An Evaluation of Alternatives to Nitrites and Sulfites to Inhibit the Growth of Salmonella enterica and Listeria monocytogenes in Meat Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Additives
2.2. Minimum Inhibitory Concentration of Additives Against S. enterica and L. monocytogenes
2.3. Preparation and Inoculation of Minced Meat
2.4. Microbiological Analysis
2.5. pH Measurement
2.6. Statistical Analysis
3. Results
3.1. Minimum Inhibitory Concentration of Additives Against S. enterica and L. mnocytogenes
3.2. Microbiology of Minced Meat
3.3. pH Measurement
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Van Haute, S.; Raes, K.; Raes, K.; Sampers, I. The effect of cinnamon, oregano and thyme essential oils in marinade on the microbial shelf life of fish and meat products. Food Control 2016, 68, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Saraiva, C.; Fontes, M.C.; Patarata, L.; Martins, C.; Cadavez, V.; Gonzales Barron, U. Modelling the kinetics of Listeria monocytogenes in refrigerated fresh beef under different packaging atmospheres. Food Sci. Technol. 2016, 66, 664–671. [Google Scholar] [CrossRef]
- Anonymous. Commision Regulation (EU) N° 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. OJEU 2011, L295, 1–177. [Google Scholar]
- Serrano, R.; Banon, S.; Bañón, S. Reducing SO2 in fresh pork burgers by adding chitosan. Meat Sci. 2012, 92, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Mueller Herbst, S.; Wuestner, S.; Kabisch, J.; Pichner, R.; Scherer, S.; Müller Herbst, S.; Wüstner, S. Acidified nitrite inhibits proliferation of Listeria monocytogenes—Transcriptional analysis of a preservation method. Int. J. Food Microbiol. 2016, 226, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Vally, H.; Madan, V.; Misso, N.L.A. Clinical effects of sulphite additives. Clin. Exp. Allergy 2009, 39, 1643–1651. [Google Scholar] [CrossRef] [PubMed]
- Weitzberg, E.; Lundberg, J. Novel Aspects of Dietary Nitrate and Human Health. Annu. Rev. Nutr. 2013, 33, 129–159. [Google Scholar] [CrossRef] [PubMed]
- Hospital, X.; Hierro, E.; Fernandez, M.; Fernández, M. Effect of reducing nitrate and nitrite added to dry fermented sausages on the survival of Salmonella Typhimurium. Food Res. Int. 2014, 62, 410–415. [Google Scholar] [CrossRef]
- Bor, T.; Gyawali, R.; Ibrahim, S. Evaluating the Effectiveness of Essential Oils and Combination of Copper and Lactic Acid on the Growth of E. coli O157:H7 in Laboratory Medium. Foods 2016, 5, 14. [Google Scholar] [CrossRef]
- Djenane, D. Chemical Profile, Antibacterial and Antioxidant Activity of Algerian Citrus Essential Oils and Their Application in Sardina pilchardus. Foods 2015, 4, 208–228. [Google Scholar] [CrossRef]
- Rafiq, R.; Hayek, S.A.; Anyanwu, U.; Hardy, B.I.; Giddings, V.L.; Ibrahim, S.A.; Tahergorabi, R.; Kang, H.W. Antibacterial and Antioxidant Activities of Essential Oils from Artemisia herba-alba Asso., Pelargonium capitatum × radens and Laurus nobilis L. Foods 2016, 5, 28. [Google Scholar] [CrossRef]
- Milillo, S.R.; Ricke, S.C. Synergistic Reduction of Salmonella in a Model Raw Chicken Media using a Combined Thermal and Acidified Organic Acid Salt Intervention Treatment. J. Food Sci. 2010, 75, M121–M125. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority; European Centre for Disease Prevention and Control (ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. EFSA J. 2015, 13. [Google Scholar] [CrossRef]
- Gomez, D.; Pilar Iguacel, L.; Carmen Rota, M.; Jose Carraminana, J.; Arino, A. Occurrence of Listeria monocytogenes in Ready-to-Eat Meat Products and Meat Processing Plants in Spain. Foods 2015, 4, 271–282. [Google Scholar] [CrossRef]
- Oueslati, W.; Rjeibi, M.; Mhadhbi, M.; Jbeli, M.; Zrelli, S.; Ettriqui, A. Prevalence, virulence and antibiotic susceptibility of Salmonella spp. strains, isolated from beef in Greater Tunis (Tunisia). Meat Sci. 2016, 119, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X. Prevalence and Characterization of Salmonella in Animal Meals Collected from Rendering Operations. J. Food Prot. 2016, 79, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Lamas, A.; Fernandez-No, I.C.; Miranda, J.M.; Vázquez, B.; Cepeda, A.; Franco, C.M. Prevalence, molecular characterization and antimicrobial resistance of Salmonella serovars isolated from northwestern Spanish broiler flocks (2011–2015). Poult. Sci. 2016, 95, 2097–2105. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty Second Informational Supplement (M100-S22); Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; p. 184. [Google Scholar]
- Dave, D.; Ghaly, A.E. Meat spoilage mechanisms and preservation techniques: A critical review. Am. J. Agric. Biol. Sci. 2011, 6, 486–510. [Google Scholar]
- Ghabraie, M.; Vu, K.; Huq, T.; Khan, A.; Lacroix, M. Antilisterial effects of antibacterial formulations containing essential oils, nisin, nitrite and organic acid salts in a sausage model. J. Food Sci. Technol. 2016, 53, 2625–2633. [Google Scholar] [CrossRef] [PubMed]
- Dyett, E.J.; Shelley, D. The Effects of Sulphite Preservative in British Fresh Sausages. J. Appl. Bacteriol. 1966, 29, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Er, B.; Demirhan, B.; Onurdag, F.; Ozgacar, S.; Oktem, A.; Ozgacar, S.O.; Onurda, F.K. Antimicrobial and antibiofilm effects of selected food preservatives against Salmonella spp. isolated from chicken samples. Poult. Sci. 2014, 93, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Neetoo, H.; Ye, M.; Chen, H. Potential antimicrobials to control Listeria monocytogenes in vacuum-packaged cold-smoked salmon pâté and fillets. Int. J. Food Microbiol. 2008, 123, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Tavaria, F.; Ramos, O.; Monteiro, M.J.; Fernandes, J.; Soares, J.; João Monteiro, M.; Pintado, M.; Xavier Malcata, F. Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiol. 2008, 25, 922–928. [Google Scholar]
- Gutierrez, J.; Barry Ryan, C.; Bourke, P. Antimicrobial activity of plant essential oils using food model media: Efficacy, synergistic potential and interactions with food components. Food Microbiol. 2009, 26, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Vogel, B.F.; Yin Ng, Y.; Hyldig, G.; Mohr, M.; Gram, L. Potassium lactate combined with sodium diacetate can inhibit growth of Listeria monocytogenes in vacuum-packed cold-smoked salmon and has no adverse sensory effects. J. Food Prot. 2006, 69, 2134–2142. [Google Scholar] [PubMed]
- Serdengecti, N.; Yildirim, I.; Gokoglu, N. Investigation of inhibitory effects of several combinations of sodium salts on the growth of Listeria monocytogenes and Salmonella enterica serotype enteritidis in minced beef. J. Food Saf. 2006, 26, 233–243. [Google Scholar] [CrossRef]
- Lamas, A.; Anton, X.; Miranda, J.M.; Roca-Saavedra, P.; Cardelle-Cobas, A.; Ibarra, I.S.; Franco, C.M.; Cepeda, A. Technological Strategies for the Development of Egg-Derived Products with Reduced Content of Cholesterol. Food Bioprocess Technol. 2016, 9, 81–90. [Google Scholar] [CrossRef]
- Kilinc, B.; Cakli, S.; Dincer, T.; Tolasa, S. Microbiological, Chemical, Sensory, Color, and Textural Changes of Rainbow Trout Fillets Treated with Sodium Acetate, Sodium Lactate, Sodium Citrate, and Stored at 4 °C. J. Aquat. Food Prod. Technol. 2009, 18, 3–17. [Google Scholar] [CrossRef]
- Maca, J.V.; Miller, R.K.; Acuff, G.R. Microbiological, Sensory and Chemical Characteristics of Vacuum-Packaged Ground Beef Patties Treated with Salts of Organic Acids. J. Food Sci. 1997, 62, 591–596. [Google Scholar] [CrossRef]
Strain | Sodium Nitrite | Sodium Sulfite | TQI C-6000 | Chitosan |
---|---|---|---|---|
S. Typhimurium CECT 4594 | 10,000 | 50,000 | 5000 | 250 |
S. Enteritidis Lhica 1 | 10,000 | 50,000 | 5000 | 250 |
S. Infantis Lhica 2 | 10,000 | 50,000 | 5000 | 250 |
S. Newport Lhica 4 | 10,000 | 50,000 | 5000 | 250 |
L. monocytogenes CECT 934 | 125 | 625 | 1250 | 125 |
L. monocytogenes Lhica 1 | 125 | 625 | 1250 | 125 |
L. monocytogenes Lhica 4 | 300 | 625 | 1250 | 250 |
L. monocytogenes Lhica 7 | 300 | 625 | 1250 | 250 |
Microbial Group | Storage Day | Batch | ||||
---|---|---|---|---|---|---|
CM | SM | NM | AM | CHM | ||
Total viable count | 0 | 5.47 ± 0.01 a | 5.40 ± 0.02 a | 5.55 ± 0.01 a | 5.50 ± 0.01 a | 5.45 ± 0.01 a |
3 | 7.46 ± 0.15 db | 6.70 ± 0.13 cb | 6.17 ± 0.19 bb | 5.47 ± 0.16 aa | 5.58 ± 0.02 ab | |
6 | 7.95 ± 0.23 cc | 6.82 ± 0.14 bb | 6.78 ± 0.11 bc | 6.08 ± 0.18 ab | 6.18 ± 0.04 ac | |
9 | 8.83 ± 0.12 dd | 7.85 ± 0.11 cc | 7.39 ± 0.17 bd | 6.79 ± 0.11 ac | 6.84 ± 0.06 ad | |
Enterobacteriaceae | 0 | 3.88 ± 0.02 a | 3.89 ± 0.02 a | 3.87 ± 0.03 a | 3.92 ± 0.02 a | 3.90 ± 0.02 a |
3 | 4.83 ± 0.12 bb | 4.25 ± 0.14 ab | 4.15 ± 0.12 ab | 4.13 ± 0.11 ab | 4.18 ± 0.19 ab | |
6 | 6.51 ± 0.04 dc | 5.21 ± 0.09 cc | 4.71 ± 0.18 bc | 4.11 ± 0.07 ab | 4.15 ± 0.12 ab | |
9 | 7.61 ± 0.15 dd | 6.31 ± 0.10 cd | 5.81 ± 0.11 bd | 4.08 ± 0.08 ab | 4.12 ± 0.05 ab | |
E. coli | 0 | 1.78 ± 0.01 a | 1.80 ± 0.02 a | 1.72 ± 0.01 a | 1.81 ± 0.02 a | 1.76 ± 0.01 a |
3 | 1.89 ± 0.02 b | 1.84 ± 0.02 a | 1.81 ± 0.07 a | 1.88 ± 0.01 b | 1.83 ± 0.06 a | |
6 | 3.1 ± 0.11 cc | 2.7 ± 0.12 bb | 2.15 ± 0.09 ab | 2.05 ± 0.16 ab | 2.08 ± 0.14 ab | |
9 | 3.8 ± 0.18 dd | 3.2 ± 0.07 cc | 2.70 ± 0.13 bc | 2.35 ± 0.15 ac | 2.29 ± 0.09 ac |
Microbial Group | Storage Day | Batch | ||||
---|---|---|---|---|---|---|
CM | SM | NM | AM | CHM | ||
Total viable count | 0 | 5.37 ± 0.04 a | 5.40 ± 0.01 a | 5.38 ± 0.03 a | 5.41 ± 0.03 a | 5.42 ± 0.01 a |
3 | 7.26 ± 0.11 db | 6.55 ± 0.03 cb | 6.12 ± 0.14 bb | 5.46 ± 0.09 aa | 5.48 ± 0.05 aa | |
6 | 7.72 ± 0.20 cc | 6.75 ± 0.10 bc | 6.70 ± 0.17 bc | 6.00 ± 0.10 ab | 6.08 ± 0.07 ab | |
9 | 8.62 ± 0.21 dd | 7.65 ± 0.12 cd | 7.14 ± 0.08 bd | 6.62 ± 0.12 ac | 6.56 ± 0.09 ac | |
Enterobacteriaceae | 0 | 2.91 ± 0.02 a | 2.89 ± 0.04 a | 2.88 ± 0.03 a | 2.89 ± 0.02 a | 2.92 ± 0.02 a |
3 | 3.72 ± 0.10 bb | 3.32 ± 0.09 ab | 3.25 ± 0.08 ab | 3.27 ± 0.11 ab | 3.22 ± 0.19 ab | |
6 | 5.41 ± 0.09 dc | 4.41 ± 0.14 cc | 3.71 ± 0.10 bc | 3.24 ± 0.12 ab | 3.35 ± 0.08 ab | |
9 | 6.49 ± 0.05 dd | 5.21 ± 0.22 cd | 4.73 ± 0.07 bd | 3.30 ± 0.09 ab | 3.28 ± 0.05 ab | |
E. coli | 0 | 1.59 ± 0.01 a | 1.60 ± 0.02 a | 1.62 ± 0.01 a | 1.60 ± 0.01 a | 1.58 ± 0.04 a |
3 | 1.80 ± 0.04 b | 1.84 ± 0.02 b | 1.79 ± 0.07 b | 1.82 ± 0.01 b | 1.81 ± 0.06 b | |
6 | 2.88 ± 0.10 cc | 2.23 ± 0.81 bb | 1.90 ± 0.06 ac | 1.85 ± 0.17 ab | 1.91 ± 0.10 ab | |
9 | 3.81 ± 0.10 dd | 3.09 ± 0.04 cc | 2.59 ± 0.13 bd | 2.12 ± 0.15 ac | 2.11 ± 0.09 ac |
Storage Day | Batch | |||||
---|---|---|---|---|---|---|
CM | SM | NM | AM | CHM | ||
pH | 0 | 5.64 ± 0.12 b | 5.69 ± 0.07 b | 5.73 ± 0.04 b | 5.07 ± 0.06 a | 5.03 ± 0.09 a |
3 | 6.51 ± 0.05 c | 6.31 ± 0.03 b | 6.33 ± 0.04 b | 5.38 ± 0.06 a | 5.40 ± 0.05 a | |
6 | 6.99 ± 0.03 c | 6.65 ± 0.10 b | 6.70 ± 0.07 b | 5.55 ± 0.05 a | 5.58 ± 0.07 a | |
9 | 7.42 ± 0.08 c | 7.05 ± 0.12 b | 7.10 ± 0.05 b | 5.92 ± 0.06 a | 5.96 ± 0.09 a |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamas, A.; Miranda, J.M.; Vázquez, B.; Cepeda, A.; Franco, C.M. An Evaluation of Alternatives to Nitrites and Sulfites to Inhibit the Growth of Salmonella enterica and Listeria monocytogenes in Meat Products. Foods 2016, 5, 74. https://doi.org/10.3390/foods5040074
Lamas A, Miranda JM, Vázquez B, Cepeda A, Franco CM. An Evaluation of Alternatives to Nitrites and Sulfites to Inhibit the Growth of Salmonella enterica and Listeria monocytogenes in Meat Products. Foods. 2016; 5(4):74. https://doi.org/10.3390/foods5040074
Chicago/Turabian StyleLamas, Alexandre, José Manuel Miranda, Beatriz Vázquez, Alberto Cepeda, and Carlos Manuel Franco. 2016. "An Evaluation of Alternatives to Nitrites and Sulfites to Inhibit the Growth of Salmonella enterica and Listeria monocytogenes in Meat Products" Foods 5, no. 4: 74. https://doi.org/10.3390/foods5040074
APA StyleLamas, A., Miranda, J. M., Vázquez, B., Cepeda, A., & Franco, C. M. (2016). An Evaluation of Alternatives to Nitrites and Sulfites to Inhibit the Growth of Salmonella enterica and Listeria monocytogenes in Meat Products. Foods, 5(4), 74. https://doi.org/10.3390/foods5040074