Comparison of Oxidative Status of Human Milk, Human Milk Fortifiers and Preterm Infant Formulas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bovine Milk-Based Infant Formulas and Human Milk Fortifiers
2.2. Donkey Milk-Based Human Milk Fortifiers
2.3. Raw and Pasteurized Human Milk
2.4. Chemical Composition Determination for Experimental Products and Human Milk Samples
2.5. Trolox Equivalent Antioxidant Capacity (TEAC)
2.6. Antioxidant Activity Against DPPH
2.7. Measurement of Oxidative Content (Protein Carbonyls and Malondialdehyde)
2.8. In Vitro Antioxidant Activity
2.9. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Fundings
Conflicts of Interest
References
- Carlson, S.J.; Ziegler, E.E. Nutrient intake and growth of very low birth weight infants. J. Perinatol. 1998, 18, 252–258. [Google Scholar] [PubMed]
- De Curtis, M.; Rigo, J. The nutrition of preterm infants. Early Hum. Dev. 2012, 88, S5–S7. [Google Scholar] [CrossRef] [PubMed]
- Arslanoglu, S.; Boquien, C.-Y.; King, C.; Lamireau, D.; Tonetto, P.; Barnett, D.; Bertino, E.; Gaya, A.; Gebauer, C.; Grovslien, A.; et al. Fortification of human milk for preterm infants: Update and recommendations of the European Milk Bank Association (EMBA) Working Group on human milk fortification. Front. Pediatr. 2019, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Singh, B.; Chessell, L.; Wilson, J.; Janes, M.; McDonald, K.; Shahid, S.; Gardner, V.A.; Hjartarson, A.; Purcha, M.; et al. Guidelines for feeding very low birthweight infants. Nutrients 2015, 7, 423–442. [Google Scholar] [CrossRef] [PubMed]
- Embleton, N.E.; Pang, N.; Cooke, R.J. Postnatal malnutrition and growth retardation: An inevitable consequence of current recommendations in preterm infants? Pediatrics 2001, 107, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Heird, W.C. Determination of nutritional requirements in preterm infants, with special reference to ‘catch-up’ growth. Semin. Neonatol. 2001, 6, 365–375. [Google Scholar] [CrossRef]
- Horbar, J.D.; Ehrenkranz, R.A.; Badger, G.J.; Edwards, E.M.; Morrow, K.A.; Soll, R.F.; Buzas, J.S.; Bertino, E.; Gagliardi, L.; Bellu, R. Weight growth velocity and postnatal growth failure in infants 501 to 1500 grams: 2000–2013. Pediatrics 2015, 136, e84–e92. [Google Scholar] [CrossRef]
- Królczyk, J.B.; Dawidziuk, T.; Janiszewska-Turak, E.; Sołowiej, B. Use of whey and whey preparations in the food industry—A review. Polish J. Food Nutr. Sci. 2016, 66, 157–165. [Google Scholar] [CrossRef]
- Lapillonne, A.; Groh-Wargo, S.; Lozano Gonzalez, C.H. Lipid needs of preterm infants: Updated recommendations. J. Pediatr. 2013, 162, S37–S47. [Google Scholar] [CrossRef]
- Koo, W.; Tice, H. Human milk fortifiers do not meet the current recommendation for nutrients in very low birth weight infants. J. Parenter. Enter. Nutr. 2018, 42, 813–820. [Google Scholar] [CrossRef]
- Fenaille, F.; Parisod, V.; Visani, P.; Populaire, S.; Tabet, J.-C.; Guy, P.A. Modifications of milk constituents during processing: A preliminary benchmarking study. Int. Dairy J. 2006, 16, 728–739. [Google Scholar] [CrossRef]
- Pischetsrieder, M.; Henle, T. Glycation products in infant formulas: Chemical, analytical and physiological aspects. Amino Acids 2012, 42, 1111–1118. [Google Scholar] [CrossRef] [PubMed]
- Scheidegger, D.; Radici, P.M.; Vergara-Roig, V.A.; Bosio, N.S.; Pesce, S.F.; Pecora, R.P.; Romano, J.C.P.; Kivatinitz, S.C. Evaluation of milk powder quality by protein oxidative modifications. J. Dairy Sci. 2013, 96, 3414–3423. [Google Scholar] [CrossRef] [PubMed]
- Inayat, M.; Bany-Mohammed, F.; Valencia, A.; Tay, C.; Jacinto, J.; Aranda, J.V.; Beharry, K.D. Antioxidants and biomarkers of oxidative stress in preterm infants with symptomatic patent ductus arteriosus. Am. J. Perinatol. 2015, 32, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Moore, T.A.; Ahmad, I.M.; Zimmerman, M.C. Oxidative stress and preterm birth: An integrative review. Biol. Res. Nurs. 2018, 20, 497–512. [Google Scholar] [CrossRef] [PubMed]
- Cháfer-Pericás, C.; Rahkonen, L.; Sánchez-Illana, A.; Kuligowski, J.; Torres-Cuevas, I.; Cernada, M.; Cubells, E.; Nuñez-Ramiro, A.; Andersson, S.; Vento, M.; et al. Ultra high performance liquid chromatography coupled to tandem mass spectrometry determination of lipid peroxidation biomarkers in newborn serum samples. Anal. Chim. Acta 2015, 886, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, C.C.; Chang, J.C.; Tsao, L.Y.; Yang, R.C.; Chen, H.N.; Lee, C.H.; Lin, C.Y.; Tsai, Y.G. Correlates of elevated interleukin-6 and 8-hydroxy-2′-deoxyguanosine levels in tracheal aspirates from very low birth weight infants who develop bronchopulmonary dysplasia. Pediatr. Neonatol. 2017, 58, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Slater, L.; Asmerom, Y.; Boskovic, D.S.; Bahjri, K.; Plank, M.S.; Angeles, K.R.; Phillips, R.; Deming, D.; Ashwal, S.; Hougland, K.; et al. Procedural pain and oxidative stress in premature neonates. J. Pain 2012, 13, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, A.; Fast, S.; Bonnar, K.; Baier, R.J.; Narvey, M. Human-based human milk fortifier as rescue therapy in very low birth weight infants demonstrating intolerance to bovine-based human milk fortifier. Breastfeed. Med. 2017, 12, 570–573. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, S.; Schanler, R.J.; Kim, J.H.; Patel, A.L.; Trawöger, R.; Kiechl-Kohlendorfer, U.; Chan, G.M.; Blanco, C.L.; Abrams, S.; Cotten, C.M.; et al. An Exclusively human milk-based diet is associated with a lower rate of necrotizing enterocolitis than a diet of human milk and bovine milk-based products. J. Pediatr. 2010, 156, 562–567.e1. [Google Scholar] [CrossRef]
- Bertino, E.; Cavallarin, L.; Cresi, F.; Tonetto, P.; Peila, C.; Ansaldi, G.; Raia, M.; Varalda, A.; Giribaldi, M.; Conti, A.; et al. A Novel donkey milk-derived human milk fortifier in feeding preterm infants: A randomized controlled trial. J. Pediatr. Gastroenterol. Nutr. 2019, 68, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Coscia, A.; Bertino, E.; Tonetto, P.; Peila, C.; Cresi, F.; Arslanoglu, S.; Moro, G.E.; Spada, E.; Milani, S.; Giribaldi, M.; et al. Nutritional adequacy of a novel human milk fortifier from donkey milk in feeding preterm infants: Study protocol of a randomized controlled clinical trial. Nutr. J. 2018, 17, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Martysiak-Żurowska, D.; Puta, M.; Rodzik, A.; Malinowska-Pańczyk, E. The effect of lyophilization on selected biologically active components (vitamin c, catalase, lysozyme), total antioxidant capacity and lipid oxidation in human milk. Żywność. Nauk. Technol. Jakość 2017, 3, 121–128. [Google Scholar]
- Salcedo, J.; Gormaz, M.; López-Mendoza, M.C.; Nogarotto, E.; Silvestre, D. Human milk bactericidal properties: Effect of lyophilization and relation to maternal factors and milk components. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Baldini, M.; Fabietti, F.; Giammarioli, S.; Onori, R.; Orefice, L.; Stacchini, A. Analytical methods used in food chemical control. Rapp. ISTISAN 1996, 96, 34. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Barros, L.; Ferreira, M.-J.; Queirós, B.; Ferreira, I.C.F.R.; Baptista, P. Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem. 2007, 103, 413–419. [Google Scholar] [CrossRef]
- Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A.-G.; Ahn, B.-W.; Shaltiel, S.; Stadtman, E.R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990, 186, 464–478. [Google Scholar] [CrossRef]
- Seljeskog, E.; Hervig, T.; Mansoor, M.A. A novel HPLC method for the measurement of thiobarbituric acid reactive substances (TBARS). A comparison with a commercially available kit. Clin. Biochem. 2006, 39, 947–954. [Google Scholar] [CrossRef]
- Frassinetti, S.; Gabriele, M.; Caltavuturo, L.; Longo, V.; Pucci, L. Antimutagenic and antioxidant activity of a selected lectin-free common bean (Phaseolus vulgaris L.) in two cell-based models. Plant Foods Hum. Nutr. 2015, 70, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Wolf, K.L.; Liu, R.H. Cellular Antioxidant Activity (CAA) Assay for Assessing Antioxidants, Foods, and Dietary Supplements. J. Agric. Food Chem. 2007, 55, 8896–8907. [Google Scholar] [CrossRef] [PubMed]
- Mikstacka, R.; Rimando, A.M.; Ignatowicz, E. Antioxidant effect of trans-resveratrol, pterostilbene, quercetin and their combinations in human erythrocytes in vitro. Plant Foods Hum. Nutr. 2010, 65, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Martysiak-Zurowska, D.; Puta, M.; Barczak, N.; Dabrowska, J.; Malinowska-Pańczyk, E.; Kiełbratowska, B.; Kołodziejska, I. Effect of high pressure and sub-zero temperature on total antioxidant capacity and the content of vitamin C, fatty acids and secondary products of lipid oxidation in human milk. Polish J. Food Nutr. Sci. 2017, 67, 117–122. [Google Scholar] [CrossRef]
- Hanson, C.; Lyden, E.; Furtado, J.; Van Ormer, M.; Anderson-Berry, A. A comparison of nutritional antioxidant content in breast milk, donor milk, and infant formulas. Nutrients 2016, 8, 681. [Google Scholar] [CrossRef]
- Dryáková, A.; Pihlanto, A.; Marnila, P.; Čurda, L.; Korhonen, H.J.T. Antioxidant properties of whey protein hydrolysates as measured by three methods. Eur. Food Res. Technol. 2010, 230, 865–874. [Google Scholar] [CrossRef]
- Lamothe, S.; Guérette, C.; Dion, F.; Sabik, H.; Britten, M. Antioxidant activity of milk and polyphenol-rich beverages during simulated gastrointestinal digestion of linseed oil emulsions. Food Res. Int. 2019, 122, 149–156. [Google Scholar] [CrossRef]
- Lindmark-Månsson, H.; Åkesson, B. Antioxidative factors in milk. Br. J. Nutr. 2000, 84, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Aycicek, A.; Erel, O.; Kocyigit, A.; Selek, S.; Demirkol, M.R. Breast milk provides better antioxidant power than does formula. Nutrition 2006, 22, 616–619. [Google Scholar] [CrossRef]
- Chen, Y.; Fantuzzi, G.; Schoeny, M.; Meier, P.; Patel, A.L. High-dose human milk feedings decrease oxidative stress in premature infant. J. Parenter. Enter. Nutr. 2019, 43, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Friel, J.K.; Diehl-Jones, B.; Cockell, K.A.; Chiu, A.; Rabanni, R.; Davies, S.S.; Jackson Roberts, L. Evidence of oxidative stress in relation to feeding type during early life in premature infants. Pediatr. Res. 2011, 69, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Friel, J.K.; Martin, S.M.; Langdon, M.; Herzberg, G.R.; Buettner, G.R. Milk from mothers of both premature and full-term infants provides better antioxidant protection than does infant formula. Pediatr. Res. 2002, 51, 612–618. [Google Scholar] [CrossRef]
- Ledo, A.; Escrig, R.; Brugada, M.; Aguar, M.; Saenz, P.; Vento, M.; Arduini, A.; Asensi, M.A.; Sastre, J. Human milk enhances antioxidant defenses against hydroxyl radical aggression in preterm infants. Am. J. Clin. Nutr. 2009, 89, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Mann, B.; Athira, S.; Sharma, R.; Kumar, R.; Sarkar, P. Bioactive peptides from whey proteins. Whey Proteins 2019, 519–547. [Google Scholar] [CrossRef]
- Cai, C.; Zhang, Z.; Morales, M.; Wang, Y.; Khafipour, E.; Friel, J. Feeding practice influences gut microbiome composition in very low birth weight preterm infants and the association with oxidative stress: A prospective cohort study. Free Radic. Biol. Med. 2019. [Google Scholar] [CrossRef] [PubMed]
- Cristofalo, E.A.; Schanler, R.J.; Blanco, C.L.; Sullivan, S.; Trawoeger, R.; Kiechl-Kohlendorfer, U.; Dudell, G.; Rechtman, D.J.; Lee, M.L.; Lucas, A.; et al. Randomized trial of exclusive human milk versus preterm formula diets in extremely premature infants. J. Pediatr. 2013, 163, 1592–1595.e1. [Google Scholar] [CrossRef]
Energy | Protein | Lipid | Carbohydrate | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 mL | 1 g protein | |||||||||||||
Preterm formulas | Name | Kcal | Content (g) | W/C | Hydr | Source | Content (g) | Source | Content (g) | Type | Added ingredient | Energy | Lipid | Carb |
PIF1 | 79 | 2.4 | 60–40 | - | Bovine | 3.9 | Plant | 8.7 | Maltodextrins lactose | Lactoferrin/ DHA-ARA-MCT/ GOS | 32.9 | 1.63 | 3.6 | |
PIF2 | 81 | 2.9 | 100–0 | + | Bovine | 4.0 | Plant | 8.4 | Maltodextrins lactose | DHA-ARA-MCT | 27.9 | 1.38 | 2.9 | |
100 g | 1 g protein | |||||||||||||
Fortifiers and concentrates | Name | Kcal | Content (g) | W/C | Hydr | Source | Content (g) | Source | Content (g) | Type | Added ingredient | Energy | Lipid | Carb |
BM1 | 347 | 20 | 100–0 | +++ | Bovine | 0.4 | ? | 66 | Maltodextrins | 17.4 | 0.02 | 3.3 | ||
BM2 | 260 | 35 | 100–0 | - | Bovine | 0.4 | Soybean | 38 | Maltodextrin | Lactoferrin/ | 7.4 | 0.01 | 1.1 | |
GOS FOS/ | ||||||||||||||
Lutein | ||||||||||||||
BC | 368 | 87 | 20–80 | - | Bovine | 1.6 | Bovine | 1.2 | Lactose | 4.2 | 0.02 | 0.0 | ||
DM | 390 | 22 | 60–40 | - | Donkey | 3.6 | Donkey | 59 | Lactose | 17.7 | 0.16 | 2.7 | ||
DC | 418 | 43 | 60–40 | - | Donkey | 6.1 | Donkey | 33 | Lactose | 9.7 | 0.14 | 0.8 |
TEAC † | DPPH † | PC ‡ | MDA † | |||||
---|---|---|---|---|---|---|---|---|
RHM | 61.3 ± 2.2 | C | 10.8 ± 0.7 | A | 0.6 ± 0.1 | A | 195 ± 5 | A |
DHM | 82.0 ± 1.7 | B | 10.6 ± 0.2 | A | 0.9 ± 0.1 | A | 199 ± 6 | A |
PIF1 | 10.2 ± 0.2 | D | 2.2 ± 0.3 | B | 14.3 ± 2.2 | B | 1329 ± 72 | C |
PIF2 | 131.7 ± 3.4 | A | 2.7 ± 0.5 | B | 1.8 ± 0.2 | A | 867 ± 191 | B |
TEAC † | DPPH † | Haemolisis ‡ | CAA † | PC ‡ | MDA † | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BM1 | 470 ± 4 | A | 9.6 ± 0.1 | A | 11 ± 1 | A | 83 ± 3 | A | 0.13 ± 0.05 | A | 95 ± 12 | A |
BM2 | 37 ± 0 | E | <0.3 | 29 ± 1 | AB | 41 ± 3 | B | 0.56 ± 0.08 | AB | 14 ± 2 | C | |
BC | 141 ± 2 | C | 0.3 ± 0.1 | B | 62 ± 6 | B | 19 ± 1 | D | 0.55 ± 0.13 | AB | 10 ± 2 | C |
DM | 113 ± 2 | D | <0.3 | 30 ± 4 | AB | 33 ± 3 | C | 0.81 ± 0.18 | B | 92 ± 7 | A | |
DC | 193 ± 2 | B | <0.3 | 54 ± 20 | B | 24 ± 1 | D | 1.02 ± 0.24 | B | 60 ± 11 | B |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pozzo, L.; Cirrincione, S.; Russo, R.; Karamać, M.; Amarowicz, R.; Coscia, A.; Antoniazzi, S.; Cavallarin, L.; Giribaldi, M. Comparison of Oxidative Status of Human Milk, Human Milk Fortifiers and Preterm Infant Formulas. Foods 2019, 8, 458. https://doi.org/10.3390/foods8100458
Pozzo L, Cirrincione S, Russo R, Karamać M, Amarowicz R, Coscia A, Antoniazzi S, Cavallarin L, Giribaldi M. Comparison of Oxidative Status of Human Milk, Human Milk Fortifiers and Preterm Infant Formulas. Foods. 2019; 8(10):458. https://doi.org/10.3390/foods8100458
Chicago/Turabian StylePozzo, Luisa, Simona Cirrincione, Rossella Russo, Magdalena Karamać, Ryszard Amarowicz, Alessandra Coscia, Sara Antoniazzi, Laura Cavallarin, and Marzia Giribaldi. 2019. "Comparison of Oxidative Status of Human Milk, Human Milk Fortifiers and Preterm Infant Formulas" Foods 8, no. 10: 458. https://doi.org/10.3390/foods8100458
APA StylePozzo, L., Cirrincione, S., Russo, R., Karamać, M., Amarowicz, R., Coscia, A., Antoniazzi, S., Cavallarin, L., & Giribaldi, M. (2019). Comparison of Oxidative Status of Human Milk, Human Milk Fortifiers and Preterm Infant Formulas. Foods, 8(10), 458. https://doi.org/10.3390/foods8100458