Detection of β-Lactams and Chloramphenicol Residues in Raw Milk—Development and Application of an HPLC-DAD Method in Comparison with Microbial Inhibition Assays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.1.1. HPLC-DAD Instrumentation
2.1.2. Microbial Inhibitor Tests and Instruments Used
2.2. Reagents and Materials
2.3. Standard Solution Preparation
2.4. Chromatography
2.5. Sample Preparation Prior to HPLC-DAD Analysis
2.6. Analysis by Means of Microbial Inhibition Assays
3. Results and Discussion
3.1. Chromatography
3.2. Sample Preparation Prior to HPLC-DAD Analysis
3.3. HPLC-DAD Method Validation
3.4. Microbial Inhibitor Test Kits’ Comparative Evaluation
3.5. Quality Control of Raw Milk Samples by Means of a Comparative Study Among the HPLC-DAD Method Developed and Microbial Inhibition Assays
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Santos, S.M.; Henriques, M.; Duarte, A.C.; Esteves, V.I. Development and application of a capillary electrophoresis based method for the simultaneous screening of six antibiotics in spiked milk samples. Talanta 2007, 71, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Karageorgou, E.G.; Samanidou, V.F.; Papadoyannis, I.N. Ultrasound-assisted matrix solid phase dispersive extraction for the simultaneous analysis of β-lactams (four penicillins and eight cephalosporins) in milk by high performance liquid chromatography with photodiode array detection. J. Sep. Sci. 2012, 35, 2599–2607. [Google Scholar] [CrossRef] [PubMed]
- Samanidou, V.F.; Nisyriou, S.A. Multi-residue methods for confirmatory determination of antibiotics in milk. J. Sep. Sci. 2008, 31, 2068–2090. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Analysis of Antibiotics in Milk and its Products. In Handbook of Dairy Foods Analysis; Nollet, L.M.L., Toldrá, F., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 801–820. ISBN 978-1-4200-4631-1. [Google Scholar]
- Codex Alimentarius Commission (CAC/GL-16). Codex Guidelines for the Establishment of a Regulatory Program for Control of Veterinary Drug Residues in Foods; Codex Alimentarius Commission: Rome, Italy, 1993; pp. 1–46. [Google Scholar]
- Nicolich, R.S.; Eduardo, W.B.; Marques, M.A.S. Food safety evaluation: Detection and confirmation of chloramphenicol in milk by high performance liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2006, 565, 97–102. [Google Scholar] [CrossRef]
- Karageorgou, E.G.; Samanidou, V.F. Application of ultrasound-assisted matrix solid-phase dispersion extraction to the HPLC confirmatory determination of cephalosporin residues in milk. J. Sep. Sci. 2010, 33, 2862–2871. [Google Scholar] [CrossRef] [PubMed]
- Karageorgou, E.G.; Samanidou, V.F. Development and validation according to European Union Decision 2002/657/EC of an HPLC-DAD method for milk multi-residue analysis of penicillins and amphenicols based on dispersive extraction by QuEChERS in MSPD format. J. Sep. Sci. 2011, 34, 1893–1901. [Google Scholar] [CrossRef] [PubMed]
- Quesada-Molina, C.; Claude, B.; Garcia-Campana, A.M.; del Olmo-Iruela, M.; Morin, P. Convenient solid phase extraction of cephalosporins in milk using a molecularly imprinted polymer. Food Chem. 2012, 135, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Camara, M.; Gallego-Pico, A.; Garcinuno, R.M.; Fernandez-Hernando, P.; Durand-Alegria, J.S.; Sanchez, P.J. An HPLC-DAD method for the simultaneous determination of nine β-lactam antibiotics in ewe milk. Food Chem. 2013, 141, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Sen, F.; Filazi, A. Detection of penicillin residues in cow milk using high performance liquid chromatography with UV-Diode array detection. J. Anim. Vet. Adv. 2014, 13, 477–483. [Google Scholar] [CrossRef]
- Luo, Z.; Du, W.; Zheng, P.; Guo, P.; Wu, N.; Tang, W.; Zeng, A.; Chang, C.; Fu, Q. Molecularly imprinted polymer cartridges coupled to liquid chromatography for simple and selective analysis of penicilloic acid and penilloic acid in milk by matrix solid-phase dispersion. Food Chem. Toxicol. 2015, 83, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Yahaya, N.; Sanagi, M.M.; Mitome, T.; Nishiyama, N.; Wan Ibrahim, W.A.; Nur, H. Dispersive Micro-Solid Phase Extraction Combined with High-Performance Liquid Chromatography for the Determination of Three Penicillins in Milk Samples. Food Anal. Methods 2015, 8, 1079–1087. [Google Scholar] [CrossRef]
- Chen, X.; Ye, N. Graphene Oxide-Reinforced Hollow Fiber Solid-Phase Microextraction Coupled with High-Performance Liquid Chromatography for the Determination of Cephalosporins in Milk Samples. Food Anal. Methods 2016, 1–11. [Google Scholar] [CrossRef]
- Karageorgou, E.; Myridakis, A.; Stephanou, E.G.; Samanidou, V.F. Multiresidue LC–MS/MS analysis of cephalosporins and quinolones in milk following ultrasound-assisted matrix solid-phase dispersive extraction combined with the quick, easy, cheap, effective, rugged, and safe methodology. J. Sep. Sci. 2013, 36, 2020–2027. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Gillard, N.; Brasseur, P.Y.; Pierret, G.; Ralet, N.; Dubois, M.; Delahaut, P. Rapid multi-residue and multi-class qualitative screening for veterinary drugs in foods of animal origin by UHPLC-MS/MS. Food Addit. Contam. Part A 2013, 30, 443–457. [Google Scholar] [CrossRef] [PubMed]
- Barreiro, R.; Díaz-Bao, M.; Regal, P.; Miranda, J.M.; Cepeda, A. Development of an HPLC-MS/MS confirmatory method for the simultaneous determination of amphenicols in baby formulas using molecularly imprinted polymers. Anal. Methods 2013, 5, 3970–3976. [Google Scholar] [CrossRef]
- Li, W.; Ai, L.; Guo, C.; Ma, Y.; Dou, C. Simultaneous determination of penicillin and their major enzymatic metabolites in milk and milk powder by high performance liquid chromatography-tandem mass spectrometry. Se Pu 2013, 31, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Junza, A.; Dorival-García, N.; Zafra-Gómez, A.; Barróna, D.; Ballesteros, O.; Barbosa, J.; Navalón, A. Multiclass method for the determination of quinolones and β-lactams, in raw cow’s milk using dispersive Liquid–Liquid Microextraction and Ultrahigh Performance Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2014, 1356, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Guo, C.; Meng, L.; Huang, X. Determination of cefalonium residue in milk by High Performance Liquid Chromatography-Tandem Mass Spectrometry. Se Pu 2014, 32, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Bao, M.; Barreiro, R.; Miranda, J.M.; Cepeda, A.; Regal, P. Fast HPLC-MS/MS Method for Determining Penicillin Antibiotics in Infant Formulas Using Molecularly Imprinted Solid-Phase Extraction. J. Anal. Methods Chem. 2015, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Navratilova, P. Screening Methods Used for the Detection of Veterinary Drug Residues in Raw Cow Milk–A Review. Czech J. Food Sci. 2008, 26, 393–401. [Google Scholar] [CrossRef]
- Reybroeck, W.; de Vleeschouwer, M.; Marchand, S.; Sinnaeve, D.; Heylen, K.; de Block, J.; Madder, A.; Martins, J.C.; Heyndrickx, M. Cyclic Lipodepsipeptides Produced by Pseudomonas spp. Naturally Present in Raw Milk Induce Inhibitory Effects on Microbiological Inhibitor Assays for Antibiotic Residue Screening. PLoS ONE 2014, 9, e98266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkan, P. The Confirmation of the Commercial Kits Used in the Detection of Antibiotics in Milk with HPLC (High Pressure Liquid Chromatography). M.Sc. Thesis, Graduate School of Engineering and Sciences of İzmir Institute of Technology, Izmir, Turkey, October 2007. [Google Scholar]
- Clauβen, M.; Bahmann, D.; Schmidt, S. Detection of antibiotic residues in food–pitfalls and optimization of agar diffusion tests in comparison with commercial test kits. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education, 2013th ed.; Méndez-Vilas, A., Ed.; Formatex Research Center: Extremadura, Spain, 2013; Volume 1, pp. 359–366. ISBN 978-84-939843-9-7. [Google Scholar]
- Ibraimi, Z.; Shehi, A.; Hajrulai, Z.; Mata, E.; Murtezani, A. Detection and Risk Assessment of Beta-lactam residues in Kosovo’s milk using ELISA method. Int. J. Pharm. Pharm. Sci. 2013, 5, 446–450. [Google Scholar]
- Commission Regulation (EU) No. 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32010R0037 (accessed on 10 April 2015).
- Jevinova, E.; Dudrikova, E.; Sokol, J.; Nagy, J.; Mate, D.; Pipova, M.; Cabadaj, R. Determination of oxytetracycline residues in milk with the use of HPLC method and two microbial inhibition assays. Bull. Vet. Inst. Pulawy 2003, 47, 211–216. [Google Scholar]
- Botsoglou, N.; Fletouris, D. Drug Residues in Foods Pharmacology, Food Safety, and Analysis; Marcel Dekker, Inc.: New York, NY, USA, 2001; pp. 793–825. ISBN 0-8247-8959-8. [Google Scholar]
- Žvirdauskiene, R.; Šalomskiene, J. An evaluation of different microbial and rapid tests for determining inhibitors in milk. Food Control 2007, 18, 541–547. [Google Scholar] [CrossRef]
- Ghidini, S.; Zanardi, E.; Varisco, G.; Chizzolini, R. Residues of β-lactam antibiotics in bovine milk: Confirmatory analysis by Liquid Chromatography Tandem Mass Spectrometry after microbial assay screening. Food Addit. Contam. 2003, 20, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Kaya, S.; Filazi, A. Determination of Antibiotic Residues in Milk Samples. Kafkas Univ. Vet. Fak. Derg. 2010, 16 (Suppl. A), S31–S35. [Google Scholar] [CrossRef]
- Krivohlavek, A.; Barušić, L.; Šmit, Z.; Bošnir, J.; Puntarić, D. HPLC-MS Analysis of Chloramphenicol Residues in Milk and Powdered Milk Products. Kem. Ind. 2007, 56, 53–56. [Google Scholar]
- Demet, Ő.; Acet, A.; Traş, B. Determination of chloramphenicol residues in milk collected from some small dairy factories in Konya. Selcuk Univ. Vet. Fak. Derg. 1992, 8, 35–37. [Google Scholar]
- Dokuzlu, C.; Tayar, M. The detection of antibiotics in raw milk samples in Bursa region. Vet. Bil. Derg. 2001, 17, 153–157. [Google Scholar]
Antibiotic Name | Spiked Antibiotic Concentrations (μg kg−1) | MRL (μg kg−1) | Comments | |||||
---|---|---|---|---|---|---|---|---|
CEPHAZOLIN | 25 | 40 | 50 | 75 | 100 | 125 | 50 | Photometrical and visual detection |
“A” | + | + | + | + | + | + | ||
“B” | + | + | + | + | + | + | ||
“C” | + | + | + | + | − | − | ||
“D” | + | + | + | + | + | − | ||
CEPHALONIUM | 10 | 15 | 20 | 30 | 40 | 50 | 20 | Photometrical and visual detection |
“A” | − | + | + | + | + | + | ||
“B” | + | + | + | + | + | + | ||
“C” | + | + | + | + | + | + | ||
“D” | + | + | + | + | + | + | ||
CEPHAPIRIN | 30 | 45 | 60 | 90 | 120 | 150 | 60 | Photometrical and visual detection |
“A” | + | + | + | + | + | + | ||
“B” | + | + | + | + | + | + | ||
“C” | + | + | + | + | + | + | ||
“D” | + | + | + | + | + | + | ||
CEFTIOFUR | 50 | 75 | 100 | 150 | 200 | 250 | 100 | Photometrical and visual detection |
“A” | + | + | + | + | + | + | ||
“B” | + | + | + | + | + | + | ||
“C” | − | + | + | + | + | + | ||
“D” | − | + | + | + | + | + | ||
CLOXACILLIN | 5 | 15 | 20 | 30 | 45 | 60 | 20 | Photometrical and visual detection |
“A” | − | − | + | + | + | + | ||
“B” | − | − | + | + | + | + | ||
“C” | − | + | + | + | + | + | ||
“D” | − | − | + | + | + | + | ||
OXACILLIN | 10 | 20 | 30 | 40 | 60 | 75 | 30 | Photometrical and visual detection |
“A” | + | + | + | + | + | + | ||
“B” | + | + | + | + | + | + | ||
“C” | + | + | + | + | + | + | ||
“D” | + | + | + | + | + | + | ||
AMPICILLIN | 2 | 3 | 4 | 6 | 8 | 10 | 4 | |
“A” | − | − * | + | + | + | + | * No photometrical detection at 3 μg kg−1 | |
“B” | + | + | + | + | + | + | Photometrical and visual detection | |
“C” | + ** | + | + | + | + | + | ** No visual detection at 2 μg kg−1 | |
“D” | − | − | + | + | + | − | Photometrical and visual detection | |
AMOXICILLIN | 2 | 3 | 4 | 6 | 8 | 10 | 4 | |
“A” | − | − | + | + | + | + | Photometrical and visual detection | |
“B” | − | − | + | + | + | + | Photometrical and visual detection | |
“C” | − | + | + | + | + | + | Photometrical and visual detection | |
“D” | − | − *** | + | + | + | + | *** No visual detection at 3 μg kg−1 | |
CHLORAMPHENICOL | 5 | 10 | 15 | 20 | 25 | 30 | Banned | Photometrical and visual detection |
“A” | − | − | − | − | − | − | ||
“B” | − | − | − | − | − | − | ||
“C” | − | − | − | − | − | − | ||
“D” | − | − | − | − | − | − |
Trial | Sorbent | Elution | Washing Step | Observations |
---|---|---|---|---|
1 | Plexa | 2 mL MeOH | none | Not sufficient matrix cleanup. |
2 | Plexa + 125 mg QuECheRS | 2 mL MeOH | 5 mL H2O (5% acetone) | Target analytes are not well resolved from complex milk matrix. |
3 | Plexa + 125 mg QuECheRS | 2 mL MeOH | 2 × 5 mL H2O (5% acetone) successively | Target analytes are not well resolved from complex milk matrix. The amount of acetone added reduces absolute recoveries. |
4 | Plexa + 250 mg QuECheRS | 2 mL MeOH | 2 × 5 mL H2O (1% acetone) successively | The amount of QuECheRS sorbent interferes in the sufficient elution of target analytes. |
5 | Plexa + 125 mg QuECheRS | 2 mL MeOH | 2 × 5 mL H2O (1% acetone) successively | All analytes are well resolved from milk matrix. Absolute recoveries ranged from 75–94%. |
Validation Parameters/Respective Values Obtained | |||||||||
---|---|---|---|---|---|---|---|---|---|
Compounds | Linearity R2 | Slope | Intercept | MRL (μg/kg) | LOD (S/N = 3.3) (μg/kg) | Intra-Assay Recovery (n = 9) RSD% | Inter-Assay Recovery (n = 9) RSD% | CCa (μg/kg) | CCb (μg/kg) |
AMO | 0.998 | 40.18 | 67.27 | 4 | 1 | 97.5–106.0% 3.4% | 109.5–110.9% 5.5% | 4.2 | 5.2 |
CFZ | 0.994 | 101.6 | 1070.0 | 50 | 7 | 81.8–102.1% 7.6% | 95.6–102.1% 9.3% | 51.2 | 53.7 |
CFN | 0.998 | 82.89 | 624.3 | 20 | 4 | 90.5–95.7% 10.7% | 98.5–106.1% 8.0% | 22.1 | 24.2 |
CFP | 0.996 | 39.53 | 941.8 | 60 | 7 | 107.5–11.7% 3.4% | 105.8–113.2% 1.7% | 61.6 | 67.6 |
CFU | 0.998 | 76.83 | 662.0 | 100 | 7 | 87.5–101.8% 5.7% | 89.9–102.5% 3.2% | 105.3 | 110.7 |
OXA | 0.997 | 105.6 | 615.0 | 30 | 4 | 91.5–100.5% 8.6% | 95.4–101.4% 3.0% | 32.6 | 34.7 |
CAP | 0.999 | 85.05 | 1498.0 | - | 4 | 97.4–116.9% 4.1% | 99.3–109.5% 3.0% | 31.1 | 33.7 |
CLO | 0.989 | 55.73 | 1604.0 | 30 | 4 | 86.8–97.5% 8.9% | 96.9–100.9% 10.7% | 31.8 | 36.1 |
Geographical Region | Milk Type | Sample Code No. | Microbial Inhibition Assays | HPLC-DAD Antimicrobials Detected | |||
---|---|---|---|---|---|---|---|
A” | “B” | “C” | “D” | ||||
1 | Cow’s milk | 5L | + | + | + | + | CFU |
8L | + | + | + | + | CAP, OXA | ||
11L | + | + | + | + | CFN, CFP | ||
2 | Sheep’s milk | 8G | − | − | − | − | CLO |
10G | − | − | − | − | CLO | ||
1P | + | + | + | + | CFZ | ||
3 | Cow’s milk | 2P | + | + | + | + | CFN |
3P | − | − | − | − | CFP | ||
5P | + | + | + | + | OXA, CAP, CFZ, CFP | ||
6P | − | − | − | − | AMO, CFN | ||
7P | + | + | + | + | OXA, CFP |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karageorgou, E.; Christoforidou, S.; Ioannidou, M.; Psomas, E.; Samouris, G. Detection of β-Lactams and Chloramphenicol Residues in Raw Milk—Development and Application of an HPLC-DAD Method in Comparison with Microbial Inhibition Assays. Foods 2018, 7, 82. https://doi.org/10.3390/foods7060082
Karageorgou E, Christoforidou S, Ioannidou M, Psomas E, Samouris G. Detection of β-Lactams and Chloramphenicol Residues in Raw Milk—Development and Application of an HPLC-DAD Method in Comparison with Microbial Inhibition Assays. Foods. 2018; 7(6):82. https://doi.org/10.3390/foods7060082
Chicago/Turabian StyleKarageorgou, Eftychia, Sofia Christoforidou, Maria Ioannidou, Evdoxios Psomas, and Georgios Samouris. 2018. "Detection of β-Lactams and Chloramphenicol Residues in Raw Milk—Development and Application of an HPLC-DAD Method in Comparison with Microbial Inhibition Assays" Foods 7, no. 6: 82. https://doi.org/10.3390/foods7060082
APA StyleKarageorgou, E., Christoforidou, S., Ioannidou, M., Psomas, E., & Samouris, G. (2018). Detection of β-Lactams and Chloramphenicol Residues in Raw Milk—Development and Application of an HPLC-DAD Method in Comparison with Microbial Inhibition Assays. Foods, 7(6), 82. https://doi.org/10.3390/foods7060082