Natural Chemical Composition of Commercial Fish Species: Characterisation of Pangasius, Wild and Farmed Turbot and Barramundi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Procurement
2.2. Chemical Analyses
2.2.1. Proximate Composition, Total Volatile Basic Nitrogen (TVB-N) and pH
2.2.2. Mono-, Di- and Triphosphates
2.2.3. Citric Acid
2.2.4. Free Amino Acids, Including Taurine
2.2.5. Fatty Acid Profiles
2.2.6. Mineral Element Analysis
2.3. Statistical Evaluation
3. Results and Discussion
3.1. Proximate Composition, pH and TVB-N
3.2. Macro and Micro Minerals
3.3. Citric Acid
3.4. Phosphates
3.5. Fatty Acid Profile
3.6. Free Amino Acid Profile
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- FAO Fisheries and Aquaculture Fact Sheets. 2015. Available online: http://www.fao.org/fishery/en (accessed on 18 May 2016).
- Bouza, C.; Vandamme, S.; Hermida, M.; Cabaleiro, S.; Volckaert, F.; Martine, P. AquaTrace Species Leaflet: Turbot (Scophthalmus maximus). 2014. Available online: https://aquatrace.eu/web/aquatrace/leaflets/turbot (accessed on 18 May 2016).
- FAO. Cultured Aquatic Species Information Program. Psetta Maxima. 2016. Available online: http://www.fao.org/fishery/culturedspecies/Psetta_maxima/en (accessed on 18 May 2016).
- Russell, D.J.; Garrett, R.N. Early life history of barramundi, Lates calciferer (Bloch) in North Eastern Queenslan. Aust. J. Mar. Freshw. Res. 1985, 36, 191–201. [Google Scholar]
- Hilge, V. Untersuchungen zur Aufzucht von Barramundi. Inf. Fischwirtsch. Fischereiforsch. 2003, 50, 22–23. [Google Scholar]
- Karl, H.; Lehmann, I.; Rehbein, H.; Schubring, R. Composition and quality attributes of conventionally and organically farmed Pangasius fillets (Pangasius hypophthalmus) on the German market. Int. J. Food Sci. Technol. 2010, 45, 56–66. [Google Scholar] [CrossRef]
- Institut für Hygiene und Umwelt. Jahresbericht 2013 des Hamburger Instituts für Hygiene und Umwelt. Available online: http://www.hamburg.de/contentblob/4392204/data/hu-jahresbericht-2013.pdf (accessed on 18 May 2016). (In German)
- Guimarães, C.F.M.; Mársico, E.T.; Guerra Monteiro, M.L.; Lemos, M.; Mano, S.B.; Conte Junior, C.A. The chemical quality of frozen Vietnamese pangasius hypophthalmus fillets. Food Sci. Nutr. 2016, 4, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Manthey-Karl, M.; Lehmann, I.; Ostermeyer, U.; Rehbein, H.; Schröder, U. Meat composition and quality assessment of king scallops (Pecten maximus) and frozen Atlantic sea scallops (Placopecten magellanicus) on a retail level. Foods 2015, 4, 524–546. [Google Scholar] [CrossRef]
- Antonacopoulos, N. Untersuchungsverfahren (Sensorik, Chemie). In Fische und Fischerzeugnisse, 2nd ed.; Ludorff, W., Meyer, V., Eds.; Paul Parey: Berlin/Hamburg, Germany, 1973; p. 219. [Google Scholar]
- AOAC Method #968.06. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Smedes, F. Determination of total lipid using non-chlorinated solvents. Analyst 1999, 124, 1711–1718. [Google Scholar] [CrossRef]
- Karl, H.; Bekaert, K.; Berge, J.-P.; Cadun, A.; Duflos, G.; Oehlenschläger, J.; Poli, B.M.; Tejada, M.; Testi, S.; Timm-Heinrich, M. WEFTA interlaboratory comparison on total lipid determination in fishery products using the Smedes method. J. AOAC Int. 2012, 95, 1–5. [Google Scholar] [CrossRef]
- Karl, H.; Äkesson, G.; Etienne, M.; Huidobro, A.; Luten, J.; Mendes, R.; Tejada, M.; Oehlenschläger, J. WEFTA interlaboratory comparison on salt determination in fishery products. J. Aquat. Food Prod. Technol. 2002, 11, 215–228. [Google Scholar] [CrossRef]
- LFGB. Bestimmung des Gesamtphosphorgehaltes in Fleisch und Fleischerzeugnissen. Photometrisches Verfahren. L06.00-9. In Amtliche Sammlung von Untersuchungsverfahren Nach § 64 LFGB; Beuth-Verlag: Berlin, Germany, 2008. [Google Scholar]
- EU Commission. Commission Regulation (EC) No. 2074/2005 of 5 December 2005 Laying down Implementing Measures for Certain Products under Regulation (EC) No. 853/2004 of the European Parliament and of the Council and for the Organisation of Official Controls under Regulation (EC) No. 854/2004 of the European Parliament and of the Council and Regulation (EC) No. 882/2004 of the European Parliament and of the Council, Derogating from Regulation (EC) No. 852/2004 of the European Parliament and of the Council and Amending Regulations (EC) No. 853/2004 and (EC) No. 854/2004. Available online: http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32005R2074 (accessed on 18 May 2016).
- Kaufmann, A.; Pacciarelli, B. Determination of some ionic additives in meat products by ion chromatography. Mitt. Gebiete Hyg. 2000, 91, 581–596. [Google Scholar]
- Kaufmann, A.; Maden, K.; Leisser, W.; Mater, M.; Gude, T. Analysis of polyphosphates in fish and shrimps tissues by two different ion chromatography methods: Implications on false-negative and -positive findings. Food Addit. Contam. 2005, 22, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Antoine, F.R.; Wei, C.I.; Littell, R.C.; Marshall, M.R. HPLC Method for analysis of free amino acids in fish using o-phthaldialdehyde precolumn derivatization. J. Agric. Food Chem. 1999, 47, 5100–5107. [Google Scholar] [CrossRef] [PubMed]
- Manthey-Karl, M.; Ostermeyer, U.; Barth, J.; Rehbein, H. Quality aspects and species identification of cephalopod products on the German market. Arch. Lebensmhyg. 2013, 64, 15–23. [Google Scholar]
- DGF (Deutsche Gesellschaft für Fettwissenschaft, German Society for Fat Science). DGF-Einheitsmethode C-VI-11d. Fettsäuremethylester (Alkalische Umesterung); Wissenschaftliche Verlagsgesellschaft mbH: Stuttgart, Germany, 1998. [Google Scholar]
- DGF (Deutsche Gesellschaft für Fettwissenschaft, German Society for Fat Science). DGF-Einheitsmethode C-VI-10a. Gaschromatographie: Analyse der Fettsäuren und Fettsäureverteilung; Wissenschaftliche Verlagsgesellschaft mbH: Stuttgart, Germany, 2000. [Google Scholar]
- Ostermeyer, U.; Molkentin, J.; Lehmann, I.; Rehbein, H.; Walte, H.G. Suitability of instrumental analysis for the discrimination between wild-caught and conventionally and organically farmed shrimps. Eur. Food Res. Technol. 2014, 239, 1015–1029. [Google Scholar] [CrossRef]
- Suttle, N.F. Mineral Nutrition of Livestock, 4th ed.; CAB International: Wallingford, UK, 2010. [Google Scholar]
- Sérot, T.; Gandemer, G.; Demaimay, M. Lipid and fatty acid compositions of muscle from farmed and wild adult turbot. Aquacult. Int. 1998, 6, 331–343. [Google Scholar] [CrossRef]
- Percival, S.; Drabsch, P.; Glencross, B. Determing factors affecting muddy-flavour taint in farmed barramundi, Lates calcarifier. Aquaculture 2008, 284, 136–143. [Google Scholar] [CrossRef]
- Karl, H.; Lehmann, I.; Manthey-Karl, M.; Meyer, C.; Ostermeyer, U. Comparison of nutritional value and microbiological status of new imported fish species on the German market. Int. J. Food Sci. Technol. 2014, 49, 2481–2490. [Google Scholar] [CrossRef]
- Orban, E.; Nevigato, T.; Lena, G.; Masci, M.; Casini, I.; Gambelli, L.; Caproni, R. New trends in the seafood market. Sutchi catfish (Pangasius hypophthalmus) fillets from Vietnam: Nutritional quality and safety aspects. Food Chem. 2008, 110, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Van Ruth, S.M.; Brouwer, E.; Koot, A.; Wijtten, M. Seafood and Water Management. Foods 2014, 3, 622–631. [Google Scholar] [CrossRef]
- Polak-Juszczak, L. Chemical characteristics of fishes new to the polish market. Acta Sci. Pol. 2007, 6, 23–32. [Google Scholar]
- Causeret, J. Fish as source of mineral nutrition. In Fish as Food. Nutrition, Sanitation and Utilization, Vol. 2; Bergstrom, G., Ed.; Academic Press: Orlando, FL, USA, 1962; pp. 205–228. [Google Scholar]
- Allen, L.; Prentice, A. Encyclopedia of Human Nutrition; Academic Press: Oxford, UK, 2005. [Google Scholar]
- Holland, B.; Brown, J.; Buss, D.H. Fish and Fish Products, Third Supplement to the Fifth Edition of McCance and Widdowson’s “The Composition of Foods”; The Royal Society of Chemistry: Cambridge, UK, 1993. [Google Scholar]
- USDA. Finfish and Shellfish Products. Available online: http://naldc.nal.usda.gov/naldc/download.xhtml?id=CAT87886653&content=PDF (accessed on 18 May 2016).
- Schram, E.; Pedrero, Z.; Cámara, C.; van der Heul, J.W.; Luten, J.B. Enrichment of African catfish with functional selenium originating from garlic. Aquacult. Res. 2008, 39, 850–860. [Google Scholar] [CrossRef]
- FCT. The Norwegian Food Composition Table. 2015. Available online: http://www.matportalen.no/verktoy/the_norwegian_food_composition_table/ (accessed on 18 May 2016).
- EFSA. EFSA Panel on Contaminants in the Food Chain. Scientific Opinion on Arsenic in Food. EFSA J. 2009, 7. [Google Scholar] [CrossRef]
- Sirot, V.; Guérin, T.; Volatier, J.L.; Leblanc, J.C. Dietary exposure and biomarkers of arsenic in consumers of fish and shellfish from France. Sci. Total Environ. 2009, 407, 1875–1885. [Google Scholar] [CrossRef] [PubMed]
- Chew, S.F.; Ip, Y.K. Biochemical adaptions of the mudskipper Boleophthalmus boddaerti to a lack of oxygen. Mar. Biol. 1992, 112, 567–571. [Google Scholar] [CrossRef]
- Piironen, J.; Hyvärinen, H. Composition of the milt of some teleost fishes. J. Fish. Biol. 1983, 22, 351–361. [Google Scholar] [CrossRef]
- Aubourg, S.P.; Pérez-Alonso, F.; Gallardo, J.M. Studies on rancidity inhibition in frozen horse mackerel (Trachurus trachurus) by citric and ascorbic acids. Eur. J. Lipid Sci. Technol. 2004, 106, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Sallam, K.I. Chemical, sensory and shelf life evaluation of sliced salmon treated with salts of organic acids. Food Chem. 2007, 101, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Sanjuás-Rey, M.; García-Soto, B.; Barros-Velázquez, J.; Fuertes-Gamundi, J.R.; Aubourg, S.P. Effect of a two-step natural organic acid treatment on microbial activity and lipid damage during blue whiting (Micromesistius poutassou) chilling. Int. J. Food Sci. Technol. 2011, 46, 1021–1030. [Google Scholar] [CrossRef] [Green Version]
- García-Soto, B.; Fernández-No, I.C.; Barros-Velázquez, J.; Aubourg, S.P. Use of citric and lactic acids in ice to enhance quality of two fish species during on-board chilled storage. Int. J. Refrig. 2014, 40, 390–397. [Google Scholar] [CrossRef]
- Kantonales Laboratorium Bern (Swiss State Laboratory of the Canton Bern). Jahresbericht 2005; Annual Report; Kantonales Laboratorium: Bern, Switzerland, 2005. (In German) [Google Scholar]
- Kantonales Laboratorium Bern (Swiss State Laboratory of the Canton Bern). Jahresbericht 2006; Annual Report; Kantonales Laboratorium: Bern, Switzerland, 2006. (In German) [Google Scholar]
- Luten, J.; Schram, E.; Elvevoll, E. Tailor-made functional seafood for consumers: Dietary modulation of selenium and taurine in farmed fish. In Improving Farmed Fish Quality and Safety; Lie, Ø., Ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 343–362. [Google Scholar]
- Ruiz-Capillas, C.; Jiménez-Colmenero, F. Biogenic Amines in Seafood Products. In Handbook of Seafood and Seafood Products Analysis; Nollet, L.M.L., Toldra, F., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 833–850. [Google Scholar]
- Yassoralipour, A.; Bakar, J.; Rahmann, R.A.; Bakar, F.A.; Golkhandan, E. Effect of different temperatures on the free amino acids, physico-chemical and microbial changes during storage of barramundi (Lates calcarifer) fillets. Adv. J. Food Sci. Technol. 2013, 5, 822–828. [Google Scholar]
- Undeland, I. Selected amino acids in fish. In Marine Functional Food; Luten, J.B., Ed.; Academic Publishers: Wageningen, The Netherlands, 2009; pp. 43–47. [Google Scholar]
- Ferraro, V.; Cruz, I.; Jorge, R.F.; Malcata, F.X.; Pintado, M.E.; Castro, P.M.L. Valorisation of natural extracts from marine source focused on marine by-products: A review. Food Res. Intern. 2010, 43, 2221–2233. [Google Scholar] [CrossRef]
- Dragnes, B.T.; Larsen, R.; Ernstsen, M.H.; Mæhre, H.; Elvevoll, E.O. Impact of processing on the taurine content in processed seafood and their corresponding unprocessed raw materials. Intern. J. Food Sci. Nutr. 2009, 60, 143–152. [Google Scholar] [CrossRef] [PubMed]
Origin | Aquaculture Spain | Aquaculture Chile | NE-Atlantic Wild | ||
---|---|---|---|---|---|
Number of Fish | 8 | 10 | 10 | 10 | 9 |
Weight (g)/Length (cm) | 988 ± 21/37 ± 2 | 737 ± 35/34 ± 1 | 693 ± 88/33 ± 1 | 663 ± 87/32 ± 1 | 2333 ± 210/50 ± 2 |
pH | 6.8 ± 0.1 a | 6.7 ± 0.1 a | 6.8 ± 0.1 a | 6.7 ± 0.1 a | 6.7 ± 0.1 a |
TVB-N * (mg·(100 g)−1) | 12.6 ± 1.2 | 14.2 ± 1.0 | 13.6 ± 1.1 | 11.7 ± 1.2 | 17.1 ± 2.3 |
Moisture (%) | 79.2 ± 1.7 a,b | 78.7 ± 0.9 a | 78.9 ± 0.6 a | 78.7 ± 0.4 a | 80.2 ± 1.0 b |
Lipid (%) | 2.0 ± 0.4 a | 1.6 ± 0.5 a,b | 1.2 ± 0.5 b | 1.5 ± 0.3 a,b | 1.0 ± 0.6 b |
Protein (%) | 18.9 ± 0.6 a | 20.2 ± 0.4 b | 20.3 ± 0.5 b | 19.7 ± 0.6 a,b | 19.0 ± 0.7 a |
Ash (%) | 1.0 ± 0.2 | 1.2 ± 0.1 | 1.1 ± 0.0 | 1.3 ± 0.0 | 1.1 ± 0.0 |
NaCl (%) | 0.3 ± 0.1 | 0.3 ± 0.1 | 0.3 ± 0.2 | 0.5 ± 0.1 | 0.3 ± 0.1 |
P2O5 (g·kg−1) | 3.1 ± 0.3 a | 3.8 ± 0.1 b | 3.3 ± 0.2 a,c | 3.6 ± 0.2 b | 3.4 ± 0.1 c |
Citric acid (g·kg−1) | <0.02 | <0.02 1 | 0.03 ± 0.01 | <0.02 1 | <0.02 |
Diphosphate (g·kg−1) | <0.01 2 | <0.01 3 | <0.01 3 | <0.01 | <0.01 2 |
Triphosphate (g·kg−1) | <0.01 2 | <0.01 3 | <0.01 3 | <0.01 | <0.01 2 |
Na (mg·kg−1) | 1162 ± 114 a,b,c | 1062 ± 98 c | 1106 ±80 a,c | 1769 ± 244 b | 1084 ± 96 a,c |
K (mg·kg−1) | 2590 ± 283 a | 3131 ± 92 b,c | 2905 ± 140 b,c | 3141 ± 278 c | 2836 ± 183 a,b |
Ca (mg·kg−1) | 108 ± 54 | 23 ± 7 | 129 ± 53 | 20 ± 0 | 90 ± 17 |
Mg (mg·kg−1) | 206 ± 15 | 215 ± 10 | 194 ± 11 | 238 ± 10 | 240 ± 20 |
Zn (mg·kg−1) | 7.6 ± 0.6 | 6.1 ± 0.5 | 5.9 ± 0.6 | 5.2 ± 0.4 | 6.1 ± 1.2 |
Se (mg·kg−1) | 0.22 ± 0.02 | 0.31 ± 0.02 | 0.26 ± 0.01 | 0.36 ± 0.02 | 0.40 ± 0.10 |
As (mg·kg−1) | 0.51 ± 0.10 | 0.82 ± 0.19 | 0.30 ± 0.06 | 0.48 ± 0.03 | 4.60 ± 1.10 |
Most frequent free amino acids (FAA) and sums of FAA groups | |||||
Alanine (mg·(100 g)−1) | 30.1 ± 3.3 a | 35.6 ± 4.7 c | 35.2 ± 4.3 c | 31.2 ± 3.0 a,c | 13.4 ± 1.6 b |
Glutamic acid (mg·(100 g)−1) | 19.4 ± 2.9 a | 32.0 ± 5.7 b | 23.9 ± 5.4 a | 19.5 ± 3.6 a | 9.0 ± 2.9 c |
Serine (mg·(100 g)−1) | 18.8 ± 2.8 a | 32.3 ± 6.4 c | 24.0 ± 7.8 a,c | 22.7 ± 4.5 a,c | 2.9 ± 1.6 b |
Taurine (mg·(100 g)−1) | 118.6 ± 18.4 a | 151.1 ± 24.5 c | 217.1 ± 29.1 b | 203.7 ± 22.0 b | 187.8 ± 15.1 b |
∑ indispens. FAA 4 mg·(100 g)−1) | 30 ± 4 a,b | 37 ± 7 a | 32 ± 5 a | 31 ± 8 a | 21 ± 9 b |
∑ cond. indispens. FAA 5 (mg·(100 g)−1) | 127 ± 19 a,c | 158 ± 25 c | 227 ± 30 b | 215 ± 23 b,d | 193 ± 16 d |
Total FAA 6 (mg·(100 g)−1) | 236 ± 29 a | 314 ± 37 d | 376 ± 38 b | 353 ± 34 b,d | 244 ± 24 a,c |
Species and Origin | Barramundi Vietnam | Barramundi Australia | ||
---|---|---|---|---|
Aquaculture | Wild | Aquaculture | Wild | |
Number of Samples | 10 | 4 | 10 | 10 |
pH | 6.9 ± 0.1 a | 6.6 ± 0.1 b | 6.7 ± 0.1 b | 6.4 ± 0.1 c |
TVB-N * (mg·(100 g)−1) | 12.5 ± 2.3 | 9.9± 0.5 | 20.4 ± 1.6 | 17.5 ± 1.3 |
Moisture (%) | 80.2 ± 0.9 a | 79.0 ± 0.5 b | 76.6 ± 0.8 b | 75.7 ± 0.8 b |
Lipid (%) | 0.8 ± 0.3 a | 1.2 ± 0.1 a | 3.8 ± 0.9 b | 3.2 ± 0.7 b |
Protein (%) | 18.2 ± 0.5 a | 18.9 ± 0.5 a | 18.2 ± 0.4 a | 20.8 ± 0.6 b |
Ash (%) | 1.0 ± 0 | 0.9 ± 0.2 | 1.1 ± 0.1 | 1.1 ± 0.1 |
NaCl (%) | 0.2 ± 0.1 | 0.4 ± 0.1 | 0.3 ± 0.1 | 0.2 ± 0.1 |
P2O5 (g·kg−1) | 3.4 ± 0.1 a | 3.5 ± 0.2 a,b | 4.2 ± 0.2 b,c | 4.3 ± 0.2 c |
Citric acid (g·kg−1) | 0.19 ± 0.06 | <0.02 | <0.02 | <0.005 1 |
Diphosphate (g·kg−1) | <0.01 | <0.01 | <0.01 | <0.01 |
Triphosphate (g·kg−1) | <0.01 | <0.01 | <0.01 | <0.01 |
Na (mg·kg−1) | 1255 ± 295 a | 1770 ± 79 a | 633 ± 38 b | 336 ± 42 c |
K (mg·kg−1) | 2689 ± 226 a | 2212 ± 167 b | 3579 ± 173 c | 3858 ± 23 d |
Ca (mg·kg−1) | 273 ± 24 | 138 ± 8 | 281 ± 89 | 227 ± 20 |
Mg (mg·kg−1) | 237 ± 17 | 213 ± 10 | 295 ± 26 | 268 ± 19 |
Zn (mg·kg−1) | 4.16 ± 0.30 | 4.61 ± 0.40 | 5.51 ± 0.38 | 4.39 ± 0.29 |
Se (mg·kg−1) | 0.24 ± 0.08 | 0.29 ± 0.08 | 0.19 ± 0.02 | 0.34 ± 0.04 |
As (mg·kg−1) | 0.70 ± 0.64 | 1.09 ± 0.27 | 0.14 ± 0.02 | 0.42 ± 0.07 |
Most frequent free amino acids (FAA) and sums of FAA groups | ||||
Alanine (mg·(100 g)−1) | 15.5 ± 5.6 a,b | 9.8 ± 1.0 a | 28.5 ± 3.9 c | 20.6 ± 6.1 b |
Glutamic acid mg·(100 g)−1) | 19.0 ± 6.6 a | 10.8 ± 1.0 a | 52.3 ± 10.2 b | 18.2 ± 10.7 a |
Glycine (mg·(100 g)−1) | 33.5 ± 36.1 a | 9.5 ± 1.7 a | 274.5 ± 26.2 b | 36.3 ± 13.6 a |
Taurine (mg·(100 g)−1) | 212.5 ± 62.4 a | 169.5 ± 3.9 a,b | 70.2 ± 10,3 b | 262.4 ± 44.1 a |
∑ indispens. FAA 2 (mg·(100 g)−1) | 28 ± 8 a | 20 ± 1 a | 33 ± 10 a,b | 56 ± 29 b |
∑ cond. indispens. FAA 3 (mg·(100 g)−1) | 224 ± 62 a,c | 178 ± 6 b,c | 87 ± 13 b | 282 ± 44 c |
Total FAA 4 (mg·(100 g)−1) | 328 ± 54 a | 235 ± 11 b | 519 ± 54 c | 430 ± 71 d |
Species and Origin | Pangasius, Aquaculture Vietnam | ||||
---|---|---|---|---|---|
Whole | Cutlets | Organic Fillets | |||
Number of Samples | Skinned 10 | Deep-Skinned 10 | 10 | 10 | |
pH | 6.4 ± 0.2 | 6.5 ± 0.2 | 6.6 ± 0.1 | 6.7 ± 0.1 | |
TVB-N * (mg·(100 g)−1) | n.d. | 12.4 ± 1.6 | 11.6 ± 0.8 | 11.3 ± 1.1 | |
Moisture (%) | 75.3 ±3.2 a | 78.9 ± 1.1 b | 78.6 ± 1.8 b | 79.7 ± 0.6 b | |
Lipid (%) | 7.8 ± 3.6 a | 2.7 ± 0.9 b | 2.4 ± 0.5 b | 3.5 ± 1.0 b | |
Protein (%) | 17.2 ± 1.6 a | 18.7 ± 1.1 b | 17.8 ± 1.3 b | 18.1 ± 0.5 a,b | |
Ash (%) | 0.8 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 | |
NaCl (%) | 0.1 | n.d. | 0.1 | 0.1 | |
P2O5 (g·kg−1) | 3.49 ± 0.71 a | 4.05 ± 0.69 a,b | 4.50 ± 1.42 a,b | 5.32 ± 1.41 b | |
Citric acid (g·kg−1) | <0.005 | <0.005 | <0.005 | <0.005 | |
Diphosphate (g·kg−1) | <0.01 1 | <0.01 1 | <0.01 1 | <0.01 1 | |
Triphosphate (g·kg−1) | <0.01 1 | <0.01 1 | <0.01 1 | <0.01 1 | |
Na (mg·kg−1) | 405 ± 128 a | 412 ± 144 a | 322 ± 92 a | 389 ± 52 a | |
K (mg·kg−1) | 3006 ± 350 a | 3072 ± 137 a | 3003 ± 43 a | 3132 ± 207 a | |
Ca (mg·kg−1) | 162 ± 28 | 149 ± 21 | 184 ± 93 | 127 ± 10 | |
Mg (mg·kg−1) | 244 ± 29 | 252 ± 23 | 249 ± 19 | 254 ± 14 | |
Zn (mg·kg−1) | 5.89 ± 1.44 | 4.95 ± 1.01 | 4.68 ± 0.36 | 3.67 ± 0.25 | |
Se (mg·kg−1) | 0.18 ± 0.02 | 0.18 ± 0.01 | 0.15 ± 0.01 | 0.12 ± 0.01 | |
As (mg·kg−1) | <0.02 | <0.02 | <0.02 | <0.02 | |
Most frequent free amino acids (FAA) and sums of FAA groups | |||||
Arginine (mg·(100 g)−1) | 11.9 ± 4.4 a | 13.5 ± 6.1 a | 11.1 ± 3.5 a | 8.7 ± 1.3 a | |
Glycine (mg·(100 g)−1) | 8.3 ± 3.7 a | 9.4 ± 3.9 a,b | 14.3 ± 4.9 b | 8.0 ± 2.1 a | |
Lysine (mg·(100 g)−1) | 9.8 ± 4.9 a | 11.0 ± 6.0 a | 34.8 ± 11.2 b | 7.5 ± 1.5 a | |
Taurine (mg·(100 g)−1) | 88.0 ± 27.7 a | 95.5 ± 32.0 a | 99.9 ± 9.6 a | 85.9 ± 15.3 a | |
∑ indispens. FAA 2 (mg·(100 g)−1) | 32 ± 8 a,b | 36 ± 9 a | 68 ± 28 c | 18 ± 3 b | |
∑ cond. indispens. FAA 3 (mg·(100 g)−1) | 104 ± 25 a | 114 ± 29 a | 117 ± 9 a | 97 ± 16 a | |
Total FAA 4 (mg·(100 g)−1) | 171 ± 24 a,b | 186 ± 30 a | 242 ± 46 c | 144 ± 18 b |
Origin | Aquaculture Spain | Aquaculture Chile | NE-Atlantic Wild | |||
---|---|---|---|---|---|---|
Number of Fish | 8 | 10 | 10 | 10 | 9 | |
FA Common Name | FA Shorthand | |||||
Myristic acid | 14:0 | 5.2 ± 0.41 | 3.8 ± 1.00 | 4.4 ± 0.29 | 4.5 ± 0.58 | 3.7 ± 1.20 |
Pentadecanoic acid | 15:0 | 0.4 ± 0.02 | 0.1 ± 0.14 | 0.2 ± 0.13 | 0.4 ± 0.13 | 0.5 ± 0.08 |
Palmitic acid | 16:0 | 16.7 ± 0.89 a | 16.6 ± 1.27 a | 16.9 ± 0.94 a | 17.5 ± 1.39 a | 16.9 ± 1.65 a |
Heptadecanoic acid | 17:0 | 0.1 ± 0.13 | 0.0 ± 0.00 | n.d. | 0.1 ± 0.17 | 0.2 ± 0.19 |
Stearic acid | 18:0 | 3.5 ± 0.54 | 4.3 ± 0.89 | 3.5 ± 0.38 | 4.0 ± 0.55 | 3.8 ± 0.88 |
∑SFA | 25.8 | 24.9 | 25.0 | 26.4 | 25.2 | |
Palmitoleic acid | 16:1n-7 | 6.3 ± 0.63 | 5.2 ± 1.36 | 5.9 ± 0.48 | 5.4 ± 0.85 | 4.4 ± 0.83 |
Oleic acid | 18:1n-9c | 12.3 ± 0.41 a | 11.6 ± 0.93 a | 11.8 ± 0.45 a | 11.5 ± 0.78 a | 9.8 ± 0.85 b |
Vaccenic acid | 18-1n-7 | 3.1 ± 0.09 | 3.0 ± 0.10 | 2.9 ± 0.06 | 2.9 ± 0.14 | 2.7 ± 0.52 |
Gondoic acid | 20:1n-9 | 1.4 ± 0.11 a | 1.1 ± 0.30 a | 1.5 ± 0.14 a | 1.4 ± 0.13 a | 3.8 ± 1.94 b |
Erucic acid | 22:1n-9 | 0.3 ± 0.04 | 0.1 ± 0.13 | 0.2 ± 0.10 | 0.2 ± 0.16 | 0.6 ± 0.29 |
∑MUFA | 23.4 | 21.0 | 22.4 | 21.4 | 21.3 | |
Linoleic acid | 18:2n-6c | 6.6 ± 0.25 a | 3.3 ± 0.23 b | 3.8 ± 0.12 a | 6.5 ± 0.46 a | 1.5 ± 0.28 b |
γ-Linolenic acid | 18:3n-6 | 0.0 ± 0.00 | 0.0 ± 0.00 | n.d. | n.d. | 0.0 ± 0.00 |
α-Linolenic acid | 18:3n-3 | 0.9 ± 0.09 | 0.6 ± 0.11 | 0.7 ± 0.05 | 0.8 ± 0.13 | 0.7 ± 0.21 |
Stearidonic acid | 18:4n-3 | 1.4 ± 0.18 | 1.2 ± 0.39 | 1.4 ± 0.13 | 1.1 ± 0.23 | 1.2 ± 0.41 |
Eicosadienic acid | 20:2n-6 | 0.6 ± 0.04 | 0.2 ± 0.13 | 0.2 ± 0.18 | 0.6 ± 0.07 | 0.5 ± 0.04 |
Arachidonic acid | 20:4n-6 | 1.6 ± 0.16 | 1.7 ± 0.36 | 1.7 ± 0.28 | 2.0 ± 0.39 | 2.4 ± 0.62 |
Eicosapentaenoic acid (EPA) | 20:5n-3 | 10.8 ± 0.45 a | 12.6 ± 0.41 b | 12.4 ± 0.54 b | 10.1 ± 0.67 a | 6.3 ± 0.53 c |
Docosatetraneoic acid | 22:4n-6 | n.d. | 0.3 ± 0.14 | 0.2 ± 0.13 | 0.2 ± 0.14 | 0.4 ± 0.25 |
Docosapentaenoic acid (DPA) | 22:5n-3 | 4.2 ± 0.16 | 5.1 ± 0.40 | 4.5 ± 0.26 | 4.1 ± 0.29 | 3.5 ± 0.76 |
Docosahexaenoic acid (DHA) | 22:6n-3 | 13.6 ± 1.86 a | 17.6 ± 3.37 b | 16.1 ± 1.44 a | 15.9 ± 1.89 a | 22.6 ± 2.68 c |
∑PUFA | 39.7 | 42.6 | 40.9 | 41.3 | 39.1 | |
unidentified | 11.1 | 11.6 | 11.7 | 11.0 | 14.4 | |
∑n-3 | 30.9 | 37.1 | 35.0 | 32.0 | 34.3 | |
∑n-6 | 8.8 | 5.5 | 6.0 | 9.3 | 4.8 | |
Ratio n-3/n-6 | 3.5 | 6.8 | 5.9 | 3.5 | 7.1 | |
EPA ± DHA | 24.4 | 30.2 | 28.5 | 26.0 | 28.8 |
Species and Origin | Barramundi Vietnam | Barramundi Australia | |||
---|---|---|---|---|---|
Number of Samples | Aquaculture 10 | Wild 4 | Aquaculture 10 | Wild 10 | |
FA Common Name | FA Shorthand | ||||
Myristic acid | 14:0 | 3.5 ± 1.06 | 3. 5 ± 0. 62 | 2.8 ± 0.06 | 4.1 ± 0.38 |
Pentadecanoic acid | 15:0 | 1.1 ± 0.85 a | 0.7 ± 0.11 a | 0.3 ± 0.01 b | 4.2 ± 0.29 c |
Palmitic acid | 16:0 | 22.8 ± 2.43 a | 26.6 ± 1.13 b | 19.3 ± 0.47 a | 26.9 ± 0.61 b |
Heptadecanoic acid | 17:0 | 1.2 ± 0.69 | 0.8 ± 0.08 | 0.3 ± 0.10 | 1.6 ± 0.14 |
Stearic acid | 18:0 | 8.3 ± 2.61 | 9.5 ± 0.40 | 5.4 ± 0.26 | 6.7 ± 0.57 |
∑SFA | 36.9 | 41.0 | 28.0 | 43.5 | |
Palmitoleic acid | 16:1n-7 | 5.2 ± 1.95 a | 4.6 ± 0.41 b | 6.6 ± 0.14 c | 9.6 ± 0.77 d |
Oleic acid | 18:1n-9c | 15.6 ± 5.44 a | 17.3 ± 2.52 a | 33.7 ± 0.53 b | 12.8 ± 0.73 a |
Vaccenic acid | 18-1n-7 | 3.0 ± 0.58 | 2.5 ± 0.09 | 2.6 ± 0.04 | 2.5 ± 0.06 |
Gondoic acid | 20:1n-9 | 0.8 ± 0.31 a | 0.4 ± 0.06 b | 0.6 ± 0.03 a,b | 0.7 ± 0.03 a |
∑MUFA | 24.6 | 24.8 | 43.6 | 25.6 | |
Linoleic acid | 18:2n-6c | 5.0 ± 4.27 a | 1.7 ± 1.04 b | 10.9 ± 0.16 a | 1.6 ± 0.14 b |
γ-Linolenic acid | 18:3n-6 | 0.2 ± 0.16 | 0.0 ± 0.00 | 0.4 ± 0.04 | 0.6 ± 0.04 |
α-Linolenic acid | 18:3n-3 | 1.1 ± 0.34 | 0.5 ± 0.08 | 1.5 ± 0.06 | 1.9 ± 0.07 |
Stearidonic acid | 18:4n-3 | 0.6 ± 0.33 | 0.3 ± 0.17 | 0.6 ± 0.03 | 0.8 ± 0.07 |
Eicosadienic acid | 20:2n-6 | 0.3 ± 0.16 | 0.1 ± 0.11 | 0.1 ± 0.09 | 0.0 ± 0.00 |
Arachidonic acid | 20:4n-6 | 3.3 ± 3.55 | 3.3 ± 0.57 | 0.7 ± 0.14 | 3.4 ± 0.24 |
Eicosapentaenoic acid (EPA) | 20:5n-3 | 3.0 ± 1.06 a | 2.5 ± 0.20 b | 3.0 ± 0.11 a | 3.3 ± 0.17 a |
Docosatetraneoic acid | 22:4n-6 | 0.7 ± 0.54 | 0.8 ± 0.30 | 0.0 ± 0.00 | 0.9 ± 0.17 |
Docosapentaenoic acid (DPA) | 22:5n-3 | 2.6 ± 0.39 | 2.4 ± 0.24 | 1.0 ± 0.07 | 1.8 ± 0.15 |
Docosahexaenoic acid (DHA) | 22:6n-3 | 9.2 ± 4.75 a | 13.3 ± 1.29 a | 3.1 ± 0.33 b | 4.1 ± 0.31 a,b |
∑PUFA | 26.0 | 25.0 | 21.2 | 18.5 | |
unidentified | 12.6 | 9.2 | 7.2 | 12.4 | |
∑n-3 | 16.4 | 19.0 | 9.2 | 11.9 | |
∑n-6 | 9.5 | 5.9 | 12.0 | 6.6 | |
Ratio n-3/n-6 | 1.7 | 3.2 | 0.8 | 1.8 | |
EPA + DHA | 12.2 | 15.8 | 6.2 | 7.4 |
Species and Origin | Pangasius, Aquaculture Vietnam | |||||
---|---|---|---|---|---|---|
Whole | Cutlets | Organic Fillets | ||||
Number of Samples | Skinned 10 | Deep-Skinned 10 | 10 | 10 | ||
FA Common Name | FA Shorthand | |||||
Myristic acid | 14:0 | 3.7 ± 0.89 | 3.4 ± 0.96 | 4.0 ± 0.31 | 3.5 ± 0.29 | |
Pentadecanoic acid | 15:0 | 0.4 ± 0.23 | 0.3 ± 0.26 | 0.1 ± 0.09 | 0.02 ± 0.06 | |
Palmitic acid | 16:0 | 28.9 ± 1.50 a,b | 27.9 ± 2.16 a,b | 29.8 ± 0.66 b | 27.7 ± 0.65 a | |
Heptadecanoic acid | 17:0 | 0.5 ± 0.37 | 0.5 ± 0.42 | 0.1 ± 0.10 | n.d. | |
Stearic acid | 18:0 | 9.9 ± 1.17 | 10.1 ± 1.17 | 8.6 ± 0.51 | 9.1 ± 0.37 | |
∑SFA | 43.4 | 42.2 | 42.5 | 40.3 | ||
Palmitoleic acid | 16:1n-7 | 1.6 ± 0.32 | 1.5 ± 0.25 | 1.0 ± 0.09 | 0.8 ± 0.05 | |
Oleic acid | 18:1n-9c | 29.0 ± 6.43 a | 27.8 ± 6.7 a | 35.7 ± 0.66 b | 31.1 ± 0.99 c | |
Vaccenic acid | 18-1n-7 | 1.5 ± 0.50 | 1.6 ± 0.59 | 0.8 ± 0.06 | 0.8 ± 0.03 | |
Gondoic acid | 20:1n-9 | 1.1 ± 0.22 a | 1.1 ± 0.2 a | 1.1 ± 0.1 a | 1.1 ± 0.05 a | |
∑MUFA | 33.3 | 32.0 | 38.7 | 33.8 | ||
Linoleic acid | 18:2n-6c | 4.4 ± 2.47 a | 4.3 ± 2.48 a | 8.5 ± 0.58 b | 13.5 ± 0.48 b | |
γ-Linolenic acid | 18:3n-6 | n.d. | n.d. | 0.2 ± 0.15 | 0.1 ± 0.11 | |
α-Linolenic acid | 18:3n-3 | 0.5 ± 0.14 | 0.5 ± 0.17 | 0.5 ± 0.05 | 1.1 ± 0.06 | |
Stearidonic acid | 18:4n-3 | 0.04 ± 0.00 | 0.0 ± 0.00 | 0.0 ± 0.00 | 0.0 ± 0.00 | |
Eicosadienic acid | 20:2n-6 | 0.5 ± 0.09 | 0.5 ± 0.11 | 0.5 ± 0.06 | 0.8 ± 0.07 | |
Arachidonic acid | 20:4n-6 | 1.3 ± 0.79 | 1.9 ± 1.02 | 1.0 ± 0.23 | 1.3 ± 0.19 | |
Eicosapentaenoic acid (EPA) | 20:5n-3 | 1.2 ± 0.79 a | 1.2 ± 0.77 a | 0.1 ± 0.09 b | 0.2 ± 0.08 b | |
Docosatetraneoic acid | 22:4n-6 | 0.2 ± 0.23 | 0.2 ± 0.25 | 0.1 ± 0.13 | 0.2 ± 0.17 | |
Docosapentaenoic acid (DPA) | 22:5n-3 | 0.8 ± 0.42 | 0.8 ± 0.41 | 0.1 ± 0.12 | 0.4 ± 0.05 | |
Docosahexaenoic acid (DHA) | 22:6n-3 | 6.4 ± 5.23 a | 7.8 ± 5.89 a | 0.6 ± 0.13 b | 1.4 ± 0.19 c | |
∑PUFA | 15.3 | 17.3 | 11.7 | 18.8 | ||
unidentified | 8.0 | 8.5 | 7.2 | 7.1 | ||
∑n-3 | 8.9 | 10.3 | 1.3 | 3.0 | ||
∑n-6 | 6.5 | 7.0 | 10.3 | 15.7 | ||
Ratio n-3/n-6 | 1.4 | 1.5 | 0.1 | 0.2 | ||
EPA ± DHA | 7.6 | 8.9 | 0.7 | 1.6 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manthey-Karl, M.; Lehmann, I.; Ostermeyer, U.; Schröder, U. Natural Chemical Composition of Commercial Fish Species: Characterisation of Pangasius, Wild and Farmed Turbot and Barramundi. Foods 2016, 5, 58. https://doi.org/10.3390/foods5030058
Manthey-Karl M, Lehmann I, Ostermeyer U, Schröder U. Natural Chemical Composition of Commercial Fish Species: Characterisation of Pangasius, Wild and Farmed Turbot and Barramundi. Foods. 2016; 5(3):58. https://doi.org/10.3390/foods5030058
Chicago/Turabian StyleManthey-Karl, Monika, Ines Lehmann, Ute Ostermeyer, and Ute Schröder. 2016. "Natural Chemical Composition of Commercial Fish Species: Characterisation of Pangasius, Wild and Farmed Turbot and Barramundi" Foods 5, no. 3: 58. https://doi.org/10.3390/foods5030058
APA StyleManthey-Karl, M., Lehmann, I., Ostermeyer, U., & Schröder, U. (2016). Natural Chemical Composition of Commercial Fish Species: Characterisation of Pangasius, Wild and Farmed Turbot and Barramundi. Foods, 5(3), 58. https://doi.org/10.3390/foods5030058