Potential Use of Plant Waste from the Moth Orchid (Phalaenopsis Sogo Yukidian “V3”) as an Antioxidant Source
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Free Phenolics and Bound Phenolics
2.3. Total Phenolic Content
2.4. Estimation of Flavonoid Content
2.5. Antioxidant Activity Measurement by DPPH Scavenging Assay
2.6. Antioxidant Activity Measurement by β-Carotene Bleaching Method
2.7. Reducing Power
2.8. HPLC Analysis
2.9. Statistical Analysis
3. Results
3.1. Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
3.2. Antioxidant Activity by the DPPH Radical Scavenging Assay
3.3. Antioxidant Activity with the ß-Carotene Bleaching Method
3.4. Reducing Power
3.5. HPLC Quantification
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Johnsona, M.K.; Alexandera, K.E.; Lindquistb, N.; Loo, G. A phenolic antioxidant from the freshwater orchid, Habenaria repens. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1999, 122, 211–214. [Google Scholar] [CrossRef]
- Minh, T.N.; Khang, D.T.; Tuyen, P.T.; Minh, L.T.; Anh, L.H.; Quan, N.V.; Ha, P.T.T.; Quan, N.T.; Toan, N.P.; Elzaawely, A.A.; et al. Phenolic compounds and antioxidant activity of Phalaenopsis orchid hybrids. Antioxidants 2016, 5, 31. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Lin, B.Y.; Lin, J.Y.; Wub, W.L.; Chang, C.C. Evaluation of chloroplast DNA markers for intraspecific identification of Phalaenopsis equestris cultivars. Sci. Hortic. 2016, 203, 86–94. [Google Scholar] [CrossRef]
- Chien, K.W.; Agrawal, D.C.; Tsay, H.S.; Chang, C.A. Elimination of mixed ‘Odontoglossum ringspot’ and ‘Cymbidium mosaic’ viruses from Phalaenopsis hybrid “V3” through shoot-tip culture and protocorm—like body selection. Crop Prot. 2015, 67, 1–6. [Google Scholar] [CrossRef]
- Zheng, Y.X.; Shen, B.N.; Chen, C.C.; Jan, F.J. Odontoglossum ringspot virus causing flower crinkle in Phalaenopsis hybrids. Eur. J. Plant Pathol. 2010, 128, 1–5. [Google Scholar] [CrossRef]
- Chen, W.H.; Chen, H.H. Orchid Biotechnology II; World Scientific: Singapore, 2011. [Google Scholar]
- Srivirojana, N.; Theptepa, T.; Punpuing, S.; Guest, P.; Tun, K.; Chankham, O.; Suvansrual, A. Population pressure, utilization of chemicals in agriculture, health outcomes and solid waste management. In Proceedings of the International Conference on Integrated Solid Waste Management in Southeast Asian Cities, Siem Reap, Cambodia, 5–7 July 2005. [Google Scholar]
- Fan, M.-F. Environmental justice and nuclear waste conflicts in Taiwan. Environ. Polit. 2006, 15, 417–434. [Google Scholar] [CrossRef]
- Su, D.; Zhang, R.; Hou, F.; Zhang, M.; Guo, J.; Huang, F.; Deng, Y.; Wei, Z. Comparison of the free and bound phenolic profiles and cellular antioxidant activities of litchi pulp extracts from different solvents. BMC Complement. Altern. Med. 2014, 14, 9. [Google Scholar]
- Elzaawely, A.A.; Xuan, T.D.; Tawata, S. Antioxidant and antibacterial activities of Rumex japonicus HOUTT Aerial parts. Biol. Pharm. Bull. 2005, 28, 2225–2230. [Google Scholar] [CrossRef] [PubMed]
- Tuyen, P.T.; Khang, D.T.; Minh, L.T.; Minh, T.N.; Ha, P.T.T.; Elzaawely, A.A.; Xuan, T.D. Phenolic compounds and antioxidant activity of Castanopsis phuthoensis and Castanopsis grandicicatricata. Int. Lett. Nat. Sci. 2016, 55, 77–87. [Google Scholar] [CrossRef]
- Quan, N.V.; Khang, D.T.; Dep, L.T.; Minh, T.N.; Nobukazu, N.; Xuan, T.D. The potential use of a food-dyeing plant Peristrophe bivalvis (L.) Merr. in Northern Vietnam. Int. J. Pharm. Phytopharmacol. Eth. 2016, 4, 14–26. [Google Scholar] [CrossRef]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Elzaawely, A.A.; Tawata, S. Antioxidant activity of phenolic rich fraction obtained from Convolvulus arvensis L. leaves grown in Egypt. J. Crop. Sci. 2012, 4, 32–40. [Google Scholar] [CrossRef]
- Siddhuraju, P.; Becker, K. Studies on antioxidant activities of mucuna seed (Mucuna pruriens var utilis) extract and various non-protein amino/imino acids through in vitro models. J. Sci. Food Agric. 2003, 83, 1517–1524. [Google Scholar] [CrossRef]
- Soares, A.A.; Marques de Souza, C.G.; Daniel, F.M.; Ferrari, G.P.; Gomes da Costa, S.M.; Peralta, R.M. Antioxidant activity and total phenolic content of Agaricus brasiliensis (Agaricus blazei Murril) in two stages of maturity. Food Chem. 2009, 112, 775–781. [Google Scholar] [CrossRef]
- Tuyen, P.T.; Khang, D.T.; Ha, P.T.T.; Hai, T.N.; Elzaawely, A.A.; Xuan, T.D. Antioxidant capacity and phenolic contents of three Quercus species. Int. Lett. Nat. Sci. 2016, 54, 85–99. [Google Scholar] [CrossRef]
- Xuan, T.D.; Tsuzuki, E.; Terao, H.; Matsuo, M.; Khanh, T.D. Correlation between growth inhibitory exhibition and suspected allelochemicals (phenolic compounds) in the extract of alfalfa (Medicago sativa L.). Plant. Prod. Sci. 2003, 6, 165–171. [Google Scholar] [CrossRef]
- Atanassova, M.; Georgieva, S.; Ivancheva, K. Total phenolic and total flavonoid contents, antioxidant capacity and biological contaminants in medicinal herbs. J. Univ. Chem. Technol. Metall. 2011, 46, 81–88. [Google Scholar]
- Havsteen, B. Flavonoids, a class of natural products of high pharmacological potency. Bio. Phar. 1983, 32, 1141–1148. [Google Scholar] [CrossRef]
- Deepa, V.S.; Kumar, P.S.; Latha, S.; Selvamani, P.; Srinivasan, S. Antioxidant studies on the ethanolic extract of Commiphora spp. Afr. J. Biotechnol. 2009, 8, 1630–1636. [Google Scholar]
- Shahidi, F.; Janitha, P.K.; Wanasundara, P.D. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 1992, 32, 67–103. [Google Scholar] [CrossRef] [PubMed]
- Sofowora, A. Recent trends in research into African medicinal plants. J. Ethnopharmacol. 1993, 38, 209–214. [Google Scholar] [CrossRef]
- Das, N.P.; Pereira, T.A. Effects of flavonoids on thermal autoxidation of palm oil: Structure-activity relationships. J. Am. Oil Chem. Soc. 1990, 67, 255–258. [Google Scholar] [CrossRef]
- Cook, N.C.; Samman, S. Flavonoids—Chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem. 1996, 7, 66–76. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1985, 181, 1199–1200. [Google Scholar] [CrossRef]
- Quan, N.T.; Anh, L.A.; Khang, D.T.; Tuyen, P.T.; Toan, N.P.; Minh, T.N.; Minh, L.T.; Bach, D.T.; Ha, P.T.T.; Elzaawely, A.A.; et al. Involvement of secondary metabolites in response to drought stress of rice (Oryza sativa L.). Agriculture 2016, 6, 23. [Google Scholar] [CrossRef]
- Kumazawa, S.; Taniguchi, M.; Suzuki, Y.; Shimura, M.; Kwon, M.S.; Nakayama, T. Antioxidant activity of polyphenols in carob pods. J. Agric. Food Chem. 2002, 50, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakasha, G.K.; Singh, R.P.; Sakariah, K.K. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem. 2011, 73, 285–290. [Google Scholar] [CrossRef]
- Ferreira, I.C.F.R.; Baptista, P.; Vilas-Boas, M.; Barros, L. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chem. 2007, 100, 1511–1516. [Google Scholar] [CrossRef]
- Kikuzaki, H.; Hisamoto, M.; Hirose, K.; Akiyama, K.; Taniguchi, H. Antioxidant properties of ferulic acid and its related compounds. J. Agric. Food Chem. 2002, 50, 2161–2168. [Google Scholar] [CrossRef] [PubMed]
- Han, D.H.; Lee, M.J.; Kim, J.H. Antioxidant and apoptosis-inducing activities of ellagic acid. Anticancer Res. 2006, 26, 3601–3606. [Google Scholar] [PubMed]
- Siger, A.; Czubinski, J.; Dwiecki, K.; Kachlicki, P.; Nogala-Kalucka, M. Identification and antioxidant activity of sinapic acid derivatives in Brassica napus L. seed meal extracts. Eur. J. Lipid Sci. Technol. 2013, 115, 1130–1138. [Google Scholar]
- Khang, D.T.; Dung, T.N.; Elzaawely, A.A.; Xuan, T.D. Phenolic profiles and antioxidant activity of germinated legumes. Foods 2016, 5, 27. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, P.B.; Sharma, G.D.; Choudhury, M.D.; Nath, D.; Talukdar, A.D.; Mazumder, B. In Vitro Propagation and Phytochemical Screening of Papilionanthe teres (Roxb.) Schltr. Assam Univ. J. Sci. Technol. 2010, 5, 37–42. [Google Scholar]
- Maridassa, M.; Hussainb, M.I.Z.; Rajuc, G. Phytochemical survey of orchids in the Tirunelveli Hills of South India. Ethnobot. Leafl. 2008, 12, 705–712. [Google Scholar]
- Nagananda, G.S.; Rajath, S.; Shankar, P.A.; Rajani, M.L. Phytochemical evaluation and in vitro free radical scavenging activity of successive whole plant extract of orchid Cottonia Peduncularis. Res. Art. Biol. Sci. 2013, 3, 91. [Google Scholar]
- Nagananda, G.S.; Satishchandra, N.; Rajath, S. Phytochemical evaluation and in vitro free radical scavenging activity of cold and hot successive pseudobulb extracts of medicinally important orchid Flickingeria nodosa (Dalz.) Seidenf. J. Med. Sci. 2013, 13, 401–409. [Google Scholar] [CrossRef]
- Puri, H.S. Salep-the drug from orchids. Am. Orchid Soc. Bull. 1970, 39, 723. [Google Scholar]
- Chowdhury, M.A.; Rahman, M.M.; Chowdhury, M.R.H.; Uddin, M.J.; Sayeed, M.A.; Hossain, M.A. Antinociceptive and cytotoxic activities of an epiphytic medicinal orchid: Vanda tessellata Roxb. BMC Complement. Altern. Med. 2014, 14, 464. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, A.D. Orchid Tea. Orchid Digest. 1944, 8, 146–147. [Google Scholar]
- Withner, C.L.; Nelson, P.K.; Wejksnora, P.J. The Anatomy of Orchids; Wiley-Interscience: New York, NY, USA, 1974. [Google Scholar]
- Gordon, M.C.; David, J.N. Natural product drug discovery in the next millennium. Pharm. Biol. 2011, 13, 8–17. [Google Scholar]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [PubMed]
- Lekawatana, S. Thai Orchid: Current situation. In Proceedings of the Taiwan International Orchid Symposium, Tainan, Taiwan, 5 March 2010. [Google Scholar]
- Cara, R.W.; Qingli, W.; James, E.S. Recent advances in anthocyanin analysis and characterization. Curr. Anal. Chem. 2008, 4, 75–101. [Google Scholar]
- Simon, B.I.; Lidianys, M.L.; Claudia, L.L.; Armida, A.G.; Daniela, F.; Jose, L.R.; David, D.H. Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of Bucida buceras L. and Phoradendron californicum. BMC Res. Notes 2015, 8, 396. [Google Scholar]
- David, M.P.; Patrícia, V.; José, A.P.; Paula, B.A. Phenolics: From chemistry to biology. Molecules 2009, 14, 2202–2211. [Google Scholar] [CrossRef]
- Thammasiri, K. Current status of orchid production in Thailand. Acta Hortic. 2015, 1078, 25–33. [Google Scholar] [CrossRef]
- Laura, B.C.; James, B.C. Orchidaceae: Using a globalized commodity to promote conservation and sustainable economic development in southern Ecuador. J. Sustain. For. 2009, 6, 799–824. [Google Scholar]
Name of Plant and Extraction Solvent | Abbreviation |
---|---|
Sogo Yukidian “V3” stem free hexane | SFH |
Sogo Yukidian “V3” stem free chloroform | SFC |
Sogo Yukidian “V3” stem free ethyl acetate | SFEA |
Sogo Yukidian “V3” stem free aqueous | SFA |
Sogo Yukidian “V3” root free hexane | RFH |
Sogo Yukidian “V3” root free chloroform | RFC |
Sogo Yukidian “V3” root free ethyl acetate | RFEA |
Sogo Yukidian “V3” root free aqueous | RFA |
Sogo Yukidian “V3” leaf free hexane | LFH |
Sogo Yukidian “V3” leaf free chloroform | LFC |
Sogo Yukidian “V3” leaf free ethyl acetate | LFEA |
Sogo Yukidian “V3” leaf free aqueous | LFA |
Sogo Yukidian “V3” stem bound | SB |
Sogo Yukidian “V3” root bound | RB |
Sogo Yukidian “V3” leaf bound | LB |
Samples | DPPH IC50 (mg/mL) | ||
---|---|---|---|
Stems | Roots | Leaves | |
Hexane | 1.634 ± 0.020 b | 1.663 ± 0.083 a | ns |
Chloroform | 0.175 ± 0.002 d | 0.210 ± 0.005 d | 1.737 ± 0.040 b |
Ethyl Acetate | 0.195 ± 0.001 d | 0.070 ± 0.011 e | 0.699 ± 0.009 d |
Aqueous | 3.197 ± 0.046 a | 1.537 ± 0.007 b | 6.697 ± 0.025 a |
Bound Extract | 0.377 ± 0.007 c | 0.959 ± 0.054 c | 1.348 ± 0.134 c |
BHT | 0.021 ± 0.012 |
Samples | IC50 (mg/mL) | ||
---|---|---|---|
Stems | Roots | Leaves | |
Hexane | 2.191 ± 0.025 b | 2.018 ± 0.013 b | 2.029 ± 0.037 b |
Chloroform | 0.871 ± 0.012 d | 1.143 ± 0.019 c | 2.020 ± 0.022 b |
Ethyl acetate | 0.929 ± 0.007 d | 0.450 ± 0.005 d | 1.544 ± 0.067 c |
Aqueous | 4.495 ± 0.051 a | 4.354 ± 0.087 a | 4.312 ± 0.112 a |
Bound extract | 1.523 ± 0.068 c | 4.167 ± 0.105 a | 4.553 ± 0.099 a |
BHT | 0.262 ± 0.005 |
Samples | Phenolic Contents (μg/g DW) | ||||
---|---|---|---|---|---|
Caffeic Acid | Syringic Acid | Vanillin | Ellagic Acid | Cinnamic Acid | |
SFH | 574.75 ± 3.87 | - | - | 50.15 ± 5.30 b | - |
SFC | - | - | - | 134.02 ± 0.14 a | 15.43 ± 0.10 |
SFEA | - | - | - | 143.90 ± 0.14 a | - |
SFA | - | - | - | - | - |
RFH | - | - | - | - | - |
RFC | - | - | - | 7.05 ± 1.41 d | - |
RFEA | - | 16.98 ± 10.35 | 11.06 ± 1.22 | 21.09 ± 21.09 c | - |
RFA | - | - | - | 11.00 ± 0.02 cd | - |
LFH | - | - | - | - | - |
LFC | - | - | - | 71.08 ± 0.09 b | - |
LFEA | - | - | - | - | - |
LFA | - | - | 51.27 ± 0.09 | - | - |
SB | - | - | - | - | - |
RB | - | - | - | - | - |
LB | - | - | - | - | - |
ns |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minh, T.N.; Tuyen, P.T.; Khang, D.T.; Quan, N.V.; Ha, P.T.T.; Quan, N.T.; Andriana, Y.; Fan, X.; Van, T.M.; Khanh, T.D.; et al. Potential Use of Plant Waste from the Moth Orchid (Phalaenopsis Sogo Yukidian “V3”) as an Antioxidant Source. Foods 2017, 6, 85. https://doi.org/10.3390/foods6100085
Minh TN, Tuyen PT, Khang DT, Quan NV, Ha PTT, Quan NT, Andriana Y, Fan X, Van TM, Khanh TD, et al. Potential Use of Plant Waste from the Moth Orchid (Phalaenopsis Sogo Yukidian “V3”) as an Antioxidant Source. Foods. 2017; 6(10):85. https://doi.org/10.3390/foods6100085
Chicago/Turabian StyleMinh, Truong Ngoc, Phung Thi Tuyen, Do Tan Khang, Nguyen Van Quan, Pham Thi Thu Ha, Nguyen Thanh Quan, Yusuf Andriana, Xinyan Fan, Truong Mai Van, Tran Dang Khanh, and et al. 2017. "Potential Use of Plant Waste from the Moth Orchid (Phalaenopsis Sogo Yukidian “V3”) as an Antioxidant Source" Foods 6, no. 10: 85. https://doi.org/10.3390/foods6100085
APA StyleMinh, T. N., Tuyen, P. T., Khang, D. T., Quan, N. V., Ha, P. T. T., Quan, N. T., Andriana, Y., Fan, X., Van, T. M., Khanh, T. D., & Xuan, T. D. (2017). Potential Use of Plant Waste from the Moth Orchid (Phalaenopsis Sogo Yukidian “V3”) as an Antioxidant Source. Foods, 6(10), 85. https://doi.org/10.3390/foods6100085