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Abstract: The Bacillus cereus group frequently contaminates milk and dairy products. Some
members of this group can produce the heat-stable pre-formed toxin cereulide, which causes
emetic foodborne intoxication. This study characterised emetic B. cereus group isolates from
raw cow’s milk in the biochemical, genetic, and toxigenic aspects. Of the 158 B. cereus group
isolates derived from 99 raw milk samples, 7 (4.43%) harboured cereulide synthetase A (cesA),
which encodes a cereulide synthetase associated with the emetic phenotype. Heat-treated
culture filtrates from the cesA-positive isolates demonstrated cytotoxicity to HepG2 and
Caco-2 cells, resulting in cell viabilities of 32.22–36.57% and 44.41–47.08%, respectively.
The cytotoxicity levels were comparable to those of the reference emetic strain, F4810/72
(alternately termed AH187). Genome analysis of a representative isolate, CSB98, revealed
the complete ces gene cluster with additional virulence factors such as non-haemolytic
enterotoxin, haemolysins and phospholipases, suggesting that the isolate could be both
emetic and diarrhoeagenic. CSB98 exhibited a closer relationship to the type strain of B.
paranthracis than to that of B. cereus sensu stricto (ATCC 14579). The genomes of CSB98 and
AH187 were indistinguishable through OrthoANI analysis, but 13 variants were identified
via SNP calling. These results affirm genetic conservation among the emetic traits.

Keywords: Bacillus cereus group; emetic toxin; cereulide; genome sequencing; dairy;
food safety

1. Introduction
Bacillus cereus and its closely related species, collectively referred to as the B. cereus

group, pose substantial risks to the food industry due to their capacity to form endospores,
which confer resistance to the high-heat treatments employed in food processing. Certain
members of the B. cereus group are recognised as foodborne pathogens that can induce two
forms of foodborne illnesses: diarrhoea and vomiting [1]. Diarrhoeal illness occurs from
foodborne toxicoinfection involving various protein enterotoxins, including haemolysin BL
(Hbl), non-haemolytic enterotoxins (Nhe), and cytotoxin K (CytK). Emetic illness occurs
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from foodborne intoxication and is attributed to the emetic toxin cereulide, which is pre-
formed in food and causes the symptoms of nausea and vomiting to develop shortly (within
5–6 h) after the ingestion of food contaminated with the toxin. In severe cases, cereulide can
cause liver failure [2]. Cereulide is a cyclic peptide with a molecular weight of 1.2 kDa [2,3].
It is synthesised by the cereulide synthetase multi-enzyme complex, which is encoded and
regulated by the cereulide synthetase (ces) genes, through a non-ribosomal peptide synthesis
(NRPS) pathway [4].

Cereulide exhibits resistance to elevated temperatures (150 ◦C for 30 min or 100 ◦C for
up to 2 h) and a wide pH range (2–10) [1,5,6]. Consequently, conventional pasteurisation
methods (e.g., 63 ◦C for 30 min or 72–75 ◦C for 15–30 s) and sterilisation (e.g., 135–150 ◦C
for 1–10 s) employed in dairy processing [7] are unlikely to eradicate cereulide. As such,
the presence of an emetic B. cereus group strain in a batch of raw milk may lead to cereulide
contamination in the resulting processed products. Thus, it is crucial to maintain minimal
levels of this organism by implementing appropriate sanitation measures in both the farm
environment and the milking process [8]. This can be accomplished through regular clean-
ing and disinfection of the farm area and milking equipment, adherence to good hygiene
practices during milking, and effective waste management [9]. The appropriate storage of
raw and pasteurised milk products is also essential to inhibit cereulide production [10].

B. cereus group species are widely distributed in the dairy farm environment [11],
making their contamination in raw milk inevitable [12,13]. Research indicates that B. cereus
contamination levels in raw milk range from 3.8 to 100% across various geographical
regions [14,15]. Emetic strains were infrequently found in milk, with a prevalence of less
than 1.0–3.8%, and were also rare among dairy plant isolates [16]. However, the emetic B.
cereus group species present in raw milk have not been sufficiently investigated, especially
concerning their biological activity and genomic features. This information is essential
for assessing the risk of this pathogen in relation to dairy products. This study aimed to
determine the proportion of emetic isolates within B. cereus group isolates derived from
raw milk, characterise them both genetically and biochemically, assess their cytotoxicity,
and investigate the genomic features of a representative isolate.

2. Materials and Methods
2.1. Sources of B. cereus Group Isolates

The B. cereus group isolates used in this study were obtained from raw cow’s milk
samples from individual farms, which were acquired at collective tanks situated at dairy
cooperatives in different areas of Chiang Mai, Thailand. Each sample was collected in two
sterile 50 mL conical tubes (approx. 40 mL in each tube), stored on ice during transportation
to the laboratory, kept refrigerated at 4 ◦C, and analysed within 24–48 h. To isolate B. cereus
group species, each raw milk sample from the two tubes was combined and diluted (10−1 to
10−3) in Butterfield’s phosphate-buffered dilution water. A 100 µL portion of each dilution
was then surface-spread on polymyxin pyruvate egg yolk mannitol-bromothymol blue
agar (PEMBA) or BACARA agar (BioMérieux, Marcyl’Étoile, France) [17,18]. Presumptive
B. cereus group colonies from the PEMBA were characterised by flat, turquoise to peacock
blue colonies measuring 2–5 mm, surrounded by an egg yolk precipitation zone [18].
Presumptive B. cereus group colonies from the BACARA agar were orange-pink colonies
measuring 2–3 mm, surrounded by an egg yolk precipitation zone. The isolation was
partially reported in a study by Pheepakpraw et al. (2023) [19]. A total of 158 colonies
were obtained from 99 positive samples out of the 288 samples analysed. The isolates
were cultured on tryptic soy agar (TSA) (Difco, Detroit, MI, USA) with 0.6% yeast extract.
Samples were maintained at 4 ◦C or preserved as frozen stock cultures in 70% (v/v) glycerol
for subsequent analysis by multiplex polymerase chain reaction (PCR).



Foods 2025, 14, 485 3 of 17

2.2. PCR Analysis

Genomic DNA was extracted from pure cultures of 158 presumptive B. cereus group
isolates employing a modified cetyltrimethylammonium bromide (CTAB) extraction
method [20]. A multiplex PCR was conducted, targeting the motB and cesA genes, as
well as an its region. The motB gene encodes the flagellar motor protein B specific to the
B. cereus group [21]. The cesA gene encodes cereulide synthetase A, which is specific to
emetic B. cereus [4]. The its fragment is located in the internal transcribed spacer region,
which is universal among bacteria, and served as an internal control [22]. The PCR primers
are listed in Table 1. Each 25 µL reaction mixture contained 2.5 µL of 10 × Taq Buffer
with KCl, 0.2 µM of each primer, 0.2 mM of each dNTP, 3 mM of MgCl2, 1 unit of Taq
DNA polymerase (Thermo Fisher Scientific, Waltham, MA, USA), and 1 µL of DNA tem-
plate (0.5–5 µg/µL). PCR was performed using a thermal cycler (Mastercycler, Eppendorf,
Hamburg, Germany). The amplification steps included an initial denaturation at 95 ◦C
for 5 min, followed by 35 cycles of denaturation at 95 ◦C for 30 s, primer annealing at
59 ◦C for 45 s, extension at 72 ◦C for 1 min and a final extension at 72 ◦C for 5 min. The
PCR products were analysed using 1.5% (w/v) agarose gel electrophoresis, stained with
ViSafe Green Gel Stain solution (Vivantis, Shah Alam, Malaysia) in 1 × Tris-Acetate-EDTA
(TAE) buffer and visualised on an UltraSlim blue LED transilluminator (Labgene Scientific,
Châtel-Saint-Denis, Switzerland).

Table 1. PCR primers for detection of emetic B. cereus group.

Target Gene Primer Reference PCR Product
Size (bp) Primer Sequence (5′ to 3′)

cesA
cesA F

[19] 996
CCG CCA GCT AGA TGA AAA AGA

cesA R ATC ACT TTC GGC GTG ATA CC

motB
motB F

[21] 575
ATC GCC TCG TTG GAT GAC GA

motB R CTG CAT ATC CTA CCG CAG CTA

its
its F

[22] 185
AAT TTG TAT GGG CCT ATA GCT CAG CT

Its R TTT AAA ATA GCT TTT TGG TGG AGC CT

2.3. Biochemical Tests of cesA-Positive B. cereus Group Colonies

The cesA-positive B. cereus group isolates were subjected to biochemical testing fol-
lowing the procedures outlined in the US Food and Drug Administration (US FDA)’s
Bacteriological Analytical Manual [18]. The tests comprised motility, egg yolk reaction,
nitrate reduction, Voges–Proskauer (VP) reaction, haemolysis, anaerobic glucose utilisation,
acid production from mannitol, rhizoid growth and the detection of protein toxin crystals.
The isolates were also subjected to a carbohydrate fermentation test using API50 CHB
(BioMérieux, Marcyl’Étoile, France). The results were submitted to APIWEB/API 50CHB
V4.1 “https://apiweb.biomerieux.com (accessed on 13 November 2024)” for identification
based on carbohydrate profiles.

2.4. 16S rRNA Gene Sequencing

The cesA-positive B. cereus group isolates were subjected to PCR amplification of the
16S rRNA gene using primers 27F (5′-AGA GTT TGA TCC TGG CTC AG-3′) and 1492R
(5′-GGT TAC CTT GTT ACG ACT T-3′) [23]. Each reaction mixture contained 2.5 µL of
10 × Taq buffer with KCl, 0.2 µM of each dNTP, 3 mM of MgCl2, 0.5 µM of each primer,
1 unit of Taq DNA polymerase (Thermo Fisher Scientific, Waltham, MA, USA) and 1 µL of
DNA template (0.5–5 µg/µL). The PCR was performed with an initial denaturation step
at 94 ◦C for 5 min, followed by 35 amplification cycles of denaturation at 94 ◦C for 30 s,
annealing at 56 ◦C for 35 s, extension at 72 ◦C for 1 min, and a final extension at 72 ◦C for

https://apiweb.biomerieux.com
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10 min. The PCR products were analysed through 1.0% (w/v) agarose gel electrophoresis
and visualised as previously described. Amplicons were purified using a Vivantis PCR
Clean-Up Kit (Vivantis, Shah Alam, Malaysia) according to the manufacturer’s instructions
and sequenced by U2Bio Sequencing Service Co., Ltd. (Seoul, Republic of Korea). The
obtained sequences were analysed with BLAST “https://www.ncbi.nlm.nih.gov/BLAST/
(accessed on 4 May 2024)” to determine the closest relatives.

2.5. Cytotoxicity Test
2.5.1. Preparation of Heat-Treated Culture Supernatants from B. cereus Group Isolates

To perform the cytotoxicity test, the cesA-positive B. cereus group isolates were cultured
for 24 h at 30 ◦C in skim milk medium (SMM, comprising 2.5% skim milk powder in water;
Difco, Detroit, MI, USA) [24]. The cultures were then heated at 121 ◦C for 15 min and
subsequently centrifuged for 10 min at 7000 rpm at 4 ◦C to precipitate the cells. The
supernatant was filtered through a 0.22 µm polyethersulfone (PES) syringe filter (Labfil,
Hangzhou, China), and the resulting filtrate was utilised for the cytotoxicity test (2.5.2).
B. cereus F4810/72, a reference emetic strain, as well as B. cereus DSM 4384, a diarrhoeal
(non-emetic) strain, served as the culture controls. SMM (50%) served as a control for the
culture medium.

2.5.2. Cytotoxicity Assay

The hepatocellular carcinoma cell line HepG2 (ATCC HB-8065) and human colorectal
adenocarcinoma cell line Caco-2 (ATCC HTB-37) were cultured under standard condi-
tions in Dulbecco’s Modified Eagle Medium supplemented with 10% heat-inactivated
foetal bovine serum and penicillin-streptomycin (DMEM-FBS-Pen/Strep) (the medium
and supplements are from Gibco, Thermo Fisher Scientific, Waltham, MA, USA). Cells
were plated at a density of 1 × 104 cells/mL in 96-well plates and incubated at 37 ◦C in
a 5% CO2 incubator for 24 h. The cell culture medium was discarded, and the cells were
exposed to 100 µL of the heated culture supernatant from bacterial isolates/strains, diluted
to 50% (v/v) with DMEM-FBS-Pen/Strep, for 24 h. Following the treatment, PrestoBlue
reagent (Thermo Fisher Scientific, Waltham, MA, USA) was introduced, and the cells were
incubated for 30 min at 37 ◦C in a 5% CO2 incubator [25]. Absorbance was measured at
570/600 nm using a BioTek Synergy HTX microplate reader (Agilent Technologies, Santa
Clara, CA, USA). The percentages of cell viability in comparison to the non-treatment
control (DMEM-FBS-Pen/Strep) were determined using the following equation [26]:

% Cell viability = [(OD570 − OD600) treated cells/(OD570 − OD600) non-treated cells] × 100

2.6. Genome Analysis of a cesA-Positive B. cereus Group Isolate
2.6.1. Genome Sequencing, Assembly and Annotation

The genome of Bacillus sp. CSB98 (a cesA-positive B. cereus group isolate from raw
milk) was sequenced using the Illumina NextSeq 550 System. Paired-end DNA libraries
for Illumina sequencing were prepared according to the manufacturer’s recommendations
using the Illumina DNA Library Prep Kit (Illumina Inc., San Diego, CA, USA). Sequencing
was conducted by U2Bio Sequencing Service Co., Ltd. (Seoul, Republic of Korea). The
quality of Illumina paired-end reads was evaluated using FastQC (version 0.12.1) [27].
The adapters and low-quality bases were trimmed using Trimmomatic software (version
0.39) [28]. Genome assembly was conducted using Unicycler (version 0.5.0) “https://
github.com/rrwick/Unicycler (accessed on 30 October 2023)” [29], followed by genome
annotation through the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) [30] to
analyse protein-coding sequences, RNA genes and pseudogenes. The genome assembly

https://www.ncbi.nlm.nih.gov/BLAST/
https://github.com/rrwick/Unicycler
https://github.com/rrwick/Unicycler
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is available in the NCBI database (accession no.: JAXBCW000000000.1) under BioProject
PRJNA1042944 (BioSample SAMN38327476).

2.6.2. Analysis of the Major Functions of CSB98 in Comparison to Related Strains

The genome sequences of Bacillus sp. CSB98 were analysed in comparison to related
strains available in the NCBI database. These strains included B. cereus ATCC 14579 (a
type strain and diarrhoeagenic strain; accession no. GCA_006094295.1), B. cereus AH187
(F4810/72; an emetic strain isolated from vomit; accession no. GCA_000021225.1), and
B. paranthracis Mn5 (an environmental strain originally isolated from Pacific Ocean sedi-
ments; accession no. GCA_001883995.1). The genome sequences were submitted to the
Rapid Annotation using Subsystems Technology (RAST) server [31] for the annotation of
key structural and metabolic subsystems. The RAST annotation results were visualised
using the ggplot2 package in R (version 3.4.4) “https://ggplot2.tidyverse.org/ (accessed
on 18 December 2024)” [32].

2.6.3. Analysis of Virulence Factors, Antibiotic Resistance and Secondary Metabolites

Virulence factors related to enteropathogenicity were predicted from the assembled
genome sequence of Bacillus sp. CSB98 using the Virulence Factor Database (VFDB) via
the VFanalyzer pipeline [33] “https://www.mgc.ac.cn/VFs/ (accessed on 5 May 2024)”.
Antibiotic resistance genes were analysed using the Comprehensive Antibiotic-Resistant
Database (CARD) [34] “https://card.mcmaster.ca/ (accessed on 6 May 2024)”. Addition-
ally, the biosynthetic gene clusters for secondary metabolites were analysed using the
antiSMASH web server (version 7.0.1) [35] “https://antismash.secondarymetabolites.org/
(accessed on 19 July 2024)”.

2.6.4. Analysis of Strain Relatedness

The genome sequences of Bacillus sp. CSB98 and 27 representative B. cereus group
strains, obtained from the NCBI database, were analysed for their relatedness using the
Type (Strain) Genome Server (TYGS) “https://tygs.dsmz.de (accessed on 20 December
2024)” [36]. In the analysis, AH187 and ATCC 14579 were selected as representatives
of emetic and diarrhoeagenic strains, respectively. Pairwise genome comparisons were
performed using the trimming algorithm and the distance formula d5 [37]. A genome
BLAST distance phylogeny (GBDP) tree was constructed using FastME (version 2.1.6.1)
http://www.atgc-montpellier.fr/fastme/ (performed via TYGS on 20 December 2024)”,
incorporating SPR postprocessing [38]. Branch support values were determined using 100
pseudo-bootstrap replicates, and the tree was midpoint-rooted [39] and visualised using
iTOL (version 7) “https://itol.embl.de/ (accessed on 16 January 2025) [40].

The Orthologous Average Nucleotide Identity (OrthoANI) values for strains closely
related to Bacillus sp. CSB98 were calculated using the standalone Orthologous Average
Nucleotide Identity Tool (OAT) software (version 0.93.1, Chunlab Inc., Seoul, Republic of
Korea) [41]. Single-nucleotide polymorphisms (SNPs) were identified for CSB98 via Snippy
(version 4.6.0) “https://github.com/tseemann/snippy (accessed on 21 January 2025)” [42],
using AH187 as the reference genome.

3. Results and Discussion
3.1. Screening of B. cereus Group and Emetic B. cereus Group Species in Raw Milk

All 158 presumptive B. cereus group colonies recovered from raw milk samples were
gram-positive, spore-forming, rod-shaped bacteria. All isolates were motB-positive, thereby
confirming their identity as B. cereus group species. Seven of these isolates (4.43%) tested
positive with the cesA primers, indicating that they had the potential to produce cereulide.

https://ggplot2.tidyverse.org/
https://www.mgc.ac.cn/VFs/
https://card.mcmaster.ca/
https://antismash.secondarymetabolites.org/
https://tygs.dsmz.de
http://www.atgc-montpellier.fr/fastme/
https://itol.embl.de/
https://github.com/tseemann/snippy
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This proportion is comparable to those from previous studies conducted in Sweden,
Japan and China, which report the proportions of emetic isolates in the total isolates from
raw milk to be 1.5, 0.3 and 0.5%, respectively [16,43,44]. However, a survey in Ghana
showed a much higher proportion (20.8%) [45]. In addition to previous research, the
findings from our study suggest that emetic B. cereus group species, while infrequent,
are distributed across various geographical regions, with raw milk identified as one of
their food sources. Considering the heat resistance of their spores and the cereulide
toxin [14], the potential for emetic foodborne intoxication linked to dairy products should
not be overlooked.

3.2. Biochemical and Genetic Characterisation of cesA-Positive B. cereus Group Isolates

Seven cesA-positive B. cereus group isolates (CSB90, CSB91, CSB95, CSB96, CSB97,
CSB98 and CSB100) underwent biochemical testing. All seven isolates exhibited positive
results for catalase activity, motility, nitrate reduction, tyrosine decomposition, lysozyme
resistance, egg yolk reaction, anaerobic glucose utilisation, VP reaction and haemolysis. No-
tably, all isolates failed to produce acid from mannitol. All isolates exhibited no formation
of toxin crystals or rhizoid growth. Moreover, the biochemical characteristics align with
those of B. cereus, as per the differentiation criteria outlined in the US FDA’s Biological Ana-
lytical Manual [18]. The API 50 CHB test indicated that the isolates exhibit carbohydrate
fermentation profiles consistent with B. cereus, demonstrating an 86.0% identity (Table 2).

Table 2. API 50 CHB profile of seven cesA-positive B. cereus group isolates.

Classification Positive Reaction Negative Reaction

Monosaccharides D-ribose, D-glucose, D-fructose

D-arabinose, L-arabinose, D-xylose,
L-xylose, D-lyxose, D-galactose,

D-mannose, L-sorbose, L-rhamnose,
D-tagatose, D-fucose, L-fucose

Disaccharides
D-cellobiose, D-maltose,

D-saccharose (sucrose), D-trehalose,
D-turanose

D-lactose, D-melibiose, gentiobiose

Trisaccharides - D-melezitose, D-raffinose
Polysaccharides - Inulin, amidon (starch), glycogen

Sugar alcohols Glycerol
erythritol, D-adonitol, dulcitol,
inositol, D-mannitol, D-sorbitol,

xylitol, D-arabitol, L-arabitol

Amino sugars and sugar derivatives N-acetyl-glucosamine, potassium
gluconate

Potassium 2-keto-gluconate,
potassium 5-keto-gluconate

Methyl glycosides
(methylated sugars) -

Methyl-β-D-xylopyranoside,
methyl-α-D-mannopyranoside,
methyl-α-D-glucopyranoside

Glycosides and complex sugars Arbutin, esculin ferric citrate, salicin Amygdalin

The isolates then underwent 16S rRNA gene sequencing. The BLAST results indicate
that the 16S rRNA sequences of all cesA-positive milk isolates (NCBI accession no. PP981351–
PP981357) were identical to those of several B. cereus group species in the NCBI database.
The list comprises B. cereus, B. thuringiensis, B. paramycoides, B. anthracis, B. tropicus, B. paran-
thracis, B. albus, B. toyonensis and B. nitratireducens. The high genetic similarity among many
species in the B. cereus group renders 16S rRNA gene sequences inadequate for species-level
identification, as acknowledged by previous studies [46–48]. The differentiation of B. cereus
group species continues to depend on a polyphasic approach [49].
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3.3. Cytotoxicity of cesA-Positive B. cereus Group Isolates to Caco-2 and HepG2 Cells

The cytotoxic effects on Caco-2 and HepG2 cells were evaluated for seven cesA-positive
B. cereus group isolates, along with reference diarrhoeal and emetic strains. Caco-2 and
HepG2 exhibited viabilities of 87.26 and 87.60%, respectively, in 50% SMM (Figure 1a). A
level of 80% or higher is accepted as non-cytotoxic, in accordance with the ISO 10993-5
standard [50].
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Figure 1. Viability (a) and changes in the morphology (b) of Caco-2 and HepG2 cells after treatment
with heated culture filtrates of cesA-positive B. cereus group isolates (CSB isolates) compared to the
culture medium control (50% SMM). DSM 4384 and F4810/72 (alternatively termed AH187) were
used as reference diarrhoeagenic and emetic strains, respectively. The graphs were plotted using
GraphPad Prism (version 10.1.1; GraphPad Software, San Diego, CA, USA). Error bars show ± SD
from the triplicate experiments. The statistical differences (p < 0.05, one-way ANOVA) in cell viability
are indicated above the bars (*). ns = not significantly different.

The heat-treated culture filtrates (diluted to 50%) from cesA-positive B. cereus group
isolates cultured in SMM showed significant cytotoxicity (p < 0.05) to both cell types when
compared to 50% SMM, with a more pronounced effect observed on HepG2 cells. The
survival rates of Caco-2 and HepG2 following treatment with culture filtrates from the
isolates were 44.41 to 47.08% and 32.22 to 36.57%, respectively. The cytotoxicity observed
was similar to that of strain AH187 (F4810/72), which demonstrated survival rates of
43.07% ± 1.31 for Caco-2 and 29.10% ± 1.12 for HepG2. B. cereus DSM 4384, a diarrhoeal
strain that does not produce cereulide (tested negative for cesA), exhibited no toxicity to
either cell (Figure 1a).
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Observations were made regarding the morphological changes in both cells treated
with the heat-stable toxin derived from the isolates. Caco-2 cells exhibited elongation and
detachment accompanied by notable vacuolation, while HepG2 cells transitioned from an
aggregated morphology to a rounded shape (Figure 1b).

The detection of the cesA gene and the cytotoxicity of the milk isolates, which was
comparable to that of the emetic strain F4810/72, suggests that the heat-stable toxin pro-
duced by the isolates is likely cereulide. Cereulide exhibits significant cytotoxic effects on
HepG2 cells, as documented in prior studies [51–54]. Notably, it is recognised as both an
emetic and a hepatic toxin [55,56].

3.4. Characterisation of the Bacillus sp. CSB98 Genome

The preceding sections demonstrated that a single raw milk sample produced cesA-
positive B. cereus group isolates, which exhibited identical biochemical characteristics and
16S rRNA gene sequences, as well as comparable cytotoxicity patterns. Consequently,
isolate CSB98 was chosen for additional genome analysis. Raw sequence data of 889.8 Mbp
were generated, and an assembled sequence of approximately 5.5 Mbp was retrieved. The
genome information obtained from the assembly and annotation is summarised in Table 3.

Table 3. Genomic profile of Bacillus sp. CSB98.

Genome Information Value

Genome assembly based on Unicycler
Number of contigs 157

N50 (bp) 277,966
Total length (bp) 5,472,779

Genome annotation based on PGAP
GC content (%) 35.5

Protein coding sequence (CDS) 5478
The number of rRNA (5S, 16S, 23S) 3, 1, 1

The number of tRNA 73
ncRNA 5

Pseudogenes (total) 174

Table 3 indicates that the genome size, GC content, and number of coding sequences
(CDS) of Bacillus sp. CSB98 fall within the typical range observed for B. cereus. Additionally,
the genome size of approximately 5.5 Mbp is comparable to that of B. cereus ATCC 14579,
the type strain, which measures 5.4 Mbp [57,58]. The genome sizes of clinical B. cereus
strains typically range from 4.6 to 5.8 Mbp [59]. The GC content of CSB98 is 35.5% and the
CDS count is 5478, both of which fall within the established ranges for B. cereus strains (GC
content of 35 to 35.5% and CDS of 4442 to 6724) [60,61].

3.5. Comparison of the Primary Functions of CSB98 with Related Strains

The genes linked to different biological processes and metabolic pathways in the
Bacillus sp. CSB98 genome were annotated and compared with those identified in related
B. cereus group strains. The examined strains comprised a diarrhoeagenic strain (ATCC
14579), an emetic strain, (F4810/72; in this section, referred to as AH187, as it appears in
the NCBI database) and a closely related strain (B. paranthracis Mn5). Similarities in the
gene counts associated with various major metabolic categories were noted, particularly in
the areas of amino acid, carbohydrate and micronutrient metabolism, which encompasses
cofactors, vitamins, prosthetic groups and pigments. The structural functions, including
nucleosides and nucleotides, dormancy and sporulation, and cell wall and capsule, exhib-
ited significant similarity across the strains (see Figure 2). Additionally, the virulence and
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defence functions were also highly comparable among the strains. Although significant
differences in protein metabolism were noted, these differences do not correlate with the
classification of strains as emetic (CSB98 and AH187) or non-emetic (ces-negative) (ATCC
14579 and Mn5).
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Figure 2. Overview of major functions identified in the genome sequence of Bacillus sp. CSB98, com-
pared with related B. cereus group strains based on RAST annotation (http://rast.nmpdr.org) [31] and
visualised using the ggplot2 package in R (version 3.4.4) “https://ggplot2.tidyverse.org/ (accessed
on 18 December 2024)” [32]. Genome sequences of strains AH187 (an alternative name to F4810/72),
ATCC 14579 and Mn5 were retrieved from the NCBI database.

3.6. Analysis of the Virulence Factors

The virulence factors of Bacillus sp. CSB98 were analysed utilising the VFanalyzer
pipeline from the VFDB [33]. The findings (Table 4) indicated that the CSB98 isolate
contained all genes (cesA, cesB, cesC, cesD, cesH, cesP and cesT) typically found in the
ces gene cluster. The entire cluster is considered crucial for cereulide virulence [4]. The
deduced amino acid sequences were identical to those of the reference emetic strains
(AH187 and NC7401).

Additionally, Bacillus sp. CSB98 harboured the nhe genes that encode non-haemolytic
enterotoxin (Nhe), which is associated with diarrhoeal illness. The Nhe subunit sequences
demonstrated complete identity with the reference emetic strains AH187 and NC7401. In
contrast, their per cent identities were lower when compared to the subunit sequences
of the reference Nhe-producing strain NVH1230-88, which exhibited identity values of
97.41, 99.75, and 95.82% for NheA, NheB and NheC, respectively. Given that Nhe is a
significant diarrhoeal toxin, it suggests that the foodborne emetic Bacillus isolate CSB98
may also possess diarrhoeagenic properties. It is devoid of the hbl and cytK genes, which
are responsible for encoding the enterotoxins haemolysin BL and cytotoxin K. The toxin
profile of CSB98 closely resembles that of previously documented emetic strains, including

http://rast.nmpdr.org
https://ggplot2.tidyverse.org/
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BCRC17039 and others, such as F4810/72, F3351/87, F3752A/86 and NC7401 [21,62],
indicating a degree of genetic conservation among these strains.

Table 4. Virulence-related and antibiotic resistance factors identified in the genome of Bacillus sp.
CSB98.

Class No. Classification * Virulence Factor Related Gene

1 Gastrointestinal-
related toxins

Cereulide cesA, cesB, cesC, cesD,
cesH, cesP, cesT

Non-haemolytic enterotoxin (Nhe) nheA, nheB, nheC

2 Cytolysins Anthrolysin O alo
Haemolysin III hlyIII

3 Enzymes

Immune inhibitor A metalloproteinase inhA
Phosphatidylcholine-preferring phospholipase

C (PC-PLC) plcA

Phosphatidylinositol-specific phospholipase
C (PI-PLC) piplC

Sphingomyelinase (SMase) sph

4 Immune evasion Polysaccharide capsule Undetermined

5 Iron acquisition
Bacillibactin dhbA, dhbB, ahbC,

dhbE, dhbF
Heme-acquisition leucine-rich repeat protein (Hal) hal
Iron-regulated leucine-rich surface protein (IlsA) ilsA

6 Regulation PIcR-PapR quorum sensing papR, pIcR

7 Antibiotic resistance
Class A Bacillus cereus Bc beta-lactamase (BcI) bcI

Subclass B1 Bacillus cereus Bc beta-lactamase (BcII) bclI
Fosfomycin thiol transferase (FosB) fosB

* Classes 1–6 were analysed using the Virulence Factor Database (VFDB) [33], while class no. 7 was analysed
using the Comprehensive Antibiotic Resistance Database (CARD) [34].

Further analysis of virulence-related factors indicated that Bacillus sp. CSB98 con-
tained genes encoding pore-forming haemolysins, specifically alo and hlyIII, which en-
code anthrolysin O and haemolysin III, respectively. These substances increase virulence
through the lysis of various cell types [63]. The isolate also possesses genes that encode
phosphatidylcholine-preferring phospholipase C (plcA), phosphatidylinositol-specific phos-
pholipase C (pipLC) and sphingomyelinase (sph), all of which serve roles in the degradation
of host cell membranes. The virulence factors, including pore-forming haemolysins, phos-
pholipases and sphingomyelinase, augment the isolate’s virulence, aligning with the traits
of pathogenic B. cereus [64]. The immune inhibitor A metalloproteinase and a polysac-
charide capsule enable the evasion of macrophage ingestion and confer resistance to host
immune responses [65,66].

Bacillus sp. CSB98 also possesses iron acquisition genes, including those responsible for
bacillibactin synthesis (dhbA, dhbB, dhbC, dhbE and dhbF), as well as genes encoding heme-
acquisition leucine-rich repeat protein (hal) and iron-regulated leucine-rich surface protein
(ilsA). These features indicate a competitive advantage in iron-limited environments and
the ability to adapt to the iron-deficient conditions of the digestive tract [67]. Furthermore,
the regulatory genes plcR and papR, which encode a transcriptional regulator and a cell–cell
signalling peptide, respectively, coordinate the expression of extracellular virulence factors
in the B. cereus group [68]. Notably, these genes may influence the expression of virulence
factors and the pathogenicity of the strain [69].

In addition to virulence factors, antibiotic resistance was determined using CARD [34].
The antibiotic resistance factors discovered in Bacillus sp. CSB98 included genes encoding
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fosfomycin thiol transferase (fosB), class A Bacillus cereus beta-lactamase (bcI) and sub-
class B1 Bacillus cereus beta-lactamase (bcII). The fosB gene is responsible for resistance
to fosfomycin—a phosphonic acid antibiotic that inhibits cell wall synthesis and is com-
monly used to treat uncomplicated urinary tract and gastrointestinal infections [70]. The
bcI and bcII genes are associated with resistance to beta-lactam antibiotics due to beta-
lactamase production [71]. B. cereus is typically resistant to beta-lactam antibiotics, and
beta-lactamase production can confer resistance to penicillin, ampicillin and some third-
generation cephalosporins [72].

3.7. Analysis of Secondary Metabolites

Secondary metabolites in Bacillus sp. CSB98 were identified using antiSMASH (version
7.0.1) [35]. In addition to cereulide and bacillibactin (see Table 4), other identified functional
peptides include fengycin and thailanstatin A. Fengycin is a lipopeptide recognised for its
efficacy against filamentous fungi [73]. This peptide has been identified in Bacillus species,
including B. cereus Z4 [74] and B. velezensis FZB42 [75]. Thailanstatin A, a natural product
initially isolated from the bacterial strain Burkholderia thailandensis MSMB43, is recognised
as a spliceosome inhibitor with considerable potential in anticancer therapy [76]. It has
been identified in Bacillus species, including B. paranthracis MHSD3 [77] and B. subtilis
MBB3B9 [78].

3.8. Analysis of Strain Relatedness

The genomic relatedness of Bacillus sp. CSB98 to 27 representative strains in the
B. cereus group was analysed, and a phylogenomic tree was constructed (Figure 3). The
strains closely associated with CSB98 were subjected to additional analysis for ANI
(Figure 4). The tree and ANI values indicate that Bacillus sp. CSB98 and the cereulide-
producing B. cereus group strain AH187 (F4810/72) are indistinguishable at the resolution
employed in the analysis. Additional analysis of the genomic variation between CSB98 and
AH187 revealed 13 variants through alignment and variant calling, including one complex
variant, four deletions, two insertions and six SNPs. These results indicate that the strains
are likely not identical, yet they support the genetic conservation noted among different
emetic B. cereus group strains [79].

CSB98 and AH187 demonstrated the highest genetic similarity to the type strain of
B. paranthracis (Mn5), significantly surpassing that of the type strain of B. cereus (ATCC
14579) (Figure 3). OrthoANI analysis indicated a high (97.40%) similarity between CSB98
and B. paranthracis Mn5—a finding also noted by Caroll et al. (2019), who highlighted a
close relationship to several emetic (cesABCD-positive) B. cereus group strains [79].

The genome sequence of CSB98 has been deposited in the NCBI database. Genomic
analysis reveals a close relationship with B. paranthracis, whereas polyphasic characterisa-
tion supports its general characteristics being linked to B. cereus. Concerns have been raised
about the identification of B. cereus group species based solely on genomic data [80]. This
study does not aim to identify the species of the CSB98 isolate, especially given the vari-
ability in the ability to induce emetic illness both within and among species. As an isolate
from milk—a known food reservoir for the B. cereus group—the significant relationship of
CSB98 with other members of this group, as well as its virulence factor profile, suggest that
emphasis should be placed on its emetic potential and gastrointestinal-associated virulence
functions. Overall, knowledge regarding the virulence potential of an emetic B. cereus
group species is useful for safety monitoring in the dairy production chain.
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of the B. cereus group species constructed using the Type Strain Genome Server (TYGS) (https:
//tygs.dsmz.de/ (accessed on 20 December 2024)” 36]. Tree inferred using FastME 2.1.6.1 “http:
//www.atgc-montpellier.fr/fastme/ (performed via TYGS on 20 December 2024)” [38] based on
GBDP distances calculated from genome sequences obtained from the GenBank database. The branch
lengths are scaled in terms of the GBDP distance formula d5 [37]. The numbers at the branches are
GBDP pseudo-bootstrap support values > 60% from 100 replications, with an average branch support
of 87.6%. The tree was rooted at the midpoint [39] and visualised using iTOL [40].
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4. Conclusions
This study found that seven out of one hundred fifty-eight B. cereus group isolates from

raw milk contained the cesA gene, suggesting their potential to produce cereulide. Their 16S
rRNA sequences indicated their affiliation with B. cereus group species, and they had all the
biochemical characteristics of typical B. cereus. The heat-treated culture filtrates from cesA-
positive isolates grown in skim milk medium demonstrated cytotoxic effects on HepG2
and Caco-2 cells, leading to cell viabilities of 32.22–36.57% and 44.41–47.08%, respectively.
The cytotoxicity levels of these seven milk isolates were comparable to those of the emetic
B. cereus strain AH187 (F4810/72). Genome sequencing of the cesA-positive isolate CSB98
identified several key virulence factors, including cereulide synthetase, non-haemolytic
enterotoxin, haemolysins, phospholipases and sphingomyelinase, indicating that this strain
can be both emetic and diarrhoeagenic. Furthermore, the functional peptides bacillibactin
and fengycin were identified. Genomic variation between the CSB98 isolate and its closest
strain (AH187) was found via SNP calling. CSB98 exhibited a closer relationship to the type
strain of B. paranthracis than to the type strain of B. cereus sensu stricto (ATCC 14579).
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