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Abstract: The quality and price of navel oranges vary depending on their geographical
origin, thus providing a financial incentive for origin fraud. To prevent this phenomenon,
it is necessary to explore a fast, non-destructive, and precise method for tracing the origin
of navel oranges. In this study, a total of 490 Newhall navel oranges were selected from
five major production regions in China, and the diffuse reflectance near-infrared spectrum
in 4000–10,000 cm−1 were non-invasively collected. We examined seven preprocessing
techniques for the spectra, including Savitzky–Golay (SG) smoothing, first derivative (FD),
multiplicative scattering correction (MSC), combinations of SG with MSC (SG+MSC), SG
with FD (SG+FD), MSC with FD (MSC+FD), and three combined (SG+MSC+FD). A one-
dimensional convolutional neural network (1DCNN) deep learning model for geographical
origin tracing of navel orange was established, and five machine learning algorithms, i.e.,
partial least squares discriminant analysis (PLS-DA), linear discriminant analysis (LDA),
support vector machine (SVM), random forest (RF), and back-propagation neural network
(BPNN), were compared with 1DCNN. The results show that the 1DCNN model based
on the SG+FD preprocessing method achieved the optimal performance for the testing set,
with prediction accuracy, precision, recall, and F1-score of 97.92%, 98%, 97.95%, and 97.90%,
respectively. Therefore, NIRS combined with deep learning has a significant research and
application value in the rapid, nondestructive, and accurate geographical origin traceability
of agricultural products.

Keywords: navel oranges; near-infrared spectroscopy; geographic origin traceability; deep
learning; spectral preprocessing

1. Introduction
China is one of the leading production countries of navel oranges in the world. In

China, regions suitable for navel orange cultivation are extensive, mainly distributed in the
Central, Southeastern, and Southwestern regions of the country. For example, Ganzhou
city in Jiangxi Province is one of the primary production areas of navel oranges, covering
an area of 110,000 hectares and yielding an annual output of 1.2 million tons [1]. Navel
oranges are widely favored due to their rich nutritional value and health benefits with high
vitamin C, carotenoids, citric acid, cellulose, as well as trace elements such as magnesium,
zinc, calcium, and iron, which can reduce the risk of heart disease, various cancers, and
respiratory system diseases [2]. However, due to differences in growing environments such
as temperature, rainfall, sunlight, and soil nutrients, there is significant variability in fruit
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quality among different production areas [3]. Generally, product quality determines market
price. However, to seek high profits for some businesses, there are illegal sales of fake
origin in the navel orange market. To protect the consumer rights, brand reputation, and
regulate the sales market, it is necessary to perform the high accurate geographical origin
traceability of navel oranges. In the past, the traditional method relying on human sensory
evaluation involving the color, shape, and odor to identify the origin of navel oranges was
highly subjective, resulting in a high error rate in identifying the origin of navel oranges
and leading to low efficiency in manual identification. Therefore, the development of
geographical origin traceability technology for navel oranges is essential [4].

In recent years, researchers have performed some valuable studies on the geograph-
ical origin identification of fruit and vegetable products. Wen et al. [5] utilized gas
chromatography-mass (GC-MS) to distinguish the origin of winter jujubes and achieved an
accuracy rate of 97.6%. Muñoz-Redondo et al. [6] applied multi-element and stable isotope
characterization for authenticating the origin of commercial avocados and achieved an accu-
racy of 98% in distinguishing whether the avocados were of Spanish origin. Although these
chemical analysis techniques for origin identification have achieved high accuracy, they
are associated with high equipment costs, complex sample preparation, time-consuming
sampling, and are destructive to the samples. Therefore, to explore a rapid, non-destructive,
and accurate method for tracing the origin of navel oranges, a non-invasive method for the
geographical origin traceability of navel oranges was studied in this work.

For the near-infrared spectroscopy (NIRS) method, the samples can be directly detected
instead of complex sample preprocessing like the chemical method. At the same time,
the price of NIRS spectrometers is cheaper than that of electronic sensors and chemical
analysis instruments. NIRS is a kind of non-invasive, high efficiency, high performance-
cost ratio, and convenient detection method. Currently, NIRS analysis technology has
been applied in the research field of food origin traceability. Chanachot et al. [7] utilized
NIRS to classify the geographical origin of durians and achieved a 94.7% accuracy rate.
Schütz et al. [8] analyzed grain corn from five different countries using Fourier-transform
near-infrared (FT-NIR) spectroscopy and achieved an average accuracy rate of 95% for
origin identification. Wu et al. [9] utilized NIRS technology to authenticate the origin of
Schisandra chinensis, and a classification accuracy rate of 97.47% was achieved. Similarly,
Zhang et al. [10] employed NIRS for the origin traceability study of white tea (white peony),
and an accuracy rate of 97.96% was reached. Moreover, Chen et al. [11] also applied NIRS
to identify the geographical origin of ginseng and attained an accuracy rate of 99.3%. Hu
et al. [12] employed NIRS to detect the origin of jujube, and the accuracy was 98.8%. Li
et al. [13] used NIRS to identify the origin of Pinus Koraiensis seeds, and the accuracy of the
calibration and prediction sets was 98.75% and 97.50%, respectively. These studies indicate
that NIRS has the potential values for rapid, accurate, and non-destructive identification of
the origin of foods. However, there are no reports about the researches and applications
of NIRS in identifying origins of navel orange. Especially for the precise geographical
origin traceability of navel oranges from multiple neighboring production areas of the same
cultivar, ensuring a high identification accuracy rate is a challenge.

In the past few years, various machine learning methods have been developed to
solve different types of data and problems [14]. However, traditional machine learning
methods (e.g., PLS, KNN, SVM, RF) usually rely on structured data and have a certain
limitation in the accuracy, generalization ability, and computing capacity to handling
large data sets, and even suffer from the dimensionality curse. In contrast, deep learning
networks have many hidden layers (such as convolutional layers) that are trained end-to-
end to learn feature patterns and are suitable for larger-scale data [15]. In small-scale data,
regularization and dropout layers can solve the overfitting problem of the network, and
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deep learning can perform better than machine learning methods [16]. In recent years, deep
learning has achieved some accomplishments in the field of NIRS analysis technology. Xia
et al. [17] utilized NIRS combined with convolutional neural networks (CNN) for plastic
discrimination and attained an accuracy rate of 98%, while the accuracy rate of traditional
machine learning algorithms was only 57% to 70%. Dong et al. [18] employed a CNN with
attention mechanism and NIRS for the classification of mango varieties, and an accuracy
of 98.67% was achieved. Chen et al. [19] constructed a one-dimensional convolutional
neural network (1DCNN) based on NIRS data to achieve the classification of mixed fish
and achieved an accuracy rate of 98%. Jiang et al. [20] utilized NIRS and two-dimensional
convolutional neural network (2DCNN) to quantitatively analyze the aflatoxin B1 in moldy
peanuts, and achieved a root mean square error (RMSE) of 2.0 µg·kg−1 and a determination
coefficient (R2) of 0.99 for the prediction set. Wang et al. [21] used NIRS data to establish a
lightweight convolutional neural network for nicotine prediction in tobacco. The RMSE
was 0.14, and R2 was 0.95.

Compared with traditional statistical methods and traditional machine learning mod-
els, deep neural networks including the 1DCNN model have some prominent advantages,
such as a strong capacity to extract the characteristic information, higher efficiency and
strong generalization, a strong local perception ability, and a strong ability to handle mas-
sive amounts of data. Up to now, the one-dimensional convolutional neural network
(1DCNN) model has already been studied in various fields of foods and crops, including
geographical origin traceability. For example, Ma [22] employed visible-near infrared spec-
troscopy (Vis-NIRS) combined with the 1DCNN model to identify the origin and predict the
physiologically active ingredient contents of Gastrodia elata Blume. Their study has demon-
strated that the 1DCNN model outperforms the other three machine learning algorithms
due to the highly accurate non-linear descriptive capability. Jiang [23] utilized visible-near
infrared (Vis-NIR) hyperspectral imaging technology combined with the 1DCNN model to
discriminate different geographical origins of wolfberries, achieving an accuracy of 91.99%.
Yang [24] employed NIRS combined with the 1DCNN model to perform the geographical
traceability of American ginseng, with 98.95% accuracy, which outperformed the other four
methods. Li et al. [25] used NIRS combined with the 1DCNN model to identify the origin
traceability of jujubes from different production areas in Xinjiang, China, with accuracy
of 90.43% for 700 samples. As evidenced by these studies, there is a keen interest within
the scientific community in employing deep learning models for modeling purposes, and
the application of deep learning in the field of NIRS is also booming [26], which provides a
feasibility support for using NIRS combined with deep learning to achieve high-accuracy
geographical origin traceability of navel oranges.

In order to achieve rapid, accurate, and non-destructive geographical origin trace-
ability of navel oranges, the main work of this study is shown as follows: (1) Perform
the experiments for collecting NIRS data of navel orange samples sourced from different
origins via FT-NIR spectrometer. (2) Investigate and compare the results of various pre-
processing methods (both individual and combined methods) based on the partial least
squares discriminant analysis (PLS-DA) model, and determine the preprocessing technique
most suitable for the origins traceability of navel oranges. (3) Construct a 1DCNN model
for geographical origin traceability of navel oranges and optimize the model parameters.
(4) Compare the origins traceability performance of navel oranges based on the 1DCNN
established in this study with the traditional machine learning algorithms. The aim of this
study is to provide a comprehensive and systematic way of geographical origin traceability
and its applicability for navel oranges by using NIRS combined with deep learning. The
flow chart of geographical origin traceability for navel oranges via NIRS combined with
deep learning is presented in Figure 1.
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deep learning.

2. Materials and Methods
2.1. Sample Preparation

In this study, to avoid the impact of variety differences and season harvest on
the origin traceability of navel oranges, 490 mature Newhall navel oranges were syn-
chronously harvested in 15–16 December 2023 from five different country-towns, i.e.,
Xingguo (XG, n = 100), Xunwu (XW, n = 100), and Xinfeng (XF, n = 100) in Ganzhou city of
Jiangxi province, Zigui (ZG, n = 94) in Hubei province, and Fengjie (FJ, n = 96) in Chongqing
city. Since the Southern region of Ganzhou city in Jiangxi province is the top navel orange-
producing area in China, there are several planting areas located in the Southern region
of Ganzhou city. To ensure the high accuracy origin traceability of navel oranges, three
country-towns in Ganzhou city were selected in the same province. Figure 2a shows the ge-
ographical distribution of the navel orange samples. Five production areas are concentrated
in the central region of China, i.e., Zigui county-town in Yichang city of Hubei province
(30◦49′39.3′′ N, 110◦58′21.1′′ E), the average annual precipitations and average annual
sunshine duration are 1016 mm and 1652 h, the average annual temperature is 17.6 ◦C;
Fengjie county-town in Chongqing city (31◦1′23.8′′ N, 109◦24′20.2′′ E), the average annual
precipitations and average annual sunshine duration in Fengjie are 1021 mm and 1341 h,
the average annual temperature is 18.7 ◦C; three county-towns in Ganzhou city of Jiangxi
province, i.e., Xingguo county-town (26◦20′28.4′′ N, 115◦21′28.7′′ E), the average annual
precipitations and average annual sunshine duration are 1074.6 mm and 1926.5 h, the
average annual temperature is 18.8 ◦C; Xinfeng county-town (25◦23′19.9′′ N, 114◦55′6.0′′ E),
the average annual precipitations and average annual sunshine duration are 953.9 mm and
1700 h, the average annual temperature is 20.2 ◦C; and Xunwu county-town (24◦58′17.9′′ N,
115◦38′5.3′′ E), the average annual precipitations and average annual sunshine duration
are 1616.8 mm and 1823.8 h, the average annual temperature is 20.3 ◦C. In each production
area of navel oranges, the samples were harvested from the same orchard. In addition, to
avoid the impact of fertilizer on the origin traceability of navel oranges, during the planting
of navel oranges in different origins, the trees of navel oranges were fertilized using the
same fertilizers, such as animal manure organic fertilizer, nitrogen fertilizer, phosphorus
fertilizer, and potassium fertilizer.
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Figure 2. (a) The geographical distribution of the navel orange samples from five origins in China;
(b) photos of the navel orange samples.

Figure 2b presents photos of the navel orange samples sourced from the aforemen-
tioned five areas. Although the size, color, and texture of the navel oranges from five
different areas appear similar, variations in growth environment, climate, and soil among
these geographical origins contribute to differences in taste and nutritional content of
navel oranges.

Before the experiment, all navel oranges were cleaned with clean water to remove
surface stains, then dried using absorbent paper. The surface moisture was further evap-
orated by leaving them in a well-ventilated area for 24 h. Finally, each navel orange was
numbered according to its origin.

2.2. Spectra Acquisition

Near-infrared spectra of all navel orange samples were collected using a Fourier trans-
form near-infrared spectrometer (Antaris™ II FT-NIR, Thermo Fisher Scientific, Waltham,
MA, USA) with an integrating sphere diffuse reflectance module, as shown in Figure 3b.
The software employed for collecting the near-infrared spectral data was Thermo RESULT
Integration (Thermo Fisher Scientific, Waltham, MA, USA). The experimental environmen-
tal temperature was controlled at 22 ± 0.5 ◦C. Spectra acquisition parameters were set, e.g.,
wave-number range of 4000–10,000 cm−1, scanning times of 64, and spectral resolution
of 8.0 cm−1.
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To ensure the reliability of NIR spectral data collected from navel oranges, the FT-NIR
spectrometer was preheated for 30 min before the experiment. Before collecting the spectra
of samples, the air background spectra was deducted to reduce the impact of environmental
factors on the spectral data. During the collection of NIR spectra, the navel orange samples
were placed on the sample holder of the integrating sphere diffuse reflection module. The
spectra of three different positions on the equatorial region of the navel oranges were
collected as shown in Figure 3a, and the average spectra were used as the original spectral
data for the navel orange.

2.3. Removal of Abnormal Samples

When collecting NIR spectral data of samples, abnormal data may be generated due
to the effect of instrumental and environmental noises. To reduce the impact of abnormal
data on the modeling effect, removal of abnormal samples is required before modeling. In
this study, the Mahalanobis distance method [27] was used to remove abnormal samples.
The Mahalanobis distance helps identify and remove abnormal spectra that do not conform
to the overall data distribution by quantifying the differences between spectral data. After
removal of abnormal samples, there were 478 samples. The number of navel oranges
sourced from each production area before and after removal is shown in Table 1. To
establish the calibration model, 478 normal samples were randomly divided into the
training set and testing set in an 8:2 ratio, i.e., 382 samples were used as the training set and
96 samples were used as the testing set. Moreover, the training subset and testing subset
are independent of each other; that is, there are no identical samples in the training and
testing sets.

Table 1. The number of navel oranges sourced from each origin before and after removal.

Origin Number of Samples Before Removal Number of Samples After Removal

XG 100 95
XW 100 95
XF 100 99
ZG 94 93
FJ 96 96

Total 490 478

2.4. Spectra Pretreatment

During the process of collecting NIR spectra in experiments, the collected NIR spectra
not only contains information related to navel orange samples, but also is contaminated
with interfering information, and is influenced by factors such as random noise, back-
ground interference, and light scattering. To reduce the influence of interfering information
on the modeling effect, several types of preprocessing methods for spectral preprocessing
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were selected, e.g., Savitzky–Golay smoothing (SG) [28], multiplicative scattering correc-
tion (MSC) [29] and first derivative (FD) [30]. SG is usually utilized to remove noise and
enhance the signal-to-noise ratio of spectra. MSC is usually employed to eliminate the
scattering effect of light in the NIR spectra. FD is usually utilized to highlight the peaks
and troughs in the spectra, subtract the background from the spectrum, and eliminate the
baseline shift of the original spectra. To explore the impact of different preprocessing meth-
ods, eight spectra preprocessing methods, i.e., no preprocessing (No-preprocess), single
preprocessing methods (SG, MSC, and FD), and combinations of multiple preprocessing
methods including SG combined with MSC (SG+MSC), SG combined with FD (SG+FD),
MSC combined with FD (MSC+FD), and SG combined with MSC and FD (SG+MSC+FD),
were applied to the raw spectra and compared with one another. Partial least squares
discriminant analysis (PLS-DA) models [31] were employed to evaluate the performance of
each spectra preprocessing method, and the optimal spectra preprocessing method was
determined based on RMSE and R2. The comparisons of spectra preprocessing methods
were implemented in Python v3.9.7.

2.5. Establishment of Models

In order to establish the connection between navel orange spectra and origin informa-
tion, the preprocessed spectral data were used to establish a one-dimensional convolutional
neural network (1DCNN) [32] model to classify the origins of navel orange samples. At
the same time, PLS-DA, linear discriminant analysis (LDA) [33], support vector machine
(SVM) [34], random forest (RF) [35], and back-propagation neural network (BPNN) [36]
were compared with the 1DCNN model. Five different origins of navel oranges were
labeled as ‘0’, ‘1’, ‘2’, ‘3’, and ‘4’ for XG, XF, XW, FJ, and ZG, respectively. Then, the NIR
spectra and labels of navel oranges were used to establish classification models of geograph-
ical origin traceability of navel oranges in the training set. All models were implemented in
Python v3.9.7.

2.5.1. Traditional Machine Learning Models

PLS-DA [37] combines partial least squares (PLS) regression with discriminant analysis
(DA), which is primarily used for classification problems, especially in high-dimensional
data. Specifically, PLS-DA first establishes a PLS regression model between the labels (Y)
and the spectral data (X). By maximizing the covariance between X and Y, a series of
latent variables are extracted. Discriminant analysis and classification are then performed
based on these latent variables. In the process of constructing the PLS-DA model, a 10-fold
cross-validation method [38] was employed in this study to calculate the cross-validation
accuracy for different numbers of latent variables. Finally, the number that yielded the
highest cross-validation accuracy was selected as the optimal number of latent variables
for the PLS-DA model.

LDA [39] is a classical statistical and machine learning method primarily used for
classification tasks [40]. Similarly, a 10-fold cross-validation method was employed to
calculate the cross-validation accuracy rates under different principal components (PCs),
and the optimal number of PCs for LDA was selected as the one yielding the highest
cross-validation accuracy.

SVM is a pattern-recognition method proposed based on statistical principles [41],
which exhibits advantages in addressing pattern-recognition problems with small sam-
ples, nonlinearity, and high dimensionality. The core idea of SVM lies in the result risk-
minimization principle of statistical theory. Through kernel function transformation, the
samples that are linearly inseparable in the low-dimensional space are mapped onto a
high-dimensional space, where a classification hyperplane that maximizes the inter-class
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distance is identified, thereby fulfilling the purpose of classification. There are three opti-
mizable hyperparameters in the SVM model, i.e., the kernel function (kernel), the penalty
coefficient (C), and the kernel function parameter (γ). In this study, the grid search method
was employed to seek the optimal combination of hyperparameters for the SVM model.

RF is an ensemble learning approach that conducts predictions by constructing multi-
ple decision trees [42]. Each tree is trained with a random subset of the data and a random
subset of the features. The ultimate prediction outcome is the majority vote of all the
decision trees’ prediction results. This approach can reduce the risk of overfitting and
enhance the stability and accuracy of the model. The modeling effect of RF is influenced
by hyperparameter settings including the number of decision trees (n_estimators), the
maximum depth of the trees (max_depth), the minimum number of samples required to
split an internal node (min_samples_split), the minimum number of samples at leaf nodes
(min_samples_leaf), and the maximum number of features for each split (max_features).
The optimal parameter combination of RF is also sought using the grid search method.

BPNN is a classical artificial neural network model based on the multilayer perceptron
(MLP) [43]. It can perform complex nonlinear mappings through multiple hidden nodes.
It consists of the input layer, hidden layers, and the output layer. The training process
of BPNN involves two key phases, i.e., forward propagation and backward propagation.
During forward propagation, input data is transmitted through the network to the output
layer, while in backward propagation, the network parameters are adjusted based on loss
function to minimize prediction error.

2.5.2. DCNN

1DCNN is a deep convolutional neural network model that specializes in processing
one-dimensional data and has broad application prospects in one-dimensional spectral data
processing [24]. The architecture of 1DCNN mainly includes input layer, one-dimensional
convolution layer, activation function layer, pooling layer, fully connected layer, and
output layer. Although 1DCNN has broad application prospects in one-dimensional data
processing, the parameter adjustment problem of CNN is a very important topic due to
its complexity and importance. For deep neural networks, their structures are generally
complicated due to the multiple layers; the layer numbers of some deep models reach
dozens, even hundreds. Moreover, there are a large number of parameters in the deep
neural networks, such as the kernel size, kernel number, slide step, pooling size, batch size,
dropout rate, learning rate, weights, biases, and activation function. For some deep neural
networks, the parameters number can reach hundreds of thousands, even millions. At
the same time, the layer number and parameters will determine the performance of the
deep neural network. Due to the complicated structure and huge parameters, the excellent
performance of the CNN model can generally be obtained through a reasonable model
structure and parameters adjustment. It is worth mentioning that some experience and skill
are also crucial for the tuning efficiency of deep learning models. In this work, to obtain the
satisfactory origin traceability of navel oranges, the structure and parameter adjustment of
the 1DCNN model was investigated.

2.6. Evaluation of Models

To evaluate the performances of models, a variety of evaluation indicators [7] were
employed in this study, i.e., accuracy (Acc), precision (P), recall rate (R), and F1 score (F1).
In addition, to minimize the risk of overfitting the model on specific data and enhance the
generalization ability of the model, the 10-fold cross-validation (CV) accuracy of the model
was utilized in this study.
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3. Results
3.1. Spectral Analysis

Figure 4 presents the original NIR spectra of navel orange samples in the 4000–10,000 cm−1.
Figure 4a shows NIR spectra of 490 samples before the removal based on the Mahalanobis
distance, while Figure 4b displays those of 478 samples after the removal. From Figure 4a,b,
it can be seen that the NIR spectra that significantly deviate from the other spectral curves
are excluded, suggesting that the Mahalanobis distance to eliminate abnormal samples is
reliable. Figure 4b shows the trend changes of navel orange spectra are basically consistent
without any significant differences. With the increase of wavenumber, the absorbance
shows an overall decreasing trend. As we know, the NIR spectra can reflect the first, second,
and third overtones of O-H, C-H, S-H bands stretching vibrations and their combination,
related with some physicochemical components. From Figure 4a, it can be seen that there
were strong water-absorption peaks near 5200 cm−1, 6890 cm−1, and 8500 cm−1 [44];
absorption peaks of vitamin C in 4950~5790 cm−1 and 7800~8733 cm−1 [45]; absorption
peaks of fructose in 6361~6369 cm−1 and 6527~6544 cm−1 [46]; absorption peaks of fruit
acid near 6238 cm−1, 7223 cm−1, and 8700 cm−1 [47]; and absorption peaks of dry matter
in 4255~4651 cm−1 and 5263~6666 cm−1 [48]. To identify the spectra differences of navel
oranges from different origins, the average NIR spectra of navel oranges from five origins
were plotted, as shown in Figure 4c. In the 4000–5230 cm−1 (see zone I in Figure 4c)
and 5380–7100 cm−1 (see zone II in Figure 4c), the average spectra of navel oranges from
different origins exhibit obvious differences. From top to bottom, they represent the origins
of ZG, FJ, XG, XF, and XW, respectively. The reason can be explained as follows: Navel
oranges from different origins contain varying contents of nutrient components, resulting
in the distinctions in the NIR absorbance of navel oranges in the corresponding wavebands.
Therefore, it is feasible to identify the origin of navel oranges using the NIRS with the
“fingerprint effect”.

To further explore the differences in spectral data from various origins, the k-means
algorithm [49] and principal component analysis (PCA) algorithm [50] were employed
for unsupervised clustering of navel oranges based on the raw spectra. The clustering
results based on k-means and PCA are shown in Figure 4d,e, respectively. In Figure 4d,
the x- and y-axes represent wavelengths with significant average spectra differences in
wavebands (I) and (II) of Figure 4c (4400 cm−1 and 7000 cm−1). In Figure 4e, the x- and y-
axes represent the first and second principal components (PC1 and PC2) of PCA. Although
the above two unsupervised clustering algorithms divide the NIR spectra of navel oranges
into five clusters, determining the specific origin of each navel orange requires supervised
learning algorithms.
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3.2. Spectral Pretreatment

Although the raw NIR spectra of navel orange samples contain information about the
origin of the navel oranges, baseline drift and peak overlap will influence the modeling ef-
fect of origin traceability. To achieve better traceability accuracy, it is necessary to preprocess
the raw spectra. In this study, three preprocessing methods, i.e., SG, MSC, and FD, were
selected. However, combining multiple preprocessing methods may be more helpful for
modeling analysis. Therefore, eight preprocessing strategies including No-preprocess, SG,
MSC, FD, SG+MSC, SG+FD, SG+MSC, and SG+MSC+FD, were employed. Figure 5 shows
the preprocessed spectra via different strategies.

To compare different preprocessing strategies, the PLS-DA model was employed for
the preprocessed spectra, and the optimal preprocessing strategy was determined based on
the accuracy of the training set and the testing set. The optimal number of principal compo-
nents (PCs) of the PLS-DA model was selected using the 10-fold cross-validation method.
Table 2 shows the results of PLS-DA models with different preprocessing strategies.
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Table 2. Classification results of different preprocessing strategies based on PLS-DA models.

Preprocessing Strategy PCs Training Set Acc (%) Testing Set Acc (%)

No-preprocess 10 81.41 79.16
SG 9 78.80 72.92

MSC 9 85.34 76.04
FD 6 84.03 81.25

SG+MSC 7 77.49 64.58
SG+FD 8 89.79 84.38

MSC+FD 6 86.13 77.08
SG+MSC+FD 6 84.82 80.21

It can be seen from Table 2 that the classification performance via SG+FD strategy
was the best due to the highest accuracy. The accuracies of the training and testing sets
were 89.79% and 84.38%, respectively. Compared with no pretreatment (Figure 5a), SG
(Figure 5b), MSC (Figure 5c), and SG+MSC (Figure 5e), the SG+FD strategy (Figure 5f) could
highlight the absorption peaks of the spectra. Compared with FD (Figure 5d) and MSC+FD
(Figure 5g), the SG+FD strategy could effectively eliminate spikes in the navel orange spec-
tra and make the spectra smoother. For the combination of three preprocessing methods,
i.e., SG+MSC+FD, its classification accuracy was lower than SG+FD. Therefore, SG+FD
strategy was utilized to preprocess the raw NIR spectra of navel oranges in this study.

3.3. Establishment of 1DCNN Model

In this study, the structure of the 1DCNN model with multiple convolutional layers
was constructed. The ReLU activation function was utilized after each convolutional layer.
Compared with the sigmoid function, the ReLU function can effectively solve the problem
of gradient disappearance and improve computational efficiency. A batch normalization
(BatchNorm) layer was also added into the network to reduce internal covariate shift by
normalizing the distribution of input data, thereby accelerating the convergence speed,
improving the generalization ability of the network, and simplifying the network structure.
The maximum pooling (MaxPool) was employed in the pooling layer, i.e., the largest value
in the pooling field was selected, thereby reducing the data dimension and enhancing the
representation ability of features. To obtain the optimal origin traceability of navel oranges
based on the 1DCNN model, the effects of different convolution layer numbers, kernel size,
batch size, and learning rate on the performance of the 1DCNN model were explored. By
comparing the effect of the 1DCNN model with different parameters, a three-layer 1DCNN
model was established in this study, which is shown in Figure 6.
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The input data of the 1DCNN model is the NIR spectra of navel oranges. In three con-
volutional layers of the 1DCNN model, the structure of the convolutional kernel is also
one-dimensional. In each convolutional layer, (32, 1 × 3) means that the convolutional
kernel size of 1 × 3 is utilized, i.e., the row is 1 and the column is 3. The number of
convolutional kernels is 32. After going through three convolutional layers, some useful
information related to the geographical origin in the spectra are extracted. They are then
flattened into a one-dimensional vector by the flatten layer and fed into the fully connected
layer to realize origin identification. Since the navel oranges in this study come from five
production areas, the output layer consists of five neurons. The output layer utilizes a
softmax function to produce the classification probabilities for five origins of navel oranges,
thereby achieving traceability of the geographical origin.

3.4. Parameter Optimization of the 1DCNN

Compared with traditional machine learning algorithms, the 1DCNN involves more
parameters, such as number of convolutional layers, kernel size, learning rate, and batch
size. These parameters can significantly affect both the performance and computational
efficiency of the model. To find the optimal structure and parameters of the model for the
origin traceability of navel oranges, multiple structures of 1DCNN models were developed
in this study. While the other parameters were kept the same, the influence of the number
of convolutional layers, kernel size, batch size, and learning rate on model performance
was investigated, respectively. The results are presented in Figure 7a–d.

Figure 7a shows the impact of the number of convolutional layers on the performance
of the 1DCNN model. The number of convolutional layers directly affects the computa-
tional efficiency and speed of the model. Therefore, two-layer, three-layer, and four-layer
convolutions were trained, respectively. When epoch was 25, the accuracy of two-layer
convolution was about 94%, and the loss was greater than about 1; the accuracy of three-
layer convolution and four-layer convolution was about 98%, and the loss was less than 1.
Three-layer convolution and four-layer convolution had higher accuracy and lower loss,
but when the results are similar, we tend to choose a simpler network structure, so a
three-layer convolution 1DCNN model was chosen in this study.

Figure 7b presents the influence of the convolution kernel size on the performance
of the 1DCNN model. In the convolution operation, the convolution kernel moves over
the input data in a sliding window manner to complete the convolution computation. The
size of the sliding window is kernel size, which determines the level of detail in feature
extraction. Since the kernel size is often an odd number, kernel sizes of 3, 5, and 7 were
compared in this study. When the epoch was 25, the accuracy for kernel size of 3 was
approximately 98%, and the loss was 0.95; the accuracy for kernels sizes of 5 and 7 was
around 92%, and the loss was higher than 1. Compared with kernels sizes of 5 and 7, the
kernel size of 3 could extract more detailed features. Therefore, 3 was chosen as a value of
kernel size in this study.

Figure 7c shows the impact of batch size on the performance of the DCNN model.
Batch size refers to the number of samples trained by the model in each training iteration.
A batch size that is too large may lead to insufficient model training, while a batch size
that is too small may result in under-utilization of computational resources, thus reducing
computational efficiency. Batch size is usually chosen as a power of 2. In this study,
batch sizes of 8, 16, and 32 were compared. When the epoch was 25, the model achieved
an accuracy of 92% with a batch size of 32, and the loss was greater than 1. For batch
sizes of 8 and 16, the accuracy was around 98%, with loss less than 1. Both batch sizes of
8 and 16 achieved better training performance. However, the training time with a batch
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size of 8 was 11.8 s, while with a batch size of 16 was only 5.5 s. Considering both model
performance and computational efficiency, a batch size of 16 was selected in this study.

Figure 7d shows the impact of learning rate on the performance of the 1DCNN model.
In the training of deep learning models, the learning rate determines the size of the weight
update during backpropagation. A too small learning rate may cause the model to learn
very slowly, while a too large learning rate may lead to gradient explosion. Therefore, the
effects of different learning rates (0.00005, 0.0001, and 0.0005) on the performance of the
model were compared. When the epoch reached 25, the performance with a learning rate
of 0.00005 was relatively poor, with an accuracy of 93%. Both learning rates of 0.0001 and
0.0005 achieved higher accuracy and lower loss. However, the performance of the model
was more stable with the learning rate of 0.0001 than with 0.0005. Therefore, the learning
rate of 0.0001 was selected in this study.
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3.5. Comparison Between 1DCNN and Traditional Machine Learning Models

To effectively identify the origin of navel oranges, a 1DCNN model was established
based on the optimal parameters aforementioned determined in this study. Meanwhile,
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multiple machine learning models (PLS-DA, LDA, SVM, RF, and BPNN) were employed to
compare with the 1DCNN model. Table 3 presents the comparison of model performance
for the origin traceability of navel oranges between 1DCNN and PLS-DA, LDA, SVM, RF,
and BPNN.

Table 3. Comparison of model performance for the origin traceability of navel oranges between
1DCNN and PLS-DA, LDA, SVM, RF, and BPNN.

Model Training Set Acc (%)
Testing Set 10-Fold CV

Acc (%)Acc (%) P (%) R (%) F1 (%)

PLS-DA 89.79 84.38 84.38 84.6 84.37 78.43
LDA 77.75 69.79 70.45 69.44 69.11 72.34
SVM 85.08 73.96 78.78 74.30 73.98 73.20
RF 88.48 70.83 70.86 70.40 70.31 70.02

BPNN 78.01 77.08 86.08 75.71 70.37 80.40
1DCNN 98.43 97.92 98.00 97.95 97.90 97.50

From Table 3, it can be seen that the highest accuracy of the machine learning models
on the testing set only reached 84.38%. The accuracy of the traditional machine learning
algorithms for the training set, testing set, and 10-fold cross-validation was 77.75~89.79%,
69.79~84.38%, and 70.02~80.40%, respectively. For the 1DCNN model established in this
study, the accuracy of the training set was 98.43%. The accuracy, precision, recall, and
F1 score of the testing set based on the 1DCNN model were 97.92%, 98.00%, 97.95%,
and 97.90%, respectively, and the accuracy of the 10-fold cross-validation was 97.50%.
Compared with the traditional machine learning algorithms, it can be demonstrated that
the performance of the 1DCNN achieved a significant improvement.

To further visualize the performance of different models in the origin traceability
of navel oranges, the confusion matrix [51] was employed this study. Generally, in the
confusion matrix, a higher value on the diagonal and a darker color can indicate better
classification performance of the model. Figure 8a–f shows the confusion matrices for
PLS-DA, LDA, SVM, RF, BPNN, and 1DCNN, respectively. The predictive performance of
PLS-DA for the five origins of navel oranges was moderate; the highest accuracy was 90.48%
for FJ. For the LDA model, it performed poorly in predicting three origins in Ganzhou
city of Jiangxi province (XG, XW, and XF), but showed high discrimination for FJ with an
accuracy of 95.24%. For the SVM model, it had poor prediction for ZG with an accuracy
rate of 50.00%, yet a classification accuracy of 94.12% for XW was achieved. For the RF
model, it also had a moderate predictive ability for all five origins. For the BPNN model,
its performance was extreme because the classification accuracies of XW and ZG were
100.00%, but the discrimination for XF was very poor with only one correct classification.
However, for the 1DCNN model, it had good classification performance for all five origins,
achieving 100.00% accuracy for XF, ZG, and FJ, and only one was misclassified for XG
and XW. Therefore, compared with traditional machine learning models, the 1DCNN
exhibited significant stability and high accuracy, and realized excellent origin traceability
of navel oranges.
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4. Discussion
4.1. The Effect of Wavelength Optimal Selection Algorithms on 1DCNN

Based on the established 1DCNN model, the influence of wavelength optimal selection
on the origin traceability of navel oranges was investigated. In this study, five-wavelength
optimal selection algorithms were employed, i.e., least angle regression (LAR) [52], com-
petitive adaptive reweighted sampling (CARS) [53], uninformative variable elimination
(UVE) [54], successive projections algorithm (SPA) [55], and genetic algorithm (GA) [56],
and were compared with no-wavelength optimal selection (None). The spectral data se-
lected by the five-wavelength optimal selection algorithms and the full spectra without
wavelength optimal selection were respectively input into the 1DCNN model for the origin
traceability of navel oranges. The comparison results are presented in Table 4.

Table 4. Comparison of 1DCNN modeling with different wavelength optimal selection algorithms.

Wavelength
Selection
Method

Number of
Wavelengths

Training Set
Acc (%)

Testing Set 10-Fold
CV Acc

(%)

Time (s)

Acc (%) P (%) R (%) F1 (%) Wavelength
Selection Time

Modeling
Time

Total
Time

LAR 600 95.03 94.80 95.09 95.02 95.02 94.98 35.1 7.3 42.4
CARS 331 94.24 93.75 94.5 93.62 93.80 92.89 125.5 6.6 132.1
UVE 75 89.27 86.46 86.55 85.87 85.63 87.88 320.3 10.7 331
SPA 16 80.10 79.17 78.91 78.30 78.27 79.05 176.8 17.4 194.2
GA 677 96.60 95.83 96.16 96.20 96.16 95.82 2359.2 7.2 2366.4

None 1556 98.43 97.92 98.00 97.95 97.90 97.50 0 8 8

It can be seen from Table 4, based on the 1DCNN model, the wavelength optimal
selection method of SPA had the lowest accuracy; the testing set accuracy was less than 80%.
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Although the origin traceability of navel oranges based on GA had the highest accuracy
with the testing set accuracy of 95.83%, it was still lower than the accuracy of no-wavelength
optimal selection (97.92%). In general, although the wavelength optimal selection algorithm
can improve the performance of the model in principle, in this work, the usage of the
wavelength optimal selection algorithm reduced the accuracy of origin traceability for
navel oranges. The reason may be that although the wavelength-optimization algorithms
aim to remove redundant and irrelevant wavelengths, they may delete some important
information that contribute significantly to model prediction of origin traceability of navel
oranges, which results in the performance reduce of the classification model. However, the
spectra with full wavelength retain the diversity of information to a certain extent, which is
more helpful for the 1DCNN model to learn more important features. In addition, judging
from the origin traceability time cost of different wavelength-optimal selection algorithms
combined with the 1DCNN model, although the training and prediction time of modeling
for no-wavelength optimal selection (None) was slightly longer than the time of modeling
for LAR, CARS, and GA, the time cost of all wavelength-optimal selection methods was
much greater than the time cost of model training and prediction. In particular, the time cost
of GA was hundreds of times that of the modeling. Regarding the total time cost, the time of
the 1DCNN model combined with the no-wavelength optimal selection (None) method was
much smaller than the time of the 1DCNN model combed with other wavelength-optimal
selection algorithms. For UVE and SPA, the limited number of selected wavelengths caused
the model to spend longer training and prediction time of their models than that of the
no-wavelength optimal selection method. Therefore, in this study, the no-wavelength
optimal selection method (None) was employed. It was not only more helpful for 1DCNN
modeling and achieved higher origin traceability accuracy of navel oranges, but it also
reduced computing costs and improved computing efficiency.

4.2. Comparison Between NIRS and Machine Vision for Origin Traceability of Navel Orange

To validate the advantages of NIRS in geographical origin traceability of navel oranges,
the machine vision technique [57] was also employed for origin traceability of navel oranges
and compared with NIRS technology in this study. The RGB images of all navel orange
samples were captured in experiments. The navel orange samples in machine vision
experiments were the same with the samples in the NIRS experiments. As shown in
Figure 9, a black box was constructed, and four halogen lamps (50 W) were installed on
the four sides of the box to illuminate the navel oranges. The camera (Gaia Micro-V10-DZ,
Suzhou, China) was employed to acquire images of all navel oranges, and the pixel size of
each image was 2048 × 938. The image of navel oranges from five different origins were
labeled as ‘0’, ‘1’, ‘2’, ‘3’, and ‘4’ for XG, XF, XW, FJ, and ZG, respectively. All images were
randomly divided into the training and testing sets in 8:2 ratio, that is, 392 images were
utilized for the training set, and 98 images were used for the testing set. For the images
of navel oranges, this study not only built a three-layer 2DCNN [58] but also applied
three other popular deep neural networks in the field of machine vision (i.e., AlexNet [59],
ResNet [60], and VGG11 [61]) to identify the origins of the navel oranges. The comparison
of the origin traceability results of navel oranges based on NIRS and machine vision are
shown in Table 5.
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Table 5. The comparison of the origin traceability results of novel oranges based on NIRS and
machine vision.

Data Model
Training Set

Acc (%)
Testing Set

Acc (%) P (%) R (%) F1 (%)

NIR Spectra 1DCNN 98.43 97.92 98.00 97.95 97.90

RGB Image

2DCNN 89.79 76.53 79.54 77.12 76.40
AlexNet 90.56 81.63 81.51 81.14 80.99
ResNet 89.80 70.41 74.39 70.33 70.85
VGG11 95.41 86.73 87.69 86.50 86.60

It can be known from Table 5 that the accuracy of thetesting set based on the image-
based ResNet model was the lowest, merely 70.41%. The accuracy of the testing set based
on the image-based 2DCNN model was less than 80%. Although the origin-traceability
performance of navel oranges based on the image-based AlexNet and VGG11 was improved
compared to the 2DCNN model, the accuracy of the testing set was still over 10% lower
than that of the NIRS-based 1DCNN. Therefore, the origin-traceability performance of
navel oranges based on RBG images was inferior to that of the NIRS combined with
deep learning. Compared to the NIR spectra of navel oranges, the RGB images of navel
oranges only contained the external information (color, size, texture, etc.) of navel oranges,
but the external differences of Newhall navel oranges from different origins were not
obvious. Even after training with deep learning models (2DCNN, AlexNet, ResNet, and
VGG11), the feature information that could be extracted to reflect the origin difference
was limited, which finally resulted in an unsatisfactory origin-traceability result of navel
oranges based on RGB images. In contrast, NIR spectra could fully utilize the absorption
characteristics of navel oranges to reflect deeper information related to the origin of navel
oranges. Furthermore, based on deep learning algorithms, this part of the characteristic
information could be extracted, thereby achieving a higher accuracy of origin traceability,
as well as the precision, recall rate, and F1 score.
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5. Conclusions
This study validated the feasibility of using NIRS combined with deep learning to

trace the origin of navel oranges. The specific conclusions are given as follows: (1) A total of
490 Newhall navel oranges from five origins were selected to collect the raw NIR spectra via
an FT-NIR spectrometer. The Mahalanobis distance method was used to eliminate abnormal
samples, and SG+FD was determined as the optimal spectral preprocessing strategy for
navel oranges based on the PLS-DA model. (2) A 1DCNN model was established with the
optimal structure and parameters (three-layer convolution, kernel size = 3, batch size = 16,
learning rate = 0.0001) to achieve the origin traceability of navel oranges. Compared with
several machine learning models, the origin-traceability performance of the optimized
1DCNN model for the testing set was significantly better than that of other machine learning
models, with an accuracy rate of 97.92%. (3) The effect of wavelength optimal selection
methods on the origin traceability of navel oranges was discussed. The results showed
that NIR spectra with no-wavelength optimal selection achieved the highest accuracy, and
the computational time was the shortest. In addition, the origin-traceability results of
navel oranges based on NIRS were compared with the machine vision method. The study
found that the accuracy of origin traceability using NIRS combined with deep learning was
superior to that of machine vision. Therefore, it was demonstrated that the combination of
NIRS and deep learning enables rapid, non-destructive, and accurate geographical origin
traceability of navel oranges, marking a significant advancement in the methods for origin
traceability and quality control of navel oranges. Furthermore, this method can also provide
powerful technical support for the classification and identification of the same samples with
different spectra or the samples with the same color and morphology but different spectra.
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