality [3]. 

In recent years, CNN-based NDT technologies have made significant strides. Jahan-

bakhshi et al. introduced a sparse random pooling technique to enhance CNN model per-

formance, achieving 100% accuracy in classifying acid lemon images [25]. Additionally, 

the Yolo-FD detection model proposed by Lu et al., combining PSO with extreme learning 

machine (ELM), performed exceptionally well in defect classification, with a mean aver-

age precision (mAP) improvement of 1.4% over YOLOv5 and a classification accuracy of 

91.42% [10]. To enhance detection accuracy for latent skin defects, fluorescence imaging, 

coupled with the CBAM attention mechanism and DIoU loss function, was applied to op-

timize the YOLOv5 model, achieving better performance than YOLOv5x in terms of mAP, 

precision, and recall [133]. These advancements showcase the potential of CNN models in 

precisely identifying defects in Citrus fruits. 

To address the challenges posed by lengthy hyperspectral image acquisition and 

analysis, Zhang et al., developed a multispectral image classification algorithm based on 

Vis/NIR hyperspectral imaging. By applying PCA for dimensionality reduction and se-

lecting characteristic wavelengths, they achieved efficient detection of four common Cit-

rus defects, with a classification accuracy of 96.63% [4]. 

Citrus granulation, a physiological issue caused by water deficiency or uneven mois-

ture distribution, can also be detected using advanced imaging technologies. Jie et al. em-

ployed hyperspectral imaging and introduced batch normalization into a CNN model, 

achieving 100% accuracy in the training set [38]. Additionally, data fusion techniques can 

enhance detection accuracy for both Citrus quality and physiological diseases. For thick-

skinned fruits like pomelos, internal quality prediction using transmission spectroscopy 

alone is often less accurate [132]. To improve prediction performance, Sun et al. integrated 

Vis/NIR transmission spectroscopy with CV technology and applied feature-level fusion. 

By extracting principal components from preprocessed spectral data and external features 

from machine vision, this approach successfully detected and estimated internal granula-

tion issues, achieving 99% accuracy with the PCA-GRNN model, far outperforming tra-

ditional near-infrared methods [117,134]. 

Frost damage, which causes dehydration of the fruit pulp and potentially leads to 

bitterness and nutrient loss, is another critical issue for Citrus quality [66]. Tian et al. ap-

plied Vis/NIR transmission spectroscopy in combination with a deep One-Dimensional 

Convolutional Neural Network (1D-CNN) for online detection of early-stage frost dam-

age in Citrus fruits. The method achieved an overall detection accuracy of 91.96%, demon-

strating its effectiveness for early detection of frost-induced damage [66]. 

5.2.2. Citrus Disease Detection 

Citrus diseases can be classified into three main categories based on their pathogens: 

bacterial, fungal, and viral diseases. Among the most common and impactful are HLB, 

Canker, Black Spot, Scab, and Anthracnose, which significantly affect Citrus growth and 

yield [15,103]. 

HLB, also known as Citrus greening disease, is caused by a bacterial pathogen and is 

particularly devastating. It leads to spots, pseudo-melanin deposition, and green areas on 

the fruit surface while weakening the immune system of the Citrus tree, making it more 

susceptible to other diseases and potentially causing premature fruit drop [79,135]. This 

disease poses a significant threat to the Citrus industry. Traditional detection methods, 

such as PCR and antibody-based tests, have limitations, including high costs, time-con-

sumption, destructiveness, and insufficient sensitivity [79]. To overcome these limitations, 

researchers have developed a range of novel detection methods. For example, Lan et al. 

integrated drone-based remote sensing with multispectral imaging, employing machine-
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learning algorithms that achieved detection accuracies of 100% and 97.28% for HLB, 

demonstrating the effectiveness of this approach [53]. Sanchez and colleagues combined 

handheld Raman spectroscopy with chemometric analysis to distinguish between 

healthy, HLB-infected, and nutrient-deficient Citrus trees, with detection accuracies of 

98% for grapefruit and 87% for oranges [79]. Xu et al. developed a computer vision system 

with reflection and transmission modes to detect HLB symptoms in Citrus leaves, achiev-

ing 96.67% accuracy in reflection mode and 88.33% in transmission mode [135]. Addition-

ally, He et al., developed a handheld device integrating multi-color fluorescence and mul-

tispectral reflectance imaging technologies, achieving a detection accuracy of 96.5% for 

HLB by feeding fused image data into the MobileNetV3 model [142]. These studies high-

light the potential of combining non-destructive detection methods with machine learning 

to rapidly and accurately detect HLB. 

Citrus Canker, marked by lesions with water-soaked brown edges and yellow halos 

on stems and fruits, demands early detection to optimize pesticide use [44]. Le et al. pro-

posed the CitrusNet model, based on deep learning, and optimized using the Squeeze-

and-Excitation (SE) block algorithm, achieving a detection accuracy of 92.33% for Citrus 

Canker [28]. Additionally, studies using hyperspectral imaging technology and Radial 

Basis Function (RBF) algorithms demonstrated the effective use of moisture indices and 

the modified chlorophyll absorption reflectance index for detecting Citrus Canker [44]. 

Citrus Black Rot, characterized by Black Spots on the fruit’s surface, can also be de-

tected using advanced imaging techniques. Ghooshkhaneh et al., employed visible and 

near-infrared reflectance spectroscopy to detect Black Rot disease in oranges, revealing 

that the disease tends to develop more frequently at the bottom of the fruit [69]. Further-

more, an optimized CNN model combined with machine vision techniques has signifi-

cantly enhanced the detection accuracy of Citrus Black Spot disease [29]. Hyperspectral 

imaging, paired with PLS analysis and the KNN model, has enabled precise identification 

of different stages of Citrus Black Spot disease [138]. 

Fungal pathogens, such as Penicillium digitatum, which causes green mold disease, 

are another significant threat to Citrus [151]. If not promptly addressed, decayed fruits can 

lead to substantial economic losses [137]. Chakraborty et al., proposed a CNN-based Mo-

bileNetV2 architecture, successfully detecting freshness and decay defects in oranges with 

a validation accuracy of 99.61% [30]. As early-decaying Citrus fruits often resemble 

healthy ones, traditional visual inspection methods are often inaccurate and time-consum-

ing [139]. To overcome these limitations, researchers have developed a range of non-de-

structive detection methods. For example, Li et al. combined portable near-infrared dif-

fuse reflectance spectroscopy with chemometrics, using algorithms such as SIMCA, SVM, 

and PLS-DA to achieve 100% accuracy in detecting early-stage Citrus decay [67]. Moreo-

ver, multispectral and hyperspectral imaging technologies have shown great promise in 

Citrus rot detection. Li et al., proposed an algorithm integrating multispectral principal 

component images, two-dimensional empirical mode decomposition, and an improved 

watershed segmentation method, achieving accuracies of 97.3% for decayed and 100% for 

healthy fruits [140]. Additionally, the dual-wavelength image detection technique, which 

combines spectral classification and image processing in hyperspectral imaging, enables 

early-stage detection of rotting oranges, achieving an overall classification accuracy of 

96.6% [139]. Luo’s team developed a multispectral classification algorithm based on Vis-

NIR hyperspectral imaging, optimizing spectral variables with PCA to select four charac-

teristic wavelengths, achieving a classification accuracy of 98.6% [141]. Structural Illumi-

nation Reflectance Imaging (SIRI) technology has shown potential in early decay detec-

tion. By combining real-time (RT) images with a CNN model, the overall classification 

accuracy for early decay detection in four types of Citrus fruits reached 90.6% [137]. These 
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studies highlight the effectiveness of Citrus decay detection technologies, offering strong 

support for early diagnosis and management of Citrus diseases. 

To address the challenge of identifying surface defects related to Citrus diseases, Tan 

et al. developed an ABC-SVM-based Citrus surface defect identification algorithm, achiev-

ing an average recognition rate of 98.45% for defects such as Scab and Anthracnose [27]. 

Kukreja et al. also developed a CNN-based algorithm for detecting visible Citrus defects, 

achieving a detection accuracy of 89.1% [103]. Furthermore, a method combining Duck 

Optimization Algorithm (DOA) with Capsule Network (ECN)-enhanced Deep-Stacked 

Autoencoder (DSSAE) models, known as DOECN-CDDCM, achieved a classification ac-

curacy of 98.4% for Citrus disease detection and classification [136]. To improve accuracy 

further, Dhiman’s team fused data from both NIR and RGB sensors, employing data-layer 

fusion and decision-layer fusion techniques, which significantly enhanced the model’s 

ability to identify multiple diseases [143]. 

With the continuous optimization of algorithms and the growing adoption of detec-

tion equipment, the automated detection and management of Citrus diseases are set to 

drive further modernization and intelligence in the Citrus industry. 

5.3. Citrus Adulteration and Traceability Detection 

One of the significant challenges in quality control within the food industry is con-

tamination and fraud, particularly concerning the product adulteration and falsification 

of production origins [49]. Citrus juice adulteration and commercial fraud, such as the 

addition of water, low-cost juices, and excessive use of food additives, have become major 

concerns in the Citrus industry, particularly as consumer demand for fresh, safe, healthy, 

and high-quality food continues to grow [94]. To address these issues, various analytical 

techniques have been developed to verify the authenticity of Citrus juice. For example, 

Mohammadian et al. used FT-IR spectroscopy to assess the vitamin C content in lime juice, 

achieving an accuracy rate of 96% in detecting its authenticity [145]. Furthermore, with 

the rise of mixed fruit juices, the detection of added water or cheaper juices has become 

increasingly important. To address this, Marchetti et al. combined proton nuclear mag-

netic resonance (1H NMR) with PLS analysis to determine the relative percentage of pure 

juice in mixed fruit juices, providing an efficient and reliable solution for juice adulteration 

detection [94]. 

Traceability is especially critical in the Citrus industry, as the production region di-

rectly influences the unique sensory characteristics of Citrus fruits, which in turn affect 

consumer preferences and the commercial value of the product [92]. However, these dif-

ferences are often difficult to discern with the naked eye. Advanced NDT technologies 

have been employed to address this challenge and ensure accurate identification. For in-

stance, Ruggiero et al. used reflection NIR spectroscopy combined with chemometrics to 

assess the quality characteristics of Italian lemons, effectively distinguishing different 

lemon varieties and their origins [144]. Similarly, Lin et al. used NMR spectroscopy cou-

pled with chemometric methods to identify and quantify 62 components from sweet or-

anges grown in four major Citrus-producing regions in China [92]. Salazar and colleagues 

employed NMR spectral analysis to rapidly and accurately determine the geographical 

origins of orange juice from various regions in Argentina [93]. These studies demonstrate 

the potential of NDT methods for ensuring the authenticity of Citrus products, which is 

essential for quality control and market regulation. 

These advancements in NDT technologies have significantly enhanced market trans-

parency, ensuring the authenticity of Citrus products and promoting the healthy develop-

ment of the Citrus industry. 
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6. Conclusions and Future Trends 

This review examines the principles and applications of computer vision and spec-

troscopy technologies for Citrus fruit quality assessment. It covers a range of technologies, 

including traditional CV, HSI, and MSI, as well as spectral methods such as IR, Raman, 

fluorescence, THz, and NMR. These technologies have significantly advanced the Citrus 

industry, owing to their non-destructive nature, efficiency, cost-effectiveness, and reliable 

performance. Each of these technologies possesses unique characteristics, offering robust 

tools for the comprehensive evaluation of Citrus quality. Table 2 summarizes the detection 

characteristics, advantages, and limitations of these various computer vision and spectral 

technologies for Citrus fruit quality assessment. 

Table 2. Detection characteristics, advantages, and limitations of various computer vision and spec-

tral technologies in Citrus fruit quality assessment. 

Detection Tech-

nology 

Spectral 

Range 
Detection Characteristics Advantages Disadvantages 

Computer vision 400–700 nm 

External quality inspection. Cit-

rus grading and classification. 

Citrus disease detection. Picking 

identification and positioning. 

Simple operation, low-cost, 

fast, and wide application. 

Data redundancy. Sensitive to exter-

nal light. Image information de-

pends on camera characteristics. Ina-

bility to detect internal quality. 

HSI 
200–2500 

nm 

Sugar content, acidity, hardness, 

maturity, flavonoids, and other 

natural active substances. Detec-

tion of agricultural product qual-

ity and defects. Disease detection. 

Capable of simultaneously 

collecting images and spectral 

features to detect internal 

chemical composition infor-

mation. 

Data redundancy. High equipment 

cost. 

MSI 
400–1100 

nm 

Monitoring Citrus vegetation, wa-

ter stress, and maturity. 

Faster detection and lower 

equipment cost compared 

with HIS technology. 

Low detection accuracy. Insufficient 

information for some specific tasks. 

IR 

780–

1,000,000 

nm 

The most commonly used spec-

tral technology for detecting the 

internal components of Citrus, 

such as SSC and TA, maturity, 

grading, and damage. 

Simple operation, low-cost, 

fast, and can detect multiple 

chemical components in fruits 

with wide usage. 

Large spectral range and requires 

chemometric knowledge to analyze. 

Raman 0–4000 cm−1 Flavonoids. Disease detection. 
Fast detection and high sensi-

tivity. 

Susceptible to interference from fac-

tors such as fluorescence, sample 

moisture content, and temperature. 

Limited detection range and high 

equipment cost. 

Fluorescence 

spectroscopy 

200–1000 

nm 

Fluorescent compounds. such as 

chlorophyll, flavonoids, carote-

noids, acidity, and vitamin C. 

Fast detection and high sensi-

tivity. 

Spectral analysis is complex. and the 

applicability of fluorescent groups is 

limited. 

THz 0.1–10 THz Flavonoid detection. 
Low energy, strong penetra-

tion. 

High equipment cost. Spectral fea-

tures are difficult to distinguish. 

NMR 1–900 MHz 
Various ingredients of Citrus. 

Product traceability. 

Fast, reproducible, and stable. 

High sensitivity. 

Complicated operation and high 

sample processing. 

Traditional CV techniques are effective at capturing the external quality features of 

Citrus fruits. However, they face multiple challenges, including high dimensionality and 

redundancy in feature extraction, interference from external light, and a high dependence 

on camera characteristics, all of which directly affect the overall efficiency of the system 

[152]. To address these challenges, researchers have explored multi-image-processing 

techniques to construct 3D views of Citrus samples on trees and have investigated various 

intelligent image-processing algorithms to enhance data-processing capabilities and mit-

igate the impact of changes in camera performance on detection results [22]. However, 

traditional CV techniques often fail to achieve ideal detection accuracy when dealing with 
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defects that have low contrast or are difficult to detect externally, and they are unable to 

assess the internal quality of Citrus [153]. In contrast, HSI and MSI technologies, which 

incorporate spectral data, offer a more comprehensive approach by capturing both exter-

nal features and providing detailed insights into internal characteristics. These technolo-

gies significantly improve detection accuracy, enabling more thorough and holistic qual-

ity evaluations. However, HSI technology requires substantial computational resources 

and time, and it incurs high costs, thus hindering its widespread adoption in commercial 

settings [154]. Compared to HSI, MSI offers faster detection speeds and lower equipment 

costs but with lower accuracy and limited information for certain specific tasks, making it 

more suitable for applications that require spectral information without the need for fine 

details. 

Spectral technologies offer rapid, non-destructive methods for evaluating the internal 

quality of Citrus fruits. Techniques such as IR Spectroscopy, Raman Spectroscopy, fluo-

rescence spectroscopy, THz, and nuclear magnetic resonance NMR have demonstrated 

excellent detection capabilities, each with unique strengths and applications. IR spectros-

copy is the most commonly used technique for efficiently analyzing a range of chemical 

components in Citrus, including sugars and acidity, without damaging the sample. 

Among these, NIR spectroscopy is more commonly used; however, the MIR region pro-

vides clearer results. In Borba’s experiment, MIR demonstrated superior performance in 

detecting vitamin C and citric acid [118]. However, the complex nature of its spectra ne-

cessitates the use of advanced chemometric methods for accurate identification. For thick-

skinned fruits like grapefruit, the prediction accuracy of internal quality attributes using 

transmission spectroscopy is lower than that of reflection spectroscopy [132]. Raman spec-

troscopy has the advantage of high sensitivity, and SERC technology can detect low-con-

centration substances. However, it is easily interfered with by fluorescence, and the high 

cost of Raman spectrometers limits its application in the Citrus industry. Fluorescence 

spectroscopy offers fast detection and high sensitivity. However, it can only detect sub-

stances with fluorescent properties, thus limiting its application in the Citrus industry. 

THz spectroscopy has shown potential in detecting flavonoids [88], but it is limited by its 

cost. Its application in the Citrus industry requires further research and development. De-

spite the drawbacks of high cost and complex operation, NMR is still regarded as a con-

venient and non-invasive method in terms of sample measurement, preparation, recov-

ery, and analysis time, compared to the application of mass spectrometry (MS) in Citrus 

fruits metabolomics [61]. For large-scale application in the Citrus industry, however, this 

remains challenging. It is primarily used in laboratory settings to analyze various chemi-

cal components, pesticide residues, and product traceability in Citrus. However, these 

spectral technologies enable detailed analysis of internal fruit components, including sug-

ars, acidity, and nutrient content, providing valuable insights for quality control and dis-

ease detection. However, these technologies have limitations in assessing external quality 

characteristics, such as color, size, and visible defects, leading to incomplete evaluations 

when used alone. 

When compared to relying solely on computer vision for external feature analysis or 

spectroscopy for internal quality detection, multi-sensor data fusion brings about a trans-

formative advancement [112]. This methodology significantly enhances the accuracy and 

robustness of detection systems, expands the measurement scope, and provides compre-

hensive and robust support for Citrus fruit sorting and grading systems. It effectively ad-

dresses the limitations of single-sensor detection methods, enabling more precise evalua-

tions in complex scenarios [62]. By integrating data from multiple sensors and leveraging 

their complementary and synergistic effects, along with chemometric methods, a more 

comprehensive Citrus quality assessment can be achieved [155–157]. Multi-sensor data 

fusion models can be categorized into three main levels: data-level fusion, feature-level 
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fusion, and decision-level fusion [156,158], as illustrated in Figure 3. Specifically, data-

level fusion not only enhances both accuracy and comprehensiveness [84,130,131,159] but 

also allows for maximum retention of detailed information [160]. However, it comes with 

high computational and storage costs, and sensitivity to fluctuations in sensor perfor-

mance. Feature-level fusion reduces noise and improves data quality while preserving 

detail, thus enhancing processing efficiency and accuracy [112,134]. However, testing var-

ious feature extraction and preprocessing combinations can be cumbersome and compu-

tationally expensive [161]. Decision-level fusion has the advantages of real-time perfor-

mance, low communication overhead, and high fault tolerance, enabling reasonable deci-

sions even in the event of sensor failures. However, it is highly algorithm-dependent, may 

lead to information loss, requires complex preprocessing, and results in significant com-

putational overhead. Despite challenges such as complex data processing, high computa-

tional resource demands, sensor synchronization issues, and data inconsistencies, data 

fusion technology still holds substantial potential for further development. 

 

Figure 3. Data fusion levels: (a) data level, (b) feature level, and (c) decision level. 

These technologies not only provide critical technical support for quality control and 

production efficiency enhancement in the Citrus industry but also play a pivotal role in 

advancing agricultural intelligence and precision. While Citrus computer vision and spec-

tral detection technologies show promising prospects, further development is required in 

the following areas: 

First, there is a strong need for deeper technological convergence and innovation. 

This requires close collaboration between interdisciplinary teams to seamlessly integrate 

cutting-edge technologies, such as computer vision, spectral detection, and artificial intel-

ligence. Developing more efficient and accurate inspection systems through multi-sensor 

data fusion techniques, which leverage the complementary strengths of various NDT 

technologies, is essential. Intelligent data fusion approaches, combining advanced AI-

based modeling strategies with innovative drift compensation techniques, hold great 

promise in overcoming existing bottlenecks and challenges [152]. Despite the potential of 

this direction, comprehensive application cases remain scarce. There is an urgent need for 
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increased research and development efforts, particularly through collaboration between 

academia and industry, to foster the growth of this field. 

Second, the rapid acceleration of intelligence and automation is crucial. With the 

growing prevalence of IoT, big data, and artificial intelligence techniques, the Citrus in-

spection sector is advancing toward a new stage of intelligence and automation, aiming 

to improve detection accuracy while achieving smarter detection. For example, to address 

the challenges posed by the color similarity between green Citrus fruits and their back-

ground, Zheng et al. enhanced detection accuracy by applying artificial intelligence tech-

niques. They proposed the YOLO BP algorithm, which achieved an accuracy of 86%, 

providing strong support for the detection of green Citrus fruits [162]. However, in the 

field of chemometrics, there remains an overreliance on traditional experimental trial-and-

error methods in the pursuit of optimal preprocessing methodologies, which are both in-

efficient and costly. Furthermore, HSI data collected contain multiple spectral bands, 

which exhibit significant redundancy and collinearity [163]. In hyperspectral image data 

processing, the challenge of quickly determining the optimal number of bands for grading 

persists, often requiring extensive comparative studies to identify the best band combina-

tions [35]. Therefore, there is an urgent need to replace manual experimentation with ar-

tificial intelligence techniques, developing scientific preprocessing selection and integra-

tion algorithms to optimize detection procedures, enhance overall performance, and lay a 

solid foundation for the intelligent and automated advancement of Citrus detection tech-

nology. 

Lastly, cost reduction and broader adoption are crucial. Through technological inno-

vation and large-scale production, the cost of testing equipment can be reduced, making 

it more accessible to the majority of farmers and enterprises. The development of suitable 

handheld imaging instruments and portable spectrometers that meet the requirements of 

real-time fruit quality monitoring is vital. These portable devices are characterized by 

their low cost, wide applicability, compact size, minimal sample preparation require-

ments, and high sensitivity and precision, thereby supporting rapid fruit quality evalua-

tion. However, the development of handheld instruments based on multi-sensor fusion 

technology remains limited. There is a need for significant investment in the development 

of multifunctional detection equipment based on data fusion technologies to promote the 

widespread adoption and dissemination of such tools [122]. 
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