Optimization of Fat-Reduced Puff Pastry Using Response Surface Methodology
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Puff Pastry Production
2.3. Physicochemical Analysis of Puff Pastry
2.4. Experimental Design
2.5. Sensory Evaluation of Puff Pastry
2.6. Confocal Laser Scanning Microscope
2.7. Compositional Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Baking Trials and Experimental Design
3.2. Firmness
3.3. Number of Cells/Slice Brightness
3.4. Optimization of Process Variables
3.5. Compositional Analysis
3.6. Confocal Laser Scanning Microscope
3.7. Sensory Evaluation of Puff Pastry
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Davidson, A. The Oxford Companion to Food; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Cauvain, S.P.; Young, L.S. Baking Problems Solved, 1st ed.; Woodhead Publishing Limited: Cambridge, UK, 2001. [Google Scholar]
- Dörr, R. Dänisch-Gebäck—Eine Internationale Spezialität: Gebäckcharakteristik—Rohstoffe—Herstellung. Getreide Mehl Brot 1982, 6, 154–158. [Google Scholar]
- Anonymus Technologie gezogener Teige Teil II, volume 5. 2000. Available online: http://www.brotundbackwaren.de/heftinhalte/article_arch_7629.html (accessed on 10 December 2016).
- Ghotra, B.S.; Dyal, S.D.; Narine, S.S. Lipid shortenings: A review. Food Res. Int. 2002, 35, 1015–1048. [Google Scholar] [CrossRef]
- Miskandar, M.S.; Man, Y.C.; Yusoff, M.S.A.; Abd Rahman, R. Quality of margarine: Fats selection and processing parameters. Asia Pac. J. Clin. Nutr. 2005, 14, 387–395. [Google Scholar] [PubMed]
- Fuentes, X.Q. Method for Producing Reduced Fat Layered Baked Product. U.S. Patent 20,120,009,303 A1, 12 January 2012. [Google Scholar]
- Simovic, D.S.; Pajin, B.; Seres, Z.; Filipovic, N. Effect of low-trans margarine on physicochemical and sensory properties of puff pastry. Int. J. Food Sci. Technol. 2009, 44, 1235–1244. [Google Scholar] [CrossRef]
- Garcia-Macias, P.; Gordon, M.H.; Frazier, R.A.; Smith, K.; Gambelli, L. Performance of palm-based fat blends with a low saturated fat content in puff pastry. Eur. J. Lipid Sci. Technol. 2011, 113, 1474–1480. [Google Scholar] [CrossRef]
- Boode-Boissevain, K.; Van Houdt-Moree, J.D. Fat-Reduced Laminated Doughs. U.S. Patent 5,480,662, 2 January 1996. [Google Scholar]
- Vessière, L.M.; De Mol, M.M.M. Reduced Fat Bakery Emulsion and Use of Such an Emulsion in the Preparation of Puff Pastry; WO Patent 2013032318 A1, 7 March 2013. [Google Scholar]
- EC European Commission. Regulation (EC) No. 1169/2011 of the European Parliament and of the Council of 25 October 2011. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1487674695069&uri=CELEX:02011R1169-20140219 (accessed on 10 December 2016).
- Anonymous. Technologie gezogener Teige Teil I, volume 4. 2000. Available online: http://www.brotundbackwaren.de/heftinhalte/article_arch_7517.html (accessed on 10 December 2016).
- Schünemann, C.; Treu, G. Technologie der Backwarenherstellung: Fachkundliches Lehrbuch für Bäcker und Bäckerinnen (5. Auflage); Gildebuchverlag GmbH & Co.KG: Alfeld, Germany, 1993. [Google Scholar]
- Stone, H.; Bleibaum, R.N.; Thomas, H.A. Affective testing. In Sensory Evaluation Practices; tone, H., Bleibaum, R.N., Thomas, H.A., Eds.; Elsevier Academic Press: London, UK, 2012; pp. 291–325. [Google Scholar]
- Stone, H.; Sidel, J.L. Affective testing. In Sensory Evaluation Practices. Food Science and Technology, International Series; Stone, H., Sidel, J.L., Eds.; Academic Press/Elsevier: London, UK, 2004; pp. 247–277. [Google Scholar]
- ISO. Sensory Analysis. General Guidance for the Design of Test Rooms. Ref. No. International Organization for Standardization; ISO: Geneve, Switzerland, 1988. [Google Scholar]
- Stone, H.; Bleibaum, R.N.; Thomas, H.A. Test strategy and design of experiments. In Sensory Evaluation Practices; Stone, H., Bleibaum, R.N., Thomas, H.A., Eds.; Elsevier Academic Press: London, UK, 2012; pp. 117–157. [Google Scholar]
- Richter, V.; Almeida, T.; Prudencio, S.; Benassi, M. Proposing a ranking descriptive sensory method. Food Qual. Preference 2010, 21, 611–620. [Google Scholar] [CrossRef]
- Hertwig, J. Determination of fat in alimentary paste, flour and dried egg. J. Assoc. Off. Agric. Chem. 1923, 6, 508–510. [Google Scholar]
- Suhre, F.B.; Corrao, P.A.; Glover, A.; Malanoski, A.J. Comparison of three methods for determination of crude protein in meat: Collaborative study. J. Assoc. Off. Anal. Chem. 1982, 65, 1339–1345. [Google Scholar] [PubMed]
- American Association of Cereal Chemists. Approved Method of Analysis 44-15.0; AACC International: St. Paul, MN, USA, 1995. [Google Scholar]
- ISO. Accuracy (Trueness and Precision) of Measurement Methods and Results-Part 2: Basic Method for the Determination of Repeatability and Reproducibility of a Standard Measurement Method; ISO: Geneva, Switzerland, 2002. [Google Scholar]
- Telloke, G.W. Puff Pastry I: Process and Dough Ingredient Variables; Flour Milling and Baking Research Association: Chipping Campden, UK, 1991. [Google Scholar]
- Baardseth, P.; Næs, T.; Vogt, G. Roll-in shortenings effects on Danish pastries sensory properties studied by principal component analysis. LWT Food Sci. Technol. 1995, 28, 72–77. [Google Scholar] [CrossRef]
- Sternhagen, L.G.; Hoseney, R.C. Firming effects in Danish pastry. Cereal Chem. 1994, 71, 560–563. [Google Scholar]
- Kincs, F.; Minor, M. Reduced Fat Roll-in Baking Compositions and Baked Goods. U.S. Patent 5,395,638, 7 March 1995. [Google Scholar]
- Noll Gräber, S.; Kitta, M.; Neumann, E.; Kuhn, M.B. Neue Erkenntnisse zur Herstellung von Blätterteiggebäcken. Getreide Mehl Und Brot 1997, 6, 363–368. [Google Scholar]
- Telloke, G.W. Die Mikrostruktur von Blätterteig und Blätterteiggebäck unterschiedlicher Qualität. Getreide Mehl Und Brot 1988, 42, 217–222. [Google Scholar]
- Floros, J.D.; Chinnan, M.S. Computer graphics-assisted optimization for product and process-development. Food Technol. 1988, 42, 72–78. [Google Scholar]
- Nazni, P.; Shemi, G. Optimization of autoclave pumpkin seed bread using response surface methodology. Elixir Int. J. 2012, 45, 7774–7780. [Google Scholar]
- Food Standards Agency. Food Standards Agency—Nutrient Analysis Survey of Biscuits, Buns, Cakes and Pastries—Analytical Report; Food Standards Agency: London, UK, 2011. [Google Scholar]
- EC European Commission. Regulation (EC) No. 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1487675127761&uri=CELEX:02006R1924-20141213 (accessed on 10 December 2016).
- Sasaki, T.; Matsuki, J. Effect of wheat starch structure on swelling power. Cereal Chem. 1998, 75, 525–529. [Google Scholar] [CrossRef]
- Dobraszczyk, B.J.; Morgenstern, M. Rheology and the breadmaking process. J. Cereal Sci. 2003, 38, 229–245. [Google Scholar] [CrossRef]
Basic Dough (g) | Roll-in Fat (g) | Laminated Dough (LD) (g) | Fat Content in LD (g) | Fat Reduction (g) |
---|---|---|---|---|
1500 | 740 | 2240 | 33.0 | 0 |
1500 | 494 | 1994 | 24.8 | 25 |
1500 | 371 | 1871 | 19.8 | 40 |
1500 | 297 | 1797 | 16.5 | 50 |
1500 | 184 | 1684 | 10.9 | 67 |
Fat Layers | Sequence of Turns * |
---|---|
12 | 4-RP30-3 |
36 | 4-RP30-3-RP90-3 |
48 | 4-RP30-4-RP90-3 |
64 | 4-RP30-4-RP90-4 |
81 | 3-RP30-3-RP90-3-RP30-3 |
108 | 3-RP30-3-RP90-3-RP30-4 |
128 | 4-RP30-4-RP90-4-RP30-2 |
144 | 4-RP30-3-RP90-4-RP30-3 |
192 | 4-RP30-4-RP90-4-RP30-3 |
256 | 4-RP30-4-RP90-4-RP30-4 |
Response | Source | Sum of Squares | F Value | p Value |
---|---|---|---|---|
Firmness/Width (ECK) | Model | 28,338.43 | 21.98 | <0.0001 |
Residual | 2307.26 | |||
R2 = 0.92 | Lack of fit | 1257.91 | 0.65 | 0.8130 |
CV (%) = 12.43 | Pure error | 1049.35 | ||
Firmness (MPP) | Model | 26,812.75 | 8.74 | <0.0001 |
Residual | 3230.47 | |||
R2 = 0.89 | Lack of fit | 2291.63 | 1.63 | 0.2492 |
CV (%) = 17.29 | Pure error | 938.83 | ||
Specific Volume | Model | 135.48 | 6.91 | <0.0001 |
Residual | 34.05 | |||
R2 = 0.80 | Lack of fit | 26.59 | 2.04 | 0.1026 |
CV (%) = 10.93 | Pure error | 7.46 | ||
Number of Cells | Model | 6.404 × 106 | 10.07 | <0.0001 |
Residual | 7.364 × 105 | |||
R2 = 0.89 | Lack of fit | 5.822 × 105 | 2.16 | 0.1381 |
CV (%) = 13.81 | Pure error | 1.542 × 105 | ||
Slice Brightness | Model | 8054.35 | 17.24 | <0.0001 |
Residual | 540.99 | |||
R2 = 0.94 | Lack of fit | 389.57 | 1.47 | 0.2977 |
CV (%) = 4.90 | Pure error | 151.42 |
Settings for Optimization | Range of Experimental Design | PP Control | Improved PP Control | Fat-Reduced PP | |||||
---|---|---|---|---|---|---|---|---|---|
Target for Optimization | Lower Limit | Upper Limit | Standard Dough | Predicted Parameters | Chosen Parameters | Predicted Parameters | Chosen Parameters | ||
Fat reduction (%) | target = 0 * | 0 | 40 | 0–50 | 0.0 | 0.0 | 0.0 | ||
target = 40 ** | 0 | 40 | 0–50 | 40.0 | 40.0 | ||||
Fat layers | in range | 36 | 144 | 12–256 | 144 | 82 | 81 | 46 | 48 |
Final thickness (mm) | in range | 1.0 | 3.5 | 1.0–4.5 | 2.50 | 2.48 | 2.50 | 2.27 | 2.25 |
Range of Responses | Measured Values | Predicted Values | Measured Values | Predicted Values | Measured Values | ||||
Firmness*100/Width (ECK) (N×s/mm) | minimize | 50 | 110 | 7.0–124.5 | 65.2 ± 6.0 b | 63.9 | 54.6 ± 4.8 c | 80.2 | 80.4 ± 6.6 a |
Firmness (MPP) (N×s) | minimize | 50 | 110 | 18.7–144.5 | 62.5 ± 4.8 b | 50.0 | 59.4 ± 8.1 b | 78.8 | 69.4 ± 5.9 a |
Specific Volume calc. (mL/g) | in range | 7 | 13 | 5.3–13.3 | 6.6 ± 0.8 c | 8.8 | 8.3 ± 1.0 b | 10.3 | 10.4 ± 0.9 a |
Number of Cells | maximize | 1200 | 2307 | 213–2307 | 1273 ± 105 c | 1431 | 1396 ± 264 b | 1672 | 1742 ± 245 a |
Slice Brightness | maximize | 80.0 | 122.8 | 57.0–122.8 | 116.3 ± 8.5 a | 120.1 | 106.5 ± 7.8 b | 107.7 | 102.6 ± 11.1 b |
Number of Cells/Height (avg) (1/mm) | maximize | 25.0 | 39.9 | 16.6–39.9 | 37.0 ± 4.2 a | 36.0 | 33.3 ± 3.5 b | 35.0 | 36.3 ± 4.2 a |
Number of Cells/Slice Area (1/mm2) | in range | 0.450 | 0.600 | 0.382–0.606 | 0.519 ± 0.050 a | 0.515 | 0.484 ± 0.047 b | 0.508 | 0.508 ± 0.049 a |
Composition | Improved PP Control | Fat-Reduced PP | Reference PP * |
---|---|---|---|
Protein (g/100 g) | 5.4 ± 0.1 | 6.7 ± 0.1 | 6.7 |
Carbohydrates (g/100 g) | 42.5 ± 0.7 | 52.6 ± 1.2 | 42.8 |
Fat (g/100 g) | 45.0 ± 0.9 | 29.0 ± 0.6 | 33.2 |
Moisture (g/100 g) | 6.0 ± 0.4 | 10.2 ± 1.3 | 13.4 |
Ash (g/100 g) | 1.1 ± 0.1 | 1.5 ± 0.1 | 1.5 |
Sample | PP Control | Improved PP Control | Fat-Reduced PP |
---|---|---|---|
Liking of Appearance | −0.0495 * | 0.1225 ns | 0.0861 ns |
Liking of Color | 0.9384 ns | −0.9396 ns | −0.9376 ns |
Liking of Volume | −0.0015 ** | 0.0415 * | 0.0227 * |
Liking of Flavor | −0.0195 * | 0.1247 ns | 0.0292 * |
Liking of Mouthfeel/Texture | −0.0338 * | 0.1132 ns | 0.0641 ns |
Overall Acceptability | −0.0103 ** | 0.1246 ns | 0.0128 * |
Layers | −1.0 × 10−8 *** | 0.0223 * | 0.0016 ** |
Fatness | 0.4047 ns | −0.4934 ns | −0.3588 ns |
Saltiness | −0.0994 ns | 0.2083 ns | 0.1073 ns |
Moisture | 0.7625 ns | −0.7719 ns | −0.7582 ns |
Firmness | 0.9872 ns | −0.9872 ns | −0.9872 ns |
Crispiness | 1.8 × 10−7 *** | 0.0421 * | 0.0007 *** |
Off-flavor | 0.8251 ns | −0.8295 ns | −0.8229 ns |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silow, C.; Zannini, E.; Axel, C.; Belz, M.C.E.; Arendt, E.K. Optimization of Fat-Reduced Puff Pastry Using Response Surface Methodology. Foods 2017, 6, 15. https://doi.org/10.3390/foods6020015
Silow C, Zannini E, Axel C, Belz MCE, Arendt EK. Optimization of Fat-Reduced Puff Pastry Using Response Surface Methodology. Foods. 2017; 6(2):15. https://doi.org/10.3390/foods6020015
Chicago/Turabian StyleSilow, Christoph, Emanuele Zannini, Claudia Axel, Markus C. E. Belz, and Elke K. Arendt. 2017. "Optimization of Fat-Reduced Puff Pastry Using Response Surface Methodology" Foods 6, no. 2: 15. https://doi.org/10.3390/foods6020015
APA StyleSilow, C., Zannini, E., Axel, C., Belz, M. C. E., & Arendt, E. K. (2017). Optimization of Fat-Reduced Puff Pastry Using Response Surface Methodology. Foods, 6(2), 15. https://doi.org/10.3390/foods6020015