Chemotypic Characterization and Biological Activity of Rosmarinus officinalis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Gas Chromatography-Mass Spectrometry (GC-MS)
2.3. Chiral Gas Chromatography-Mass Spectrometry
2.4. Hierarchical Cluster Analysis
2.5. Antifungal Screening
2.6. Xanthine Oxidase Inhibition Assay
2.7. Tyrosinase Inhibition Assay
2.8. Cytotoxicity Screening
3. Results and Discussion
3.1. Essential Oil Compositions
3.2. Chemotypes of Rosemary
3.3. Antifungal Activity
3.4. Other Biological Assays
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Heinrich, M.; Kufer, J.; Leonti, M.; Pardo-de-Santayana, M. Ethnobotany and ethnopharmacology—Interdisciplinary links with the historical sciences. J. Ethnopharmacol. 2006, 107, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Savo, V.; Giulia, C.; Maria, G.P.; David, R. Folk phytotherapy of the Amalfi Coast (Campania, Southern Italy). J. Ethnopharmacol. 2011, 135, 376–392. [Google Scholar] [CrossRef] [PubMed]
- Calvo, M.I.; Akerreta, S.; Cavero, R.Y. Pharmaceutical ethnobotany in the Riverside of Navarra (Iberian Peninsula). J. Ethnopharmacol. 2011, 135, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Novais, M.H.; Santos, I.; Mendes, S.; Pinto-Gomes, C. Studies on pharmaceutical ethnobotany in Arrabida Natural Park (Portugal). J. Ethnopharmacol. 2004, 93, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Boudjelal, A.; Henchiri, C.; Sari, M.; Sarri, D.; Hendel, N.; Benkhaled, A.; Ruberto, G. Herbalists and wild medicinal plants in M’Sila (North Algeria): An ethnopharmacology survey. J. Ethnopharmacol. 2013, 148, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Eddouks, M.; Maghrani, M.; Lemhadri, A.; Ouahidi, M.-L.; Jouad, H. Ethnopharmacological survey of medicinal plants esed for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet). J. Ethnopharmacol. 2002, 82, 97–103. [Google Scholar] [CrossRef]
- Eddouks, M.; Ajebli, M.; Hebi, M. Ethnopharmacological survey of medicinal plants used in Daraa-Tafilalet Region (Province of Errachidia), Morocco. J. Ethnopharmacol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Al-Qura’n, S. Ethnopharmacological survey of wild medicinal plants in Showbak, Jordan. J. Ethnopharmacol. 2009, 123, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Jouad, H.; Haloui, M.; Rhiouani, H.; El Hilaly, J.; Eddouks, M. Ethnobotanical survey of medicinal plants used for the treatment of diabetes, cardiac and renal diseases in the north centre region of Morocco (Fez-Boulemane). J. Ethnopharmacol. 2001, 77, 175–182. [Google Scholar] [CrossRef]
- Ivancheva, S.; Stantcheva, B. Ethnobotanical inventory of medicinal plants in Bulgaria. J. Ethnopharmacol. 2000, 69, 165–172. [Google Scholar] [CrossRef]
- El-Hilaly, J.; Hmammouchi, M.; Lyoussi, B. Ethnobotanical studies and economic evaluation of medicinal plants in Taounate Province (Northern Morocco). J. Ethnopharmacol. 2003, 86, 149–158. [Google Scholar] [CrossRef]
- González, J.A.; García-Barriuso, M.; Amich, F. Ethnobotanical study of medicinal plants traditionally used in the Arribes Del Duero, western Spain. J. Ethnopharmacol. 2010, 131, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Cavero, R.Y.; Akerreta, S.; Calvo, M.I. Pharmaceutical ethnobotany in the Middle Navarra (Iberian Peninsula). J. Ethnopharmacol. 2011, 137, 844–855. [Google Scholar] [CrossRef] [PubMed]
- Juárez-Vázquez, M.D. C.; Carranza-Álvarez, C.; Alonso-Castro, A.J.; González-Alcaraz, V.F.; Bravo-Acevedo, E.; Chamarro-Tinajero, F.J.; Solano, E. Ethnobotany of medicinal plants used in Xalpatlahuac, Guerrero, México. J. Ethnopharmacol. 2013, 148, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Josabad Alonso-Castro, A.; Jose Maldonado-Miranda, J.; Zarate-Martinez, A.; Jacobo-Salcedo, M.D.R.; Fernández-Galicia, C.; Alejandro Figueroa-Zuñiga, L.; Abel Rios-Reyes, N.; Angel De León-Rubio, M.; Andrés Medellín-Castillo, N.; Reyes-Munguia, A.; et al. Medicinal plants used in the Huasteca Potosina, México. J. Ethnopharmacol. 2012, 143, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Del Baño, M.J.; Lorente, J.; Castillo, J.; Benavente-García, O.; Del Río, J.A.; Ortuño, A.; Quirin, K.W.; Gerard, D. Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. Antioxidant activity. J. Agric. Food Chem. 2003, 51, 4247–4253. [Google Scholar] [CrossRef] [PubMed]
- Daferera, D.J.; Ziogas, B.N.; Polissiou, M.G. GC-MS Analysis of essential oils from some Greek aromatic plants and their fungitoxicity on Penicillium digitatum. J. Agric. Food Chem. 2000, 48, 2576–2581. [Google Scholar] [CrossRef] [PubMed]
- Dellacassa, E.; Lorenzo, D.; Moyna, P.; Frizzo, C.D.; Serafini, L.A.; Dugo, P. Rosmarinus officinalis L. (Labiatae) essential oils from the south of Brazil and Uruguay. J. Essent. Oil Res. 1999, 11, 27–30. [Google Scholar] [CrossRef]
- Celiktas, O.Y.; Kocabas, E.E. H.; Bedir, E.; Sukan, F.V.; Ozek, T.; Baser, K.H. C. Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations. Food Chem. 2007, 100, 553–559. [Google Scholar] [CrossRef]
- Zaouali, Y.; Messaoud, C.; Salah, A. Ben; Boussaïd, M. Oil composition variability among populations in relationship with their ecological areas in Tunisian Rosmarinus officinalis L. Flavour Fragr. J. 2005, 20, 512–520. [Google Scholar] [CrossRef]
- Missouri Botanical Garden. Available online: Tropicos.org www.tropicos.org (accessed on 26 January 2017).
- Lawless, J. Aromatherapy and the Mind; Thorsons: London, UK, 1994. [Google Scholar]
- Alnamer, R.; Alaoui, K.; Bouidida, E.H.; Benjouad, A. Psychostimulant activity of Rosmarinus officinalis essential oils. J. Nat. Prod. (India) 2012, 5, 83–92. [Google Scholar]
- Hongratanaworakit, T. Simultaneous aromatherapy massage with rosemary oil on humans. Sci. Pharm. 2009, 77, 375–387. [Google Scholar] [CrossRef]
- Sayorwan, W.; Ruangrungsi, N.; Piriyapunyporn, T.; Hongratanaworakit, T.; Kotchabhakdi, N.; Siripornpanich, V. Effects of inhaled rosemary oil on subjective feelings and activities of the nervous system. Sci. Pharm. 2013, 81, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Fernández, L.F.; Palomino, O.M.; Frutos, G. Effectiveness of Rosmarinus officinalis essential oil as antihypotensive agent in primary hypotensive patients and its influence on health-related quality of life. J. Ethnopharmacol. 2014, 151, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Dobetsberger, C.; Buchbauer, G. Actions of essential oils on the central nervous system: An updated review. Flavour Fragr. J. 2011, 26, 300–316. [Google Scholar] [CrossRef]
- Orhan, I.; Aslan, S.; Kartal, M.; Şener, B.; Hüsnü Can Başer, K. Inhibitory effect of Turkish Rosmarinus officinalis L. on acetylcholinesterase and butyrylcholinesterase enzymes. Food Chem. 2008, 108, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Velazquez, M.; Rosario-Cruz, R.; Castillo-Herrera, G.; Flores-Fernandez, J.M.; Alvarez, A.H.; Lugo-Cervantes, E. Acaricidal effect of essential oils from Lippia graveolens (Lamiales: Verbenaceae), Rosmarinus officinalis (Lamiales: Lamiaceae), and Allium sativum (Liliales: Liliaceae) against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). J. Med. Entomol. 2011, 48, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Laborda, R.; Manzano, I.; Gamón, M.; Gavidia, I.; Pérez-Bermúdez, P.; Boluda, R. Effects of Rosmarinus officinalis and Salvia officinalis essential oils on Tetranychus urticae Koch (Acari: Tetranychidae). Ind. Crops Prod. 2013, 48, 106–110. [Google Scholar] [CrossRef]
- Pintore, G.; Usai, M.; Bradesi, P.; Juliano, C.; Boatto, G.; Tomi, F.; Chessa, M.; Cerri, R.; Casanova, J. Chemical composition and antimicrobial activity of Rosmarinus officinalis L. oils from Sardinia and Corsica. Flavour Fragr. J. 2002, 17, 15–19. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Chatha, S.A.S.; Jabbar, A.; Mahboob, S.; Nigam, P.S. Rosmarinus officinalis essential oil: Antiproliferative, antioxidant and antibacterial activities. Braz. J. Microbiol. 2010, 41, 1070–1078. [Google Scholar] [CrossRef] [PubMed]
- Bouchra, C.; Achouri, M.; Hassani, L.M.I.; Hmamouchi, M. Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea Pers: Fr. J. Ethnopharmacol. 2003, 89, 165–169. [Google Scholar] [CrossRef]
- Sacchetti, G.; Maietti, S.; Muzzoli, M.; Scaglianti, M.; Manfredini, S.; Radice, M.; Bruni, R. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem. 2005, 91, 621–632. [Google Scholar] [CrossRef]
- Martinez, A.L.; Eva Gonzalez-Trujano, M.; Pellicer, F.; Lopez-Munoz, F.J.; Navarrete, A. Antinociceptive effect and GC/MS analysis of Rosmarinus officinalis L. essential oil from its aerial parts. Planta Med. 2009, 75, 508–511. [Google Scholar] [CrossRef] [PubMed]
- Flamini, G.; Cioni, P.L.; Morelli, I.; Macchia, M.; Ceccarini, L. Main agronomic-productive characteristics of two ecotypes of Rosmarinus officinalis L. and chemical composition of their essential oils. J. Agric. Food Chem. 2002, 50, 3512–3517. [Google Scholar] [CrossRef] [PubMed]
- Lahlou, M.; Berrada, R. Composition and niticidal activity of essential oils of three chemotypes of Rosmarinus officinalis L. acclimatized in Morroco. Flavour Fragr. J. 2003, 18, 124–127. [Google Scholar] [CrossRef]
- Zaouali, Y.; Bouzaine, T.; Boussaid, M. Essential oils composition in two Rosmarinus officinalis L. varieties and incidence for antimicrobial and antioxidant activities. Food Chem Toxicol 2010, 48, 3144–3152. [Google Scholar] [CrossRef] [PubMed]
- Napoli, E.M.; Curcuruto, G.; Ruberto, G. Screening of the essential oil composition of wild Sicilian rosemary. Biochem. Systemat. Ecol. 2010, 38, 659–670. [Google Scholar] [CrossRef]
- Matsuzaki, Y.; Tsujisawa, T.; Nishihara, T.; Nakamura, M.; Kakinoki, Y. Antifungal activity of chemotype essential oils from rosemary against Candida albicans. J. Stomatol. 2013, 3, 176–182. [Google Scholar] [CrossRef]
- Jordán, M.J.; Lax, V.; Rota, M.C.; Lorán, S.; Sotomayor, J.A. Effect of bioclimatic area on the essential oil composition and antibacterial activity of Rosmarinus officinalis L. Food Cont. 2013, 30, 463–468. [Google Scholar] [CrossRef]
- Council of Europe. European Pharmacopoeia, 3rd ed.; Council of Europe Press: Strasbourg, France, 1997. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
- Mallavarapu, R.G.; Singh, M.; Chandra Shekhar, R.; Ramesh, S.; Kumar, S. Rosemary oil: Prospects of its production in India. Med. Aromat. Plant Sci. 2000, 22, 298–301. [Google Scholar]
- Chen, Z.-F.; Yang, J.-L.; Wang, C.; Cui, S.-Y. Study on chemical constituents of essential oil of Rosmarinus officinalis. Zhongeaoyao 2001, 32, 1085–1086. [Google Scholar]
- Diab, Y.; Auezova, L.; Chebib, H.; Chalchat, J.-C.; Figueredo, G. Chemical composition of Lebanese rosemary (Rosmarinus officinalis L.) essential oil as a function of the geographical region and the harvest time. J. Essent. Oil Res. 2002, 14, 449–452. [Google Scholar] [CrossRef]
- Angelini, L.G.; Carpanese, G.; Cioni, P.L.; Morelli, I.; Macchia, M.; Flamini, G. Essential oils from Mediterranean Lamiaceae as weed germination inhibitors. J. Agric. Food Chem. 2003, 51, 6158–6164. [Google Scholar] [CrossRef] [PubMed]
- Jirovetz, L.; Buchbauer, G.; Denkova, Z.; Stoyanova, A.; Murgov, I.; Schmidt, E.; Geissler, M. Antimicrobial testing and gas chromatographic analysis of pure oxygenated monoterpenes 1,8-cineole, α-terpineol, terpinen-4-ol, and camphor, as well as target compounds in essential oils of pine (Pinus pinaster), rosemary (Rosmarinus officinalis), tea tree (Melaleuca alternifolia). Sci. Pharm. 2005, 73, 27–38. [Google Scholar]
- Boutekedjiret, C.; Buatois, B.; Bessiere, J.M. Characterization of rosemary essential oil of different areas of Algeria. J. Essent. Oil Bear. Plants 2005, 8, 65–70. [Google Scholar] [CrossRef]
- Kubeczka, K.H.; Formáček, V. Essential Oils Analysis by Capillary Gas Chromatography and Carbon-13 NMR Spectroscopy, 2nd ed.; Kubeczka, K.H., Formáček, V., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2002; pp. 285–300. [Google Scholar]
- Lahlou, M.; Berrada, R.; Agoumi, A.; Hmamouchi, M. The potential effectiveness of essential oils in the control of human head lice in Morocco. Int. J. Aromather. 2001, 10, 108–128. [Google Scholar] [CrossRef]
- Serrano, E.; Palma, J.; Tinoco, T.; Venancio, F.; Martins, A. Evaluation of the essential oils of rosemary (Rosmarinus officinalis L.) from different zones of “Alentejo” (Portugal). J. Essent. Oil Res. 2002, 14, 87–92. [Google Scholar] [CrossRef]
- Angioni, A.; Barra, A.; Cereti, E.; Barile, D.; Coïsson, J.D.; Arlorio, M.; Dessi, S.; Coroneo, V.; Cabras, P. Chemical composition, plant genetic differences, antimicrobial and antifungal activity investigation of the essential oil of Rosmarinus officinalis L. J. Agric. Food Chem. 2004, 52, 3530–3535. [Google Scholar] [CrossRef] [PubMed]
- Kartnig, T.; Fischer, U.; Bucar, F. Vergleichende gaschromatographische Untersuchungen an ätherischen Wacholderölen, Fenchelölen und Rosmarinölen. Sci. Pharm. 1998, 66, 237–252. [Google Scholar]
- Ait-Ouazzou, A.; Lorán, S.; Bakkali, M.; Laglaoui, A.; Rota, C.; Herrera, A.; Pagán, R.; Conchello, P. Chemical composition and antimicrobial activity of essential oils of Thymus algeriensis, Eucalyptus globulus and Rosmarinus officinalis from Morocco. J. Sci. Food Agric. 2011, 91, 2643–2651. [Google Scholar] [CrossRef] [PubMed]
- Atti-Santos, A.C.; Rossato, M.; Pauletti, G.F.; Rota, L.D.; Rech, J.C.; Pansera, M.R.; Agostini, F.; Serafini, L.A.; Moyna, P. Physico-chemical evaluation of Rosmarinus officinalis L. essential oils. Braz. Arch. Biol. Technol. 2005, 48, 1035–1039. [Google Scholar] [CrossRef]
- Baratta, M.T.; Dorman, H.J. D.; Figueiredo, A.C.; Barroso, J.G.; Ruberto, G. Antimicrobial and antioxidant properties of some commercial essential oils. Flavour Fragr. J. 1998, 13, 235–244. [Google Scholar] [CrossRef]
- Bousbia, N.; Abert Vian, M.; Ferhat, M.A.; Petitcolas, E.; Meklati, B.Y.; Chemat, F. Comparison of two isolation methods for essential oil from rosemary leaves: Hydrodistillation and microwave hydrodiffusion and gravity. Food Chem. 2009, 114, 355–362. [Google Scholar] [CrossRef]
- Boutekedjiret, C.; Bentahar, F.; Belabbes, R.; Bessiere, J.M. Extraction of rosemary essential oil by steam distillation and hydrodistillation. Flavour Fragr. J. 2003, 18, 481–484. [Google Scholar] [CrossRef]
- Cassel, E.; Vargas, R.M. F.; Martinez, N.; Lorenzo, D.; Dellacassa, E. Steam distillation modeling for essential oil extraction process. Ind. Crops Prod. 2009, 29, 171–176. [Google Scholar] [CrossRef]
- Conti, B.; Canale, A.; Bertoli, A.; Gozzini, F.; Pistelli, L. Essential oil composition and larvicidal activity of xix Mediterranean aromatic plants against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol. Res. 2010, 107, 1455–1461. [Google Scholar] [CrossRef] [PubMed]
- De Azeredo, G.A.; Stamford, T.L. M.; Nunes, P.C.; Gomes Neto, N.J.; De Oliveira, M.E. G.; De Souza, E.L. Combined application of essential oils from Origanum vulgare L. and Rosmarinus officinalis L. to inhibit bacteria and autochthonous microflora associated with minimally processed vegetables. Food Res. Int. 2011, 44, 1541–1548. [Google Scholar] [CrossRef]
- Djeddi, S.; Bouchenah, N.; Settar, I.; Skaltsa, H.D. Composition and antimicrobial activity of the essential oil of Rosmarinus officinalis from Algeria. Chem. Nat. Comp. 2007, 43, 487–490. [Google Scholar] [CrossRef]
- Gachkar, L.; Yadegari, D.; Rezaei, M.B.; Taghizadeh, M.; Astaneh, S.A.; Rasooli, I. Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food Chem. 2007, 102, 898–904. [Google Scholar] [CrossRef]
- Giordani, R.; Hadef, Y.; Kaloustian, J. Compositions and antifungal activities of essential oils of some Algerian aromatic plants. Fitoterapia 2008, 79, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Guillen, M.D.; Cabo, N.; Burillo, J. Characterisation of the essential oils of some cultivated aromatic plants of industrial interest. J. Sci. Food Agric. 1996, 70, 359–363. [Google Scholar] [CrossRef]
- Jalali-Heravi, M.; Moazeni, R.S.; Sereshti, H. Analysis of Iranian rosemary essential oil: Application of gas chromatography-mass spectrometry combined with chemometrics. J. Chromatogr. A 2011, 1218, 2569–2576. [Google Scholar] [CrossRef] [PubMed]
- Jamshidi, R.; Afzali, Z.; Afzali, D. Chemical composition of hydrodistillation essential oil of rosemary in different origins in Iran and comparison with other countries. Am. Eurasian J. Agric. Environ. Sci. 2009, 5, 78–81. [Google Scholar]
- Jordán, M.J.; Lax, V.; Rota, M.C.; Lorán, S.; Sotomayor, J.A. Effect of the phenological stage on the chemical composition, and antimicrobial and antioxidant properties of Rosmarinus officinalis L. essential oil and its polyphenolic extract. Ind. Crops Prod. 2013, 48, 144–152. [Google Scholar] [CrossRef]
- Katerinopoulos, H.E.; Pagona, G.; Afratis, A.; Stratigakis, N.; Roditakis, N. Composition and insect attracting activity of the essential oil of Rosmarinus officinalis. J. Chem. Ecol. 2005, 31, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Minaiyan, M.; Ghannadi, A.R.; Afsharipour, M.; Mahzouni, P. Effects of extract and essential oil of Rosmarinus officinalis L. on TNBS-induced colitis in rats. Res. Pharmaceut. Sci. 2011, 6, 13–21. [Google Scholar]
- Sui, X.; Liu, T.; Ma, C.; Yang, L.; Zu, Y.; Zhang, L.; Wang, H. Microwave irradiation to pretreat rosemary (Rosmarinus officinalis L.) for maintaining antioxidant content during storage and to extract essential oil simultaneously. Food Chem. 2012, 131, 1399–1405. [Google Scholar] [CrossRef]
- Touafek, O.; Nacer, A.; Kabouche, A.; Kabouche, Z.; Bruneau, C. Chemical composition of the essential oil of Rosmarinus officinalis cultivated in the Algerian Sahara. Chem. Nat. Comp. 2004, 40, 28–29. [Google Scholar] [CrossRef]
- Usai, M.; Marchetti, M.; Foddai, M.; Del Caro, A.; Desogus, R.; Sanna, I.; Piga, A. Influence of different stabilizing operations and storage time on the composition of essential oil of thyme (Thymus officinalis L.) and rosemary (Rosmarinus officinalis L.). LWT-Food Sci. Technol. 2011, 44, 244–249. [Google Scholar] [CrossRef]
- Wang, W.; Wu, N.; Zu, Y.G.; Fu, Y.J. Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components. Food Chem. 2008, 108, 1019–1022. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wu, N.; Fu, Y.-J.; Wang, W.; Luo, M.; Zhao, C.-J.; Zu, Y.-G.; Liu, X.-L. Chemical composition and antimicrobial activity of the essential oil of rosemary. Environ. Toxicol. Pharmacol. 2011, 32, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, I.; Juarez, M.A.; Bandoni, A.L. The essential oil of Rosmarinus officinalis growing in Argentina. J. Essent. Oil Res. 1991, 3, 11–15. [Google Scholar] [CrossRef]
- Moretti, M.D.L.; Peana, A.T.; Passino, G.S.; Bazzoni, A.; Solinas, V. Effects of iron on yield and composition of Rosmarinus officinalis L. essential oil. J. Essent. Oil Res. 1998, 10, 43–49. [Google Scholar] [CrossRef]
- Moretti, M.D.L.; Peana, A.T.; Passino, G.S.; Solinas, V. Effects of soil properties on yield and composition of Rosmarinus officinalis essential oil. J. Essent. Oil Res. 1998, 10, 261–267. [Google Scholar] [CrossRef]
- Rao, L.J.; Singh, M.; Raghavan, B.; Abraham, K.O. Rosemary (Rosmarinus officinalis L.): Impact of drying on its flavor quality. J. Food Qual. 1998, 21, 107–115. [Google Scholar] [CrossRef]
- El-Ghorab, A.H. Supercritical fluid extraction of the Egyptian rosemary (Rosmarinus officinalis) leaves and Nigella sativa L. seeds volatile oils and their antioxidant activities. J. Essent. Oil Bear. Plants 2003, 6, 67–77. [Google Scholar] [CrossRef]
- Satyal, P.; Murray, B.L.; McFeeters, R.L.; Setzer, W.N. Essential oil characterization of Thymus vulgaris from various geographical locations. Foods 2016, 5, 70. [Google Scholar] [CrossRef] [PubMed]
- Apaya, K.L.; Chichioco-Hernandez, C.L. Xanthine oxidase inhibition of selected Philippine medicinal plants. J. Med. Plants Res. 2011, 5, 289–292. [Google Scholar]
- Ai, N.; Welsh, W.J.; Santhanam, U.; Hu, H.; Lyga, J. Novel virtual screening approach for the discovery of human tyrosinase inhibitors. PLoS ONE 2014, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mhaidat, N.M.; Al-Smadi, M.; Al-Momani, F.; Alzoubi, K.H.; Mansi, I.; Al-Balas, Q. Synthesis, antimicrobial and in vitro antitumor activities of a series of 1,2,3-thiadiazole and 1,2,3-selenadiazole derivatives. Drug Des. Devel. Ther. 2015, 9, 3645–3652. [Google Scholar] [CrossRef] [PubMed]
- Presti, M.L.; Ragusa, S.; Trozzi, A.; Dugo, P.; Visinoni, F.; Fazio, A.; Dugo, G.; Mondello, L. A comparison between different techniques for the isolation of rosemary essential oil. J. Sep. Sci. 2005, 28, 273–280. [Google Scholar] [CrossRef] [PubMed]
- König, W.A.; Fricke, C.; Saritas, Y.; Momeni, B.; Hohenfeld, G. Adulteration or natural variability? Enantioselective gas chromatography in purity control of essential oils. J. High Res. Chromatogr. 1997, 20, 55–61. [Google Scholar] [CrossRef]
- Ravid, U.; Putievsky, E.; Katzir, I.; Lewinsohn, E.; Dudai, N. Identification of (1R)(+)-verbenone in essential oils of Rosmarinus officinalis L. Flavour Fragr. J. 1997, 12, 109–112. [Google Scholar] [CrossRef]
- Moreno, S.; María, A.; Sana, O.; Gaya, M.; Barni, M.V.; Castro, O.A.; van Baren, C. Rosemary compounds as nutraceutical health products. In Food Additive; El-Shamragy, Y., Ed.; InTech: Rijeka, Croatia, 2012; Chapter 9; pp. 157–174. [Google Scholar]
- Beretta, G.; Artali, R.; Facino, R.M.; Gelmini, F. An analytical and theoretical approach for the profiling of the antioxidant activity of essential oils: The case of Rosmarinus officinalis L. J. Pharmaceut. Biomed. Anal. 2011, 55, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Meziane-Assami, D.; Tomao, V.; Ruiz, K.; Meklati, B.Y.; Chemat, F. Geographical differentiation of rosemary based on GC/MS and fast HPLC analyses. Food Anal. Meth. 2013, 6, 282–288. [Google Scholar] [CrossRef]
- Li, G.; Cervelli, C.; Ruffoni, B.; Shachter, A.; Dudai, N. Volatile diversity in wild populations of rosemary (Rosmarinus officinalis L.) from the Tyrrhenian Sea vicinity cultivated under homogeneous environmental conditions. Ind. Crops Prod. 2016, 84, 381–390. [Google Scholar] [CrossRef]
- Elamrani, A.; Zrira, S.; Benjilali, B.; Berrada, M. A study of Moroccan rosemary oils. J. Essent. Oil Res. 2000, 12, 487–495. [Google Scholar] [CrossRef]
- Nowak, A.; Kalemba, D.; Krala, L.; Piotrowska, M.; Czyzowska, A. The effects of thyme (Thymus vulgaris) and rosemary (Rosmarinus officinalis) essential oils on Brochothrix thermosphacta and on the shelf life of beef packaged in high-oxygen modified atmosphere. Food Microbiol. 2012, 32, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Lakušić, D.V.; Ristić, M.S.; Slavkovska, V.N.; Šinžar-Sekulić, J.B.; Lakušić, B.S. Environment-related variations of the composition of the essential oils of rosemary (Rosmarinus officinalis L.) in the Balkan Penninsula. Chem. Biodivers. 2012, 9, 1286–1302. [Google Scholar] [CrossRef] [PubMed]
- Shin, S. Anti-Aspergillus activities of plant essential oils and their combination effects with ketoconazole or amphotericin B. Arch. Pharm. Res. 2003, 26, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.-J.; Zu, Y.-G.; Chen, L.-Y.; Shi, X.-G.; Wang, Z.; Sun, S.; Efferth, T. Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytother. Res. 2007, 21, 989–994. [Google Scholar] [CrossRef] [PubMed]
- Giordani, R.; Regli, P.; Kaloustian, J.; Mikaïl, C.; Abou, L.; Portugal, H. Antifungal effect of various essential oils against Candida albicans. Potentiation of antifungal action of amphotericin B by essential oil from Thymus vulgaris. Phytother. Res. 2004, 18, 990–995. [Google Scholar] [CrossRef] [PubMed]
- Tampieri, M.P.; Galuppi, R.; MacChioni, F.; Carelle, M.S.; Falcioni, L.; Cioni, P.L.; Morelli, I. The inhibition of Candida albicans by selected essential oils and their major components. Mycopathologia 2005, 159, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Braga, F.G.; Bouzada, M.L.M.; Fabri, R.L.; de O. Matos, M.; Moreira, F.O.; Scio, E.; Coimbra, E.S. Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil. J. Ethnopharmacol. 2007, 111, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Aumeeruddy-Elalfi, Z.; Gurib-Fakim, A.; Mahomoodally, M.F. Kinetic studies of tyrosinase inhibitory activity of 19 essential oils extracted from endemic and exotic medicinal plants. S. Afr. J. Bot. 2016, 103, 89–94. [Google Scholar] [CrossRef]
- Wang, W.; Li, N.; Luo, M.; Zu, Y.; Efferth, T. Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. Molecules 2012, 17, 2704–2713. [Google Scholar] [CrossRef] [PubMed]
- Miladi, H.; Slama, R.B.; Mili, D.; Zouari, S.; Bakhrouf, A.; Ammar, E. Essential oil of Thymus vulgaris L. and Rosmarinus officinalis L.: Gas chromatography-mass spectrometry analysis, cytotoxicity and antioxidant properties and antibacterial activities against foodborne pathogens. Nat. Sci. 2013, 5, 729–739. [Google Scholar]
RI | Compound | Percent Composition | |||||
---|---|---|---|---|---|---|---|
Alabama | Western Cape | Kenya | Victoria | Nepal | Yemen | ||
800 | n-Octane | --- a | --- | --- | tr b | --- | --- |
801 | Hexanal | tr | --- | --- | --- | --- | --- |
849 | (2E)-Hexenal | tr | --- | --- | --- | --- | --- |
850 | (3Z)-Hexenol | tr | --- | 0.1 | --- | --- | --- |
920 | Artemisia triene | --- | --- | --- | tr | --- | --- |
922 | Tricyclene | 0.1 | 0.4 | 0.1 | 0.2 | 0.2 | 0.1 |
925 | α-Thujene | 0.1 | 0.1 | 0.2 | 0.1 | 0.2 | 0.2 |
934 | α-Pinene | 25.4 | 33.6 | 31.7 | 37.9 | 38.1 | 13.5 |
941 | Thujadiene | --- | --- | --- | --- | --- | tr |
947 | α-Fenchene | tr | 0.2 | tr | tr | 0.1 | --- |
950 | Camphene | 2.5 | 7.6 | 2.6 | 4.6 | 4.6 | 1.5 |
953 | Thuja-2,4(10)-diene | 0.5 | 1.2 | 0.4 | 0.8 | 0.8 | 0.3 |
972 | Sabinene | tr | --- | 0.1 | tr | 0.1 | tr |
978 | β-Pinene | 1.4 | 2.3 | 2.1 | 3.0 | 2.8 | 1.0 |
890 | 1-Octen-3-ol | --- | 0.6 | --- | --- | --- | 0.1 |
984 | 6-Methyl-5-Hepten-2-one | --- | --- | tr | tr | tr | --- |
984 | 3-Octanone | --- | 0.2 | --- | --- | --- | tr |
989 | Myrcene | 1.3 | 1.6 | 1.2 | 1.5 | 1.4 | 0.7 |
989 | Dehydro-1,8-cineole | --- | --- | 0.1 | --- | --- | --- |
1004 | p-Mentha-1(7),8-diene | --- | --- | --- | tr | tr | --- |
1005 | α-Phellandrene | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | --- |
1009 | δ-3-Carene | --- | --- | --- | --- | 0.1 | 0.2 |
1017 | α-Terpinene | 0.3 | 0.3 | 0.4 | 0.5 | 0.6 | tr |
1019 | p-Cymene | 0.9 | 1.6 | 0.4 | 1.6 | 1.5 | 1.1 |
1029 | Limonene | 2.7 | 4.4 | 2.3 | 3.5 | 3.5 | 1.6 |
1031 | 1,8-cineole | 18.8 | 16.3 | 20.9 | 29.4 | 23.0 | 20.6 |
1035 | (Z)-β-Ocimene | --- | 0.6 | tr | tr | tr | --- |
1044 | (E)-β-Ocimene | --- | 0.2 | --- | --- | --- | --- |
1048 | Thujol | --- | --- | --- | --- | --- | 0.1 |
1058 | γ-Terpinene | 1.0 | 0.4 | 1.0 | 0.8 | 1.2 | 0.1 |
1069 | cis-Sabinene hydrate | 0.1 | tr | 0.3 | tr | --- | 0.4 |
1070 | cis-4-Thujanol | --- | --- | --- | --- | tr | --- |
1085 | Terpinolene | 0.7 | 0.3 | 0.8 | 0.5 | 0.7 | 0.2 |
1086 | trans-Linalool oxide (furanoid) | --- | --- | --- | --- | --- | 0.1 |
1090 | p-Cymenene | tr | 0.1 | tr | 0.1 | 0.1 | --- |
1091 | Rosefuran | --- | --- | --- | tr | --- | --- |
1098 | Linalool | 2.7 | 3.1 | 2.8 | 2.3 | 2.2 | 3.8 |
1098 | cis-Decahydronaphthalene + Perillene | --- | --- | --- | --- | --- | 0.1 |
1100 | trans-Sabinene hydrate | --- | --- | 0.2 | --- | --- | --- |
1103 | Hotrienol | --- | --- | --- | tr | --- | --- |
1105 | (2E)-Hexenyl propanoate | --- | --- | --- | tr | --- | --- |
1106 | Isochrysanthenone | tr | 0.1 | tr | tr | tr | --- |
1117 | endo-Fenchol | tr | 0.1 | tr | tr | tr | tr |
1117 | 2,4-Dimethyl-2,4 heptadienal | --- | --- | --- | --- | --- | 0.1 |
1122 | Chrysanthenone | 0.2 | 0.5 | 0.5 | 0.5 | 0.3 | 0.5 |
1123 | cis-p-Menth-2-en-1-ol | tr | --- | tr | tr | --- | --- |
1126 | α-Campholenal | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
1139 | trans-Pinocarveol | 0.1 | 0.5 | --- | 0.1 | 0.1 | 0.1 |
1141 | cis-Verbenol | 0.2 | 0.1 | 0.3 | 0.1 | tr | 0.2 |
1144 | trans-Verbenol | 0.4 | 0.2 | 0.5 | 0.1 | 0.1 | --- |
1146 | Camphor | 2.4 | 0.7 | 2.1 | 1.7 | 1.7 | 7.0 |
1154 | trans-β-Terpineol | tr | 0.1 | tr | --- | tr | tr |
1155 | Camphene hydrate | --- | --- | --- | tr | --- | --- |
1161 | trans-Pinocamphone | 0.2 | 0.4 | 0.1 | 0.1 | 0.1 | 0.2 |
1162 | Pinocarvone | 0.3 | 0.1 | 0.3 | 0.2 | 0.1 | 0.2 |
1165 | Isofenchol | 0.2 | tr | 0.2 | tr | 0.1 | --- |
1169 | δ-Terpineol | 0.3 | --- | 0.3 | 0.1 | 0.2 | --- |
1171 | Borneol | 4.0 | 7.0 | 2.8 | 2.1 | 2.5 | 5.5 |
1175 | cis-Pinocamphone | 0.7 | 1.1 | 0.6 | 0.4 | 0.4 | 0.9 |
1177 | p-1,8-Menthadien-4-ol | tr | tr | tr | tr | --- | tr |
1179 | Terpinen-4-ol | 1.1 | 0.7 | 1.0 | 0.5 | 2.2 | 1.0 |
1185 | p-Cymen-8-ol | 0.1 | tr | 0.1 | tr | tr | 0.3 |
1194 | α-Terpineol | 2.9 | 1.0 | 2.6 | 0.9 | 1.5 | 3.2 |
1197 | Methyl chavicol | tr | --- | tr | tr | tr | --- |
1206 | Verbenone | 17.1 | 0.8 | 11.9 | 2.5 | 2.7 | 18.6 |
1213 | 3-Oxo-1,8-cineole | 0.1 | --- | 0.1 | tr | --- | tr |
1218 | (4-Methylpentyl)-cyclohexane | 0.4 | --- | 0.2 | --- | tr | 0.2 |
1218 | trans-Carveol | --- | --- | --- | tr | --- | --- |
1225 | Citronellol | 0.3 | --- | 0.3 | tr | 0.2 | 0.3 |
1228 | Bornyl formate. | --- | --- | --- | tr | --- | --- |
1238 | Neral | 0.1 | --- | 0.2 | tr | 0.1 | 0.1 |
1239 | cis-Shisool | 0.3 | 0.3 | 0.1 | tr | 0.1 | 0.3 |
1242 | Carvone | 0.1 | --- | tr | tr | tr | tr |
1242 | Hexyl isovalerate | --- | --- | --- | --- | tr | --- |
1246 | trans-Shisool | 0.4 | 0.3 | 0.2 | tr | 0.1 | 0.5 |
1247 | Carvotanacetone | --- | --- | --- | --- | --- | 3.0 |
1250 | Geraniol | 4.8 | --- | 4.6 | 0.7 | 1.6 | 3.8 |
1252 | cis-Myrtanol | 0.1 | --- | tr | --- | --- | 0.1 |
1257 | Methyl citronellate | --- | --- | --- | --- | tr | --- |
1267 | Geranial | 0.1 | --- | 0.2 | 0.1 | 0.1 | --- |
1268 | Isopiperitenone | 0.1 | 0.1 | 0.2 | --- | 0.1 | 0.3 |
1280 | cis-Verbenyl acetate | --- | tr | --- | tr | --- | 0.1 |
1284 | Bornyl acetate | 1.7 | 2.0 | 1.0 | 0.9 | 1.0 | 1.8 |
1290 | Thymol | --- | --- | --- | --- | --- | 0.5 |
1296 | Carvacrol | tr | --- | --- | --- | --- | --- |
1297 | Perilla alcohol | tr | --- | --- | --- | --- | --- |
1297 | Geranyl formate + Carvacrol | --- | --- | --- | --- | --- | 0.1 |
1321 | Myrtenyl acetate | tr | --- | tr | --- | --- | --- |
1321 | Methyl geranate | --- | --- | --- | --- | tr | --- |
1332 | δ-Elemene | 0.1 | --- | --- | tr | --- | --- |
1332 | cis-Piperitol acetate | --- | --- | tr | --- | tr | tr |
1337 | Piperitenone. | tr | --- | 0.1 | --- | tr | 0.1 |
1348 | Citronellyl acetate | tr | --- | --- | --- | --- | --- |
1349 | Eugenol | 0.1 | --- | --- | --- | --- | --- |
1361 | Neoisodihydrocarvyl acetate | --- | --- | --- | --- | --- | tr |
1367 | Linalyl isobutanoate | 0.1 | --- | --- | tr | --- | |
1368 | α-Ylangene | --- | 0.2 | --- | --- | --- | --- |
1174 | α-Copaene | --- | 0.8 | --- | --- | --- | 0.1 |
1378 | Geranyl acetate | 0.2 | 0.2 | tr | 0.1 | 0.3 | |
1392 | 2-Ethylidene-6-methyl-3,5-heptadienal | --- | 0.1 | 0.2 | 0.1 | --- | --- |
1400 | Methyleugenol | 0.4 | 0.2 | 0.2 | tr | 0.1 | 0.2 |
1419 | β-Caryophyllene | 0.6 | 2.5 | 0.7 | 1.3 | 1.4 | 1.2 |
1427 | β-Gurjunene | --- | --- | --- | --- | --- | 0.1 |
1431 | α-Maaliene | --- | --- | --- | --- | --- | tr |
1438 | Aromadendrene | --- | 0.2 | --- | --- | --- | --- |
1448 | Geranyl acetone | tr | 0.1 | tr | --- | --- | 0.1 |
1454 | α-Humulene | 0.1 | 0.5 | 0.1 | 0.1 | 0.2 | 0.2 |
1472 | cis-Cadina-1(6),4-diene | --- | 0.1 | --- | --- | --- | --- |
1475 | trans-Cadina-1(6),4-diene | --- | 0.7 | --- | --- | tr | 0.1 |
1481 | ar-Curcumene | --- | tr | --- | --- | --- | --- |
1488 | β-Selinene | --- | 0.1 | --- | --- | --- | --- |
1492 | γ-Amorphene | --- | 0.1 | --- | --- | --- | --- |
1496 | α-Selinene | --- | 0.2 | --- | --- | --- | --- |
1499 | α-Muurolene | --- | 0.3 | --- | --- | 0.1 | --- |
1503 | Valencene. | --- | 0.1 | --- | --- | --- | --- |
1509 | β-Bisabolene | --- | 0.1 | --- | --- | --- | --- |
1513 | δ-Amorphene | --- | 0.6 | --- | --- | 0.1 | tr |
1516 | δ-Cadinene | --- | 1.0 | --- | --- | 0.3 | 0.1 |
1522 | trans-Calamenene | --- | 0.2 | --- | --- | --- | --- |
1533 | trans-Cadine-1,4-diene | --- | 0.1 | --- | --- | --- | --- |
1537 | α-Cadinene | --- | 0.1 | --- | --- | --- | --- |
1541 | α-Calacorene | --- | 0.1 | --- | --- | --- | --- |
1548 | Elemol | --- | --- | --- | --- | 0.5 | --- |
1566 | Maaliol | --- | --- | --- | --- | --- | 1.6 |
1573 | Spathulenol | --- | --- | --- | --- | --- | 0.1 |
1582 | Caryophyllene oxide | 0.2 | 0.3 | 0.2 | tr | 0.1 | 0.5 |
1582 | Gleenol | --- | --- | --- | --- | --- | tr |
1608 | Humulene epoxide II | tr | 0.1 | --- | --- | --- | tr |
1631 | γ-Eudesmol | --- | --- | --- | --- | 0.1 | --- |
1635 | Caryophylla-4(12),8(13)-dien-5-ol | tr | --- | --- | --- | --- | --- |
1654 | 14-Hydroxy-9-epi-(Z)-Caryophyllene | 0.1 | 0.1 | --- | --- | --- | --- |
1655 | α-Eudesmol | --- | --- | --- | --- | 0.2 | --- |
1683 | α-Bisabolol | --- | --- | --- | --- | --- | tr |
1764 | Benzyl benzoate | tr | --- | --- | --- | --- | --- |
1777 | 8α-Acetoxyelemol | --- | --- | --- | --- | tr | --- |
Total Compounds Identified | 53 | 66 | 52 | 36 | 52 | 59 | |
Percent Composition Identified | 99.1 | 99.7 | 99.5 | 99.9 | 99.7 | 98.8 |
Compound | Enantiomeric Distribution, (+)/(−) | ||||
---|---|---|---|---|---|
Alabama | Western Cape | Kenya | Victoria | Nepal | |
α-Pinene | 99/1 | 99/1 | 97/3 | 99/1 | 98/2 |
Camphene | 75/25 | 78/22 | 75/25 | 75/25 | 75/25 |
β-Pinene | 33/67 | 29/71 | 31/69 | 30/70 | 30/70 |
Limonene | 48/52 | 40/60 | 53/47 | 54/46 | 54/46 |
Linalool | 5/95 | 3/97 | 5/95 | 3/97 | 5/95 |
Camphor | 15/85 | 16/84 | 15/85 | 15/85 | 15/85 |
Borneol | 2/98 | 2/98 | 5/95 | 5/95 | 4/96 |
Terpinen-4-ol | 69/31 | 70/30 | 70/30 | 70/30 | 70/30 |
α-Terpineol | 74/26 | 75/25 | 71/29 | 68/32 | 66/34 |
Verbenone | 100/0 | 100/0 | 100/0 | 100/0 | 100/0 |
Bornyl acetate | 0/100 | 0/100 | 0/100 | 0/100 | 0/100 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satyal, P.; Jones, T.H.; Lopez, E.M.; McFeeters, R.L.; Ali, N.A.A.; Mansi, I.; Al-kaf, A.G.; Setzer, W.N. Chemotypic Characterization and Biological Activity of Rosmarinus officinalis. Foods 2017, 6, 20. https://doi.org/10.3390/foods6030020
Satyal P, Jones TH, Lopez EM, McFeeters RL, Ali NAA, Mansi I, Al-kaf AG, Setzer WN. Chemotypic Characterization and Biological Activity of Rosmarinus officinalis. Foods. 2017; 6(3):20. https://doi.org/10.3390/foods6030020
Chicago/Turabian StyleSatyal, Prabodh, Tyler H. Jones, Elizabeth M. Lopez, Robert L. McFeeters, Nasser A. Awadh Ali, Iman Mansi, Ali G. Al-kaf, and William N. Setzer. 2017. "Chemotypic Characterization and Biological Activity of Rosmarinus officinalis" Foods 6, no. 3: 20. https://doi.org/10.3390/foods6030020
APA StyleSatyal, P., Jones, T. H., Lopez, E. M., McFeeters, R. L., Ali, N. A. A., Mansi, I., Al-kaf, A. G., & Setzer, W. N. (2017). Chemotypic Characterization and Biological Activity of Rosmarinus officinalis. Foods, 6(3), 20. https://doi.org/10.3390/foods6030020