Effect of Artificial LED Light and Far Infrared Irradiation on Phenolic Compound, Isoflavones and Antioxidant Capacity in Soybean (Glycine max L.) Sprout
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Growth Conditions and LED Light Application
2.2. Extraction of Soybean Sprout Grown under LED Lights
2.3. Application of FIR Irradiation and Extraction Method of Soybean Sprout
2.4. Estimation of Total Phenolic Content
2.5. Estimation of Isoflavones Content
2.6. DPPH Free Radical Scavenging Capacity
2.7. Ferric Reduction Antioxidative Power (FRAP Assay)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effect of Artificial LED Light on the Accumulation of Total Phenol, Isoflavones Content and Antioxidant Capacity
3.2. Effect of FIR on the Accumulation of Total Phenol, Isoflavones Content and Antioxidant Capacity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beavers, D.P.; Beavers, K.M.; Miller, M.; Stamey, J.; Messina, M.J. Exposure to isoflavone-containing soy products and endothelial function: A Bayesian meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Taku, K.; Melby, M.K.; Takebayashi, J.; Mizuno, S.; Ishimi, Y.; Omaori, T.; Watanabe, S. Effect of Soy isoflavone extract supplements on bone mineral density in menopausal women: Meta-analysis of randomized controlled trials. Asia Pac. J. Clin. Nutr. 2010, 19, 33–42. [Google Scholar] [PubMed]
- Balanos, R.; Cstillo, D.; Anelica, F.F. Soy isoflavones versus placebo in the treatment of climacteric vasomotor symptoms: systematic review and meta-analysis. Menopause 2010, 17, 660–666. [Google Scholar]
- Li, Q.; Kubota, C. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot. 2009, 67, 59–64. [Google Scholar] [CrossRef]
- Samuoliene, G.; Brazaityte, A.; Sirtautas, R.; Sakalauskiene, S.; Jankauskiene, J.; Duchovskis, P.; Novičkovas, A. The impact of supplementary short-term red LED lighting on the antioxidant properties of microgreens. Acta Hortic. 2012, 956, 649–655. [Google Scholar] [CrossRef]
- Vaštakaitė, V.; Viršilė, A.; Brazaitytė, A.; Samuolienė, G.; Jankauskienė, J.; Sirtautas, R.; Novičkovas, A.; Dabašinskas, L.; Sakalauskienė, S.; Miliauskienė, J.; et al. The Effect of Blue Light Dosage on Growth and Antioxidant Properties of Microgreens. Sodinink. Daržinink. 2015, 34, 25–35. [Google Scholar]
- Sun, J.; Nishio, J.N.; Vogelmann, T.C. Green light drives CO2 fixation deep within leaves. Plant Cell Physiol. 1998, 39, 1020–1026. [Google Scholar] [CrossRef]
- Cui, J.; Ma, Z.H.; Xu, Z.G.; Zgang, H.; Chang, T.T.; Liu, H.J. Effects of supplemental lighting with different light qualities on growth and physiological characteristics of cucumber, pepper and tomato seedlings. Acta Hortic. Sin. 2009, 5, 663–670. [Google Scholar]
- Swartz, T.E.; Corchnoy, S.B.; Christie, J.M.; Lewis, J.W.; Szundi, I.; Briggs, W.R. The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J. Biol. Chem. 2001, 276, 36493–36500. [Google Scholar] [CrossRef] [PubMed]
- Baroli, I.; Price, G.D.; Badger, M.R.; Von Caemmerer, S. The contribution of photosynthesis to the red light response of stomatal conductance. Plant Physiol. 2008, 146, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Hogewoning, S.W.; Trouwborst, G.; Maljaars, H.; Poorter, H.; van Ieperen, W.; Harbinson, J. Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of cucumis sativus grown under different combinations of red and blue light. J. Exp. Bot. 2010, 61, 3107–3117. [Google Scholar] [CrossRef] [PubMed]
- Eom, S.H.; Park, H.J.; Seo, D.W.; Kim, W.W.; Cho, D.H. Stimulating effects of far infra-red ray radiation on the release of antioxidative phenolics in grape berries. Food Sci. Biotechnol. 2009, 18, 362–366. [Google Scholar]
- Wink, M. Modes of Action of Herbal Medicines and Plant Secondary Metabolites. Medicines 2015, 2, 251–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eom, S.H.; Jin, C.W.; Park, H.J.; Kim, E.H.; Chung, I.M.; Kim, M.J.; Yu, C.Y.; Cho, D.H. Far infrared ray irradiation stimulates antioxidant activity in vitis flexuosa thumb Berries. Korean J. Med. Crop Sci. 2007, 15, 319–323. [Google Scholar]
- Jeong, S.M.; Kim, S.Y.; Kim, D.R.; Jo, S.C.; Nam, K.C.; Ahn, D.U. Effect of heat treatment on antioxidant activity of citrus peels. J. Agric. Food Chem. 2004, 52, 3389–3393. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, J.; Jeong, S.; Kim, D.; Ha, J.; Nam, K.; Ahn, D. Effect of far-infrared radiation on the antioxidant activity of rice hulls. J. Agric. Food Chem. 2003, 51, 4400–4403. [Google Scholar] [CrossRef] [PubMed]
- Samarakoon, K.; Senevirathne, M.; Lee, W.W.; Kim, Y.T.; Kim, J.I.; Oh, M.C.; Jeon, Y.J. Antibacterial effect of citrus press-cakes dried by high speed and far infrared radiation dryng methods. Nutr. Res. Pract. 2012, 6, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Ghimeray, A.K.; Sharma, P.; Hu, W.; Cheng, W.; Park, C.H.; Rho, H.S.; Cho, D.H. Far infrared assisted conversion of isoflavones and its effect on total phenolics and antioxidant activity in black soybean seed. J. Med. Plants Res. 2013, 7, 1129–1137. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–458. [Google Scholar]
- Braca, A.; Fico, G.; Morelli, I.; Simone, F.; Tome, F.; Tommasi, N. Antioxidant and free radical scavenging activity of flavonol glycosides from different Aconitum species. J. Ethnopharmacol. 2003, 8, 63–67. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Ahn, J.K.; Khanh, T.D.; Chun, S.C.; Kim, S.L.; Ro, H.M.; Song, H.K.; Chung, I.M. Comparison of Isoflavone Concentrations in Soybean (Glycine max (L.) Merrill) Sprouts Grown under Two Different Light Conditions. J. Agric. Food Chem. 2007, 55, 9415–9421. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Xing, T.; Wang, X. The role of light in the regulation of anthocyanin accumulation in Gerbera hybrid. Plant Growth Regul. 2004, 44, 243–250. [Google Scholar] [CrossRef]
- Cevallos-Casals, B.A.; Cisneros-Zevallos, L. Impact of germination on phenolic content and antioxidant activity of 13 edible seed species. Food Chem. 2010, 119, 1485–1490. [Google Scholar] [CrossRef]
- Lee, J.D.; Shannon, J.G.; Jeong, Y.S.; Lee, J.M.; Hwang, Y.H. A simple method for evaluation of sprout characters in soybean. Euphytica 2007, 153, 171–180. [Google Scholar] [CrossRef]
- Randhir, R.; Kwon, Y.I.; Shetty, K. Effect of thermal processing on phenolic, antioxidant activity and health functionality of select grain sprouts and seedlings. Innov. Food Sci. Emerg. Technol. 2008, 9, 355–364. [Google Scholar] [CrossRef]
- López-Amorós, M.L.; Hernández, T.; Estrella, I. Effect of germination on legume phenolic compounds and their antioxidant activity. J. Food Comp. Anal. 2006, 19, 277–283. [Google Scholar] [CrossRef]
- Narukawa, Y.; Ichikawa, M.; Sanga, D.; Sano, M.; Mukai, T. White light emitting diodes with super high luminous efficacy. J. Phys. Appl. Phys. 2010, 43, 354002. [Google Scholar] [CrossRef]
- Wu, M.C.; Hou, C.Y.; Jiang, C.M.; Wang, Y.T.; Wang, C.Y.; Chen, H.H. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem. 2007, 101, 1753–1758. [Google Scholar] [CrossRef]
- Samuoliene, G.; Urbonaviciute, A.; Brazaityte, A.; Sabajeviene, G.; Sakalauskaite, J.; Duchovskis, P. The impact of LED illumination on antioxidant protertise of sprouted seeds. Cent. Eur. J. Biol. 2011, 6, 68–74. [Google Scholar]
Treatments | Days after Sowing (DAS) | Daidzin | Glycitin | Genistin | Daidzein | Glycitein | Genistein | Total |
---|---|---|---|---|---|---|---|---|
Florescent Light (Control) | 3 | 2.74 ± 0.41 e | 1.22 ± 0.20 d | 4.19 ± 1.21 d | 0.22 ± 0.10 d | 0.14 ± 0.02 c | 0.09 ± 0.01 c | 18.32 ± 1.92 c |
4 | 4.57 ± 0.52 d | 1.29 ± 0.28 c | 5.44 ± 0.79 d | 0.12 ± 0.09 d | 0.12 ± 0.05 c | 0.11 ± 0.02 c | 23.38 ± 1.69 c | |
5 | 4.55 ± 1.22 d | 1.09 ± 0.37 d | 7.55 ± 1.07 c | 0.34 ± 0.25 c | 0.21 ± 0.07 a | 1.14 ± 0.05 a | 28.65 ± 2.94 c | |
6 | 5.94 ± 0.89 d | 1.38 ± 0.10 c | 6.00 ± 1.32 cd | 0.39 ± 0.21 c | 0.16 ± 0.09 b | 0.96 ± 0.08 b | 27.55 ± 2.58 c | |
7 | 4.61 ± 1.08 d | 1.52 ± 0.40 c | 6.46 ± 0.88 c | 0.32 ± 0.21 c | 0.18 ± 0.11 ab | 0.71 ± 0.11 b | 30.24 ± 2.51 b | |
Blue Light (450–495 nm) | 3 | 8.62 ± 1.20 b | 2.09 ± 0.20 a | 11.31 ± 1.09 a | 0.40 ± 0.04 c | 0.17 ± 0.01 ab | 1.18 ± 0.01 a | 45.88 ± 2.55 a |
4 | 10.19 ± 1.44 a | 1.99 ± 0.08 b | 12.61 ± 1.27 a | 0.66 ± 0.03 a | 0.21 ± 0.01 a | 1.29 ± 0.01 a | 45.94 ± 2.84 a | |
5 | 9.99 ± 1.07 a | 2.15 ± 0.06 a | 11.57 ± 1.60 a | 0.71 ± 0.02 a | 0.10 ± 0.01 c | 1.28 ± 0.02 a | 51.1 ± 2.76 a | |
6 | 8.52 ± 0.81 b | 2.86 ± 0.04 a | 12.07 ± 0.85 a | 0.77 ± 0.01 a | 0.38 ± 0.01 a | 1.20 ± 0.04 a | 49.12 ± 1.76 a | |
7 | 8.82 ± 1.20 b | 2.29 ± 0.20 a | 11.31 ± 1.09 a | 0.50 ± 0.04 b | 0.17 ± 0.01 ab | 1.18 ± 0.01 a | 47.12 ± 2.55 a | |
Green Light (510–550 nm) | 3 | 7.16 ± 1.01 c | 1.77 ± 0.08 b | 9.50 ± 1.08 b | 0.31 ± 0.03 c | 0.16 ± 0.02 b | 1.12 ± 0.01 a | 37.38 ± 2.23 b |
4 | 7.87 ± 0.75 bc | 1.87 ± 0.20 b | 8.62 ± 0.73 b | 0.55 ± 0.04 b | 0.12 ± 0.01 c | 1.08 ± 0.01 a | 37.37 ± 1.74 b | |
5 | 7.25 ± 1.37 c | 1.75 ± 0.06 bc | 9.52 ± 0.45 b | 0.34 ± 0.02 c | 0.31 ± 0.01 a | 1.27 ± 0.02 a | 38.62 ± 1.93 b | |
6 | 7.50 ± 1.06 c | 1.87 ± 0.05 b | 9.48 ± 1.26 b | 0.54 ± 0.01 b | 0.09 ± 0.01 d | 0.96 ± 0.01 b | 38.46 ± 2.40 b | |
7 | 7.18 ± 0.85 c | 1.66 ± 0.03 c | 7.68 ± 1.04 c | 0.44 ± 0.01 b | 0.08 ± 0.01 d | 0.93 ± 0.01 b | 33.58 ± 1.95 b |
Treatment | Daidzin | Glycitin | Genistin | Daidzein | Glycitein | Genistein | Total Isoflavones |
---|---|---|---|---|---|---|---|
Control | 4.74 ± 0.41 c | 1.22 ± 0.32 c | 6.19 ± 1.21 c | 0.32 ± 0.10 c | 0.25± 0.03 cd | 0.25 ± 0.01 c | 25.69 ± 2.05 |
FIR-90 °C 30 min | 5.19 ± 0.55 c | 1.10 ± 0.26 c | 5.28 ± 0.13 d | 0.57 ± 0.08 b | 0.30 ± 0.06 c | 1.12 ± 0.11 b | 27.12 ± 1.19 c |
FIR-90 °C 60 min | 5.52 ± 0.29 c | 1.26 ± 0.05 c | 6.05 ± 0.42 c | 0.51 ± 0.10 b | 0.29 ± 0.07 c | 0.97 ± 0.14 bc | 29.2 ± 1.06 c |
FIR-90 °C 120 min | 5.53 ± 0.30 c | 1.19 ± 0.28 c | 6.07 ± 0.21 c | 0.57 ± 0.03 b | 0.37 ± 0.04 c | 0.94 ± 0.08 bc | 29.34 ± 0.94 c |
FIR-110 °C 30 min | 7.19 ± 0.27 b | 1.49 ± 0.33 c | 6.28 ± 0.20 c | 0.93 ± 0.26 a | 0.73 ± 0.10 b | 1.78 ± 0.24 bb | 36.8 ± 1.40 b |
FIR-110 °C 60 min | 8.12 ± 0.29 ab | 1.63 ± 0.18 b | 6.99 ± 0.46 c | 1.29 ± 0.07 a | 1.05 ± 0.05 a | 2.26 ± 0.32 a | 42.68 ± 1.37 b |
FIR-110 °C 120 min | 10.89 ± 0.24 a | 2.39 ± 0.30 a | 12.97 ± 0.28 a | 0.88 ± 0.13 a | 0.94 ± 0.21 a | 2.29 ± 0.08 a | 58.98 ± 1.24 a |
FIR-130 °C 30 min | 7.75 ± 0.17 b | 1.92 ± 0.19 b | 8.72 ± 0.26 b | 0.50 ± 0.11 b | 0.20 ± 0.03 c | 1.42 ± 0.16 b | 41.02 ± 0.92 b |
FIR-130 °C 60 min | 7.15 ± 0.13 b | 1.66 ± 0.05 b | 8.37 ± 0.14 b | 0.32 ± 0.06 c | 0.12 ± 0.02 cd | 1.25 ± 0.07 b | 37.74 ± 0.47 b |
FIR-130 °C 120 min | 6.88 ± 0.13 b | 1.51 ± 0.20 c | 6.81 ± 0.37 c | 0.24 ± 0.03 c | 0.08 ± 0.02 d | 1.18 ± 0.09 b | 33.4 ± 0.84 c |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azad, M.O.K.; Kim, W.W.; Park, C.H.; Cho, D.H. Effect of Artificial LED Light and Far Infrared Irradiation on Phenolic Compound, Isoflavones and Antioxidant Capacity in Soybean (Glycine max L.) Sprout. Foods 2018, 7, 174. https://doi.org/10.3390/foods7100174
Azad MOK, Kim WW, Park CH, Cho DH. Effect of Artificial LED Light and Far Infrared Irradiation on Phenolic Compound, Isoflavones and Antioxidant Capacity in Soybean (Glycine max L.) Sprout. Foods. 2018; 7(10):174. https://doi.org/10.3390/foods7100174
Chicago/Turabian StyleAzad, Md Obyedul Kalam, Won Woo Kim, Cheol Ho Park, and Dong Ha Cho. 2018. "Effect of Artificial LED Light and Far Infrared Irradiation on Phenolic Compound, Isoflavones and Antioxidant Capacity in Soybean (Glycine max L.) Sprout" Foods 7, no. 10: 174. https://doi.org/10.3390/foods7100174
APA StyleAzad, M. O. K., Kim, W. W., Park, C. H., & Cho, D. H. (2018). Effect of Artificial LED Light and Far Infrared Irradiation on Phenolic Compound, Isoflavones and Antioxidant Capacity in Soybean (Glycine max L.) Sprout. Foods, 7(10), 174. https://doi.org/10.3390/foods7100174