Rheological, Chemical and Physical Characteristics of Golden Berry (Physalis peruviana L.) after Convective and Microwave Drying
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Processing on the Rheological Properties
2.1.1. Resistance to Compression
2.1.2. Cutting
2.1.3. Elasticity
2.2. Effect of Processing on the Chemical and Physical Properties
2.2.1. Water Activity
2.2.2. Polyphenol Content
2.2.3. Antioxidant Activity
2.2.4. Carotenoid Content
2.2.5. Colour Assessment
3. Materials and Methods
3.1. Materials
3.2. Drying Methods
3.3. Mechanical Strength and Rheological Studies
3.4. Water Activity
3.5. Carotenoid Content by Ultra Performance Liquid Chromatography-Photodiode Detector-Mass Spectrometry (UPLC−PDA−MS) Analysis
3.6. Analysis of Polyphenols and Determination of Antioxidant Activity
3.7. Physalis Colour Assessment
3.8. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Morton, J. Cape Gooseberry. In Fruits of Warm Climates; Morton, J.F., Miami, F.L., Eds.; Echo Point Books & Media: Brattlebora, VT, USA, 1987; pp. 430–434. ISBN 0-9610184-1-0. [Google Scholar]
- Puente, L.A.; Pinto-Munoz, C.A.; Castro, E.S.; Cortes, M. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Res. Int. 2011, 44, 1733–1740. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Moersel, J.G. Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalis peruviana L.) juice. J. Sci. Food Agric. 2007, 87, 452–460. [Google Scholar] [CrossRef]
- Ramadan, M.F. Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Res. Int. 2011, 44, 1830–1836. [Google Scholar] [CrossRef]
- Rodrigues, E.; Rockenbach, I.I.; Cataneo, C.; Gonzaga, L.V.; Chaves, E.S.; Fett, R. Minerals and essential fatty acids of the exotic fruit Physalis peruviana L. Food Sci. Technol. 2009, 29, 642–645. [Google Scholar] [CrossRef]
- Fang, S.-T.; Liu, J.-K.; Li, B. Ten new withanolides from Physalis peruviana. Steroids 2012, 77, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.H.; Chang, F.R.; Pan, M.J.; Wu, C.C.; Wu, S.J.; Chen, S.L.; Wang, S.S.; Wu, M.J.; Wu, Y.C. New cytotoxic withanolides from Physalis peruviana. Food Chem. 2009, 116, 462–469. [Google Scholar] [CrossRef]
- Alibas, I. Energy consumption and colour characteristics of nettle leaves during microwave, vacuum and convective drying. Biosyst. Eng. 2007, 96, 495–502. [Google Scholar] [CrossRef]
- Janowicz, M.; Lenart, A. Some physical properties of apples after low-pressure osmotic dehydration and convective drying. Chem. Process. Eng. 2010, 31, 237–252. [Google Scholar]
- Janowicz, M.; Lenart, A.; Idzikowska, W. Sorption properties of osmotically-dehydrated and freeze-dried strawberries. Pol. J. Food Nutr. Sci. 2007, 57, 69–76. [Google Scholar]
- Babetto, A.C.; Freire, F.B.; Barrozo, M.A.S.; Freire, J.T. Drying of garlic slices: Kinetics and nonlinearity measures for selecting the best equilibrium moisture content equation. J. Food Eng. 2011, 107, 347–352. [Google Scholar] [CrossRef]
- Mota, C.L.; Luciano, C.; Dias, A.; Barroca, M.J.; Guine, R.P.F. Convective drying of onion: Kinetics and nutritional evaluation. Food Bioprod. Process. 2010, 88, 115–123. [Google Scholar] [CrossRef]
- Zlatanović, I.; Komatina, M.; Antonijević, D. Low-temperature convective drying of apple cubes. Appl. Therm. Eng. 2013, 53, 114–123. [Google Scholar] [CrossRef]
- Gunasekaran, S. Pulsed microwave-vacuum drying of food materials. Dry. Technol. 1999, 17, 395–412. [Google Scholar] [CrossRef]
- Aguilera, J.M.; Chiralt, A.; Fito, P. Food dehydration and product structure. Trends Food Sci. Technol. 2003, 14, 432–437. [Google Scholar] [CrossRef]
- Cohen, J.S.; Yang, T.C.S. Progress in food dehydration. Trends Food Sci. Technol. 1995, 6, 20–25. [Google Scholar] [CrossRef]
- Kendall, P.; DiPersio, P.; Sofos, J. Drying Vegetables; Food and Nutrition Series, Preparation, No. 9.308; Colorado State University: Fort Collins, CO, USA, 1998. [Google Scholar]
- Piotrowski, D.; Lenart, A.; Wardzyński, A. Influence of osmotic dehydration on microwave-convective drying of frozen strawberries. J. Food Eng. 2004, 65, 519–525. [Google Scholar] [CrossRef]
- Stępień, B. Impact of vacuum-microwave drying on selected mechanical and rheological features of carrot. Biosyst. Eng. 2008, 99, 234–238. [Google Scholar] [CrossRef]
- Stępień, B. Modyfikacja cech Mechanicznych i Reologicznych Wybranych Warzyw pod Wpływem Różnych Metod Suszenia; Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu; Monografie LXXIX: Poznań, Poland, 2009. (In Polish) [Google Scholar]
- Kelen, A.; Ress, S.; Nagy, T.; Pallai, E.; Pintye-Hodi, K. Mapping of temperature distribution in pharmaceutical microwave vacuum drying. Powder Technol. 2006, 162, 133–137. [Google Scholar] [CrossRef]
- Lech, K. Wpływ Parametrów Suszenia Mikrofalowo-Próżniowego na Jakość suszu z Buraków Ćwikłowych Odwadnianych Osmotycznie. Ph.D. Thesis, UP Wrocław, Wrocław, Poland, 2013. (In Polish). [Google Scholar]
- Stępień, B.; Jaźwiec, B.; Kita, A.; Pasławska, M.; Jałoszyński, K. Analiza cech mechanicznych i reologicznych oraz właściwości sensorycznych suszu z avocado. Agric. Eng. 2013, 17, 361–370. (In Polish) [Google Scholar]
- Stępień, B.; Jaźwiec, B.; Pasławska, M.; Jałoszyński, K.; Surma, M. Wpływ suszenia fontannowo-mikrofalowego na jakość suszonej dyni. Agric. Eng. 2013, 3, 371–380. (In Polish) [Google Scholar]
- Marzec, A.; Lewicki, P.P. Antypalstyfikujący wpływ wody na produkty zbożowe. Inżynieria Rolnicza 2005, 11, 301–307. (In Polish) [Google Scholar]
- Pittia, P.; Sacchetti, G. Aniplasticization effect of water in amorphous foods: A review. Food Chem. 2008, 106, 1417–1427. (In Polish) [Google Scholar] [CrossRef]
- Jakubczyk, E.; Lewicki, P.P. Właściwości mechaniczne tkanki jabłka w odniesieniu do jej struktury. Acta Agrophys. 2002, 2, 549–557. (In Polish) [Google Scholar]
- Vásquez-Parra, J.E.; Ochoa-Martínez, C.I.; Bustos-Parra, M. Effect of chemical and physical pretreatments on the convective drying of cape gooseberry fruits (Physalis peruviana). J. Food Eng. 2013, 119, 648–654. [Google Scholar] [CrossRef]
- Triantis, T.; Stelakis, A.; Dimotikali, D.; Papadopoulos, K. Investigations on the antioxidant activity of fruit and vegetable aqueous extracts on superoxide radical anion using chemiluminescence techniques. Anal. Chim. Acta 2005, 536, 101–105. [Google Scholar] [CrossRef]
- Kivrak, I.; Duru, M.; Ozturk, M.; Mercan, N.; Harmandar, M.; Topcu, G. Antioxidant, anticholinesterase and antimicrobial constituents from the essential oil and ethanol extract of Salvia potentillifolia. Food Chem. 2009, 116, 470–479. [Google Scholar] [CrossRef]
- Britton, G.; Liaaen-Jensen, S.; Pfander, H. Carotenoid Handbook; Birkhäuser Verlag: Basel, Switzerland, 2004. [Google Scholar]
- Nawirska, A.; Figiel, A.; Sokół-Łętowska, A.; Kucharska, A.Z.; Biesiada, A. Drying kinetics and quality parameters of pumpkin slices dehydrated using different methods. J. Food Eng. 2009, 94, 14–20. [Google Scholar] [CrossRef]
- Peroń, S.; Surma, M.; Zdrojewski, Z. Charakterystyka suszarnicza owoców rokitnika pospolitego poddanych wstępnym zabiegom przygotowawczym. Inżynieria Rolnicza 2011, 9, 169–176. (In Polish) [Google Scholar]
- Tello-Ireland, C.; Lemus-Mondaca, R.; Vega-Gálvez, A.; López, J.; Di Scala, K. Influence of hot-air temperature on drying kinetics, functional properties, colour, phycobiliproteins, antioxidant capacity, texture and agar yield of alga Gracilaria chilensis. LWT—Food Sci. Technol. 2011, 44, 2112–2118. [Google Scholar] [CrossRef]
- Kolniak-Ostek, J. Content of bioactive compounds and antioxidant capacity in skin tissues of pear. J. Funct. Foods 2016, 23, 40–51. [Google Scholar] [CrossRef]
- Olssen, M.E.; Andersson, S.; Oredsson, S.; Berglund, R.H.; Gustavsson, K.R. Antioxidant levels and inhibition of cancer cell proliferation in vitro by extracts from organically and conventionally cultivated strawberries. J. Agric. Chem. 2006, 54, 1248–1255. [Google Scholar] [CrossRef] [PubMed]
- Nawirska-Olszańska, A.; Kita, A.; Biesiada, A.; Sokół-Łętowska, A.; Kucharska, A.Z. Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars. Food Chem. 2013, 139, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
Treatments-Drying Methods | Water Activity- | Polyphenols mgGA·100 g−1 | FRAP mmol Trolox·100 g−1 | ABTS mmol Trolox·100 g−1 |
---|---|---|---|---|
Fresh berry | 0.987 ± 0.09 a | 29.5 ± 0.9 d | 0.19 ± 0.02 d | 0.72 ± 0.24 d |
Conventional drying | 0.524 ± 0.03 b | 177.6 ± 0.7 b,c | 0.86 ± 0.25 c | 5.30 ± 0.52 c |
Microwave at 120 W | 0.304 ± 0.04 c | 228.7 ± 3.3 b | 1.61 ± 0.19 b | 9.71 ± 1.03 b |
Microwave at 480 W | 0.232 ± 0.02 c,d | 436.3 ± 2.4 a | 1.91 ± 0.18 a | 19.06 ± 1.12 a |
Treatments-Drying Methods | All-trans-Lutein | β-Kryptoxantin | α-Carotene | All-trans-β-Carotene | 15-cis-β-Carotene | Total Carotenoids |
---|---|---|---|---|---|---|
mg·kg−1 DM | ||||||
Fresh berry | 6.61 ± 0.08 d | 23.22 ± 0.15 b | 111.79 ± 11.02 c | 26.62 ± 1.98 c | ND | 168.25 ± 11.21 c |
Conventional drying | 7.04 ± 0.01 c | 14.36 ± 0.16 c | 114.17 ± 11.56 c | 27.58 ± 2.11 c | 6.70 ± 0.06 c | 169.85 ± 12.54 c |
Microwave at 120 W | 7.85 ± 0.02 b | 12.29 ± 0.12 d | 176.25 ± 12.54 b | 47.74 ± 3.78 a | 11.86 ± 0.37 b | 255.98 ± 15.28 b |
Microwave at 480 W | 13.87 ± 0.15 a | 29.23 ± 0.18 a | 190.15 ± 21.89 a | 34.61 ± 2.84 b | 29.08 ± 1.05 a | 296.94 ± 22.37 a |
Treatments-Drying Methods | L* | a* | b* |
---|---|---|---|
Fresh berry | 43.28 ± 1.21 c | 6.98 ± 0.09 c | 29.77 ± 0.94 c |
Conventional drying | 40.66 ± 0.54 d | 6.15 ± 0.7 c | 19.41 ± 0.71 d |
Microwave at 120 W | 59.36 ± 8.94 b | 8.33 ± 0.19 b | 32.03 ± 0.85 b |
Microwave at 480 W | 62.89 ± 7.89 a | 15.47 ± 0.51 a | 52.82 ± 0.62 a |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawirska-Olszańska, A.; Stępień, B.; Biesiada, A.; Kolniak-Ostek, J.; Oziembłowski, M. Rheological, Chemical and Physical Characteristics of Golden Berry (Physalis peruviana L.) after Convective and Microwave Drying. Foods 2017, 6, 60. https://doi.org/10.3390/foods6080060
Nawirska-Olszańska A, Stępień B, Biesiada A, Kolniak-Ostek J, Oziembłowski M. Rheological, Chemical and Physical Characteristics of Golden Berry (Physalis peruviana L.) after Convective and Microwave Drying. Foods. 2017; 6(8):60. https://doi.org/10.3390/foods6080060
Chicago/Turabian StyleNawirska-Olszańska, Agnieszka, Bogdan Stępień, Anita Biesiada, Joanna Kolniak-Ostek, and Maciej Oziembłowski. 2017. "Rheological, Chemical and Physical Characteristics of Golden Berry (Physalis peruviana L.) after Convective and Microwave Drying" Foods 6, no. 8: 60. https://doi.org/10.3390/foods6080060
APA StyleNawirska-Olszańska, A., Stępień, B., Biesiada, A., Kolniak-Ostek, J., & Oziembłowski, M. (2017). Rheological, Chemical and Physical Characteristics of Golden Berry (Physalis peruviana L.) after Convective and Microwave Drying. Foods, 6(8), 60. https://doi.org/10.3390/foods6080060