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Abstract: Occurring central Italy, 262 unmedicated feed samples and 353 samples of animal tissues
and eggs are tested for coccidiostats between 2012 and 2017. A validated multi-residue HPLC-MS/MS
method is applied for the simultaneous determination of the 11 coccidiostats licensed in the EU.
The dietary exposure to coccidiostats through poultry meat and eggs is calculated for high consumers,
and the contribution to acceptable daily intake of coccidiostats is evaluated. The occurrence of
positive feed samples ranges from 17.2% in 2012 to 28.3% in 2017, with an average percentage
of positive samples of 25%, while 3.8% of feed samples are non-compliant with a concentration
ranging from 0.015 mg/kg for diclazuril to 56 mg/kg for narasin. Positive samples of animal tissues,
on average, are 34.7%, fully compliant, while 16% of eggs are positive and violative residues are found
in 2%. These noncompliant samples show a concentration varying from 2.4 µg/kg to 1002 µg/kg.
The contribution of poultry meat and egg consumption to the acceptable daily intake of each
coccidiostat is below 1%, highlighting a low direct risk to public health.
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1. Introduction

Coccidiostats are pharmacologically active molecules employed, since 1940, to prevent and inhibit
parasitic protozoa of the genus Eimeria, referred to as coccidia, causing a very contagious disease of the
gastrointestinal tract in many farmed animals [1,2]. Coccidiosis represents a major disease in poultry,
causing intestinal lesions, scarce weight gain, poor feed conversion and poor egg production; in its acute
form, coccidiosis causes high mortality rates [3–7]. Aside from intensively farmed animals, such as
poultry, coccidiosis also affects extensively reared species including sheep, cattle, pigs and rabbits [2].
Coccidiostats are authorized as feed additives for target animal species by European legislation [8]
and can be categorized as polyether ionophores produced by the Streptomycetaceae bacteria family,
such as monensin (MON), narasin (NAR), lasalocid (LAS), salinomycin (SAL), semduramicin (SEM)
and maduramicin (MAD), or as non-ionophoric synthetic molecules such as halofuginone (HFG),
robenidine (ROB), diclazuril (DIC), decoquinate (DEC) and nicarbazin (NIC) [1,2]. Each coccidiostat
has individual toxicological characteristics which are based on the molecular mechanisms of action
that affect trans-membrane ion transport in the case of the ionophoric compounds. The non-ionophoric
compounds represent a very heterogeneous group of molecules which have partially unknown
mechanisms of action. However, these mechanisms are not only efficient against coccidians, but also
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can act against mammalian cells, primarily on cardiac and peripheral muscle tissues. Clinical
signs of acute rhabdomyolysis, such as muscle weakness and myocardial insufficiency, have been
observed in a small number of cases of acute intoxications with monensin and other ionophoric
compounds, both in animals and humans, due to accidental ingestion of the pure compounds [9–12].
The authorization of coccidiostats as feed additives is based on studies that demonstrate the safety
of their use in relation to the target species at the highest proposed levels of incorporation in feed
or water, and at multiples of that level to establish a margin of safety [13]. However, during the
production of feed containing coccidiostats, unintentional transfer from target to non-target feed (feed
for which the use of coccidiostats is not authorized) may occur [14,15]. This unavoidable transfer,
referred to as cross-contamination or carry-over, can occur primarily during feed production, but also
during transport and storage [16]. Therefore, for the purpose of enabling the feed manufacturer
to manage unavoidable carry-over, to ensure animal health, and to contain the risk to consumers,
maximum carry-over levels have been established by Commission Regulation European Union (EU)
No 574/2011 [17]. The limits have been fixed at 1% of the authorized maximum content in feed for
sensitive non-target animal species, in feed used for the period before slaughter and in non-target feed
for ‘continuous food-producing animals’ such as dairy cows or laying hens, and 3% in feed for less
sensitive non-target animal species. The occurrence of unavoidable carry-over of coccidiostats may
result in the presence of residues of these substances in food products of animal origin [2,18]. Therefore,
to protect public health, the EU has established maximum levels for the presence of coccidiostats in
food of animal origin originating from non-target animal species [19–21]. Moreover, EU countries
have established surveillance programs to monitor and prevent unacceptable contamination of animal
products for human consumption. The surveillance of coccidiostat residues in food has been focused
mainly on ionophores and NIC in eggs and poultry meat [2] for a long time, probably related to
limitations attributable to analytical methods. The availability of multi-residue analytical methods,
suitable for the simultaneous determination of a wider range of coccidiostat residues in a wider range
of species tissue, represents an undisputable advantage in the frame of official control [2,22–24].

Although some acute toxicity cases in humans, due to the ingestion of pure molecules, have been
registered [9–12], major concerns are addressed toward chronic toxicity due to long-term exposure to
low coccidiostat levels [7]. The European Food Safety Authority (EFSA) and the Joint FAO/WHO Expert
Committee on Food Additives (JECFA) established, on the basis of toxicological data, acceptable daily
intakes (ADIs) for all regulatory anticoccidials, ranging from the lowest values for HFG (0.00003 mg/kg
body weight/day) to the highest values for NIC (0.2 mg/kg body weight/day) [25]. A validated and
reliable multi-residue method is applied in the present study to investigate the carry-over contamination
of regulated ionophoric and non-ionophoric anticoccidials in feed and food of animal origin collected
within the context of the Italian official control plans in recent years. A risk assessment concerning
dietary exposure to anticoccidials also is performed for all age populations.

2. Material and Methods

2.1. Sample Collection

The samples were collected by veterinary inspectors in the Umbria and Marche regions (central
Italy) within the framework of official control, according to the national residue control plan (NRCP)
for feed. Sampling was performed according to the requirements of EU Regulation No 152/2009 [26]
amended by Regulation (EU) No 691/2013 [27]. The number of samples was calculated every year,
taking into consideration animal production and the number of non-compliant results detected within
the preceding year. The samples were sent to the Istituto Zooprofilattico Sperimentale dell’Umbria e
delle Marche ‘Togo Rosati’ to perform analyses. Feed samples were finely ground and stored at +4 ◦C,
while egg and muscle samples were homogenized and stored at −20 ◦C until the day of the analysis.
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2.2. Standards and Reagents

Standards: LAS A sodium salt (100 µg/mL acetonitrile solution), ROB hydrochloride, SAL
monosodium salt hydrate, nigericin sodium salt (ISTD), NIC, NAR, MAD ammonium and MON
sodium salt hydrate analytical standards were purchased from Sigma-Aldrich, now Merck KGaA,
(Darmstadt, Germany); DIC analytical standard was purchased from SPECTRA 2000 Srl (Rome, Italy);
DIC-methyl (ISTD) and DEC analytical standards were purchased from LGC Standards (Milan, Italy);
SEM sodium was kindly provided by the Community Reference Laboratory for coccidiostats in Berlin,
Germany; and DEC-d5 (ISTD), DNC-d8 (ISTD), HFG hydrobromide, HFG-13C6 (ISTD) hydrobromide
and ROB-d8 hydrochloride analytical standards were purchased from Witega (Berlin, Germany).

Reagents: Acetonitrile, methanol (hypergrade for LC-MS) and ethanol were supplied by Merck
KGaA (Darmstadt, Germany); formic acid (99%), dimethyl sulphoxide and ammonia were of analytical
grade, and sodium acetate trihydrate was purchased from Carlo Erba (Milan, Italy). Demineralized
water was HPLC grade obtained from a Milli-Q purification system (Merck KGaA, Germany). PTFE
filters (0.45 µm) were from Merck KGaA (Darmstadt, Germany). SPE silica cartridges (500 mg, 6 mL)
were purchased from Biotage (Uppsala, Sweden).

2.3. Analytical Methods

2.3.1. Feed and Food Sample Preparation

Feed samples were prepared according to Moretti et al. [23]. Briefly, 5 g of sample was weighed in
a 50 mL polypropylene centrifuge tube, spiked with 250 µL of IS solution (1 µg/mL) and allowed to
stand for about 15 min. Then, 25 mL of ethanol was added and the mixture was shaken for 30 min
on a mechanical agitator. The supernatant was collected in a clean 50 mL polypropylene centrifuge
tube. Extraction with ethanol was repeated twice, and the two extracts were combined. The silica
cartridge, used as a filter, was conditioned with 5 mL ethanol and loaded with 10 mL of sample extract
and 2 mL acetonitrile; the eluate was collected directly in a 15 mL polypropylene centrifuge tube.
The eluate was partially dried and then the analytes were quantitatively collected with 6 mL of an
ethanol–water–ammonia (90 + 10 + 0.5 v/v/v) solution. The eluates were combined and evaporated to
dryness (N2, 50 ◦C). Finally, the dry residues were redissolved in 1 mL methanol, filtered through a
0.45 µm PTFE filter, and transferred into an LC vial.

Regarding food, a similar analytical procedure was applied [22,23]. Two grams of homogenized
whole eggs or muscle was weighed in a 50 mL polypropylene centrifuge tube. Fifty microlitres of
the same IS solution described for feed was added. The samples were vortex-mixed and allowed
to equilibrate for 10 min. Afterwards, 6 mL of acetonitrile and about 4 g of anhydrous sodium
sulphate were added; the mixture was vigorously mixed and then centrifuged (4000 rpm, 10 min).
The supernatant was collected in a clean 50 mL polypropylene centrifuge tube. Extraction with
acetonitrile was repeated twice, and the combined extracts were defatted with 5 mL of n-hexane.
Following centrifugation, the upper phase was discarded. The defatting step was then repeated
twice, and the residue discarded. The SPE silica cartridge, used as a filter, was conditioned with
5 mL of acetonitrile and loaded with the sample extracts. The eluates were collected quantitatively
in a 15 mL polypropylene centrifuge tube. Subsequently, for both matrices, 2 mL of acetonitrile was
passed through the cartridge and the eluates were combined with the first one. Concerning muscle
matrix only, a further 2 mL of acetonitrile was passed through the cartridge and combined and then
partially evaporated to dryness (N2, 50 ◦C). The SPE were washed with 6 mL ethanol–water–ammonia
(90 + 10 + 0.5 v/v/v) to quantitatively collect the analytes at the end of the filtration process, and then
the combined solutions were brought to complete dryness with N2. Finally, the dry residues were
redissolved in 1 mL of methanol, filtered and transferred into LC vials.
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2.3.2. Multi-Residue LC-MS/MS Method

The samples were analysed using a multi-residue LC-MS/MS method previously described by
Galarini et al. [22] and Moretti et al. [23], enabling the determination of 11 coccidiostats in meat,
eggs and feed samples. Chromatographic separation was performed on a Thermo Electron instrument
(San Jose, CA, USA) consisting of a surveyor HPLC and a TSQ Quantum Ultra triple quadrupole mass
spectrometer operating in both positive and negative ESI modes. The capillary temperature was 320 ◦C
and the capillary voltages were set at 4.0 and 3.0 kV for positive and negative ionization, respectively.
The Q1 and Q3 resolutions were set at 0.7 mass units FWHM. Sheath gas, auxiliary gas and ion sweep
gas (N2) pressures were set at 30, 15 and 5 arbitrary units, respectively. Collision gas (Ar) pressure was
1.5 mtorr. The instrument was controlled by Xcalibur software (version 3.0, Thermo Fisher Scientific,
Waltham, MA, USA). Analytes were separated on a Synergi Fusion HPLC column (150 × 2.0 mm,
4 µm; Phenomenex, Torrance, USA). HPLC mobile phase A was an aqueous solution containing 0.1%
(v/v) formic acid, and mobile phase B was acetonitrile containing 0.1% (v/v) formic acid and 0.02 mM
sodium acetate. The gradient was initiated at 15% eluent B and kept for 2 min, continued with a linear
increase to 25% B in 1 min, followed by a linear increase to 95% B in 12.5 min. This percentage was
maintained for 17.5 min. The system returned to 15% B in 2 min and the column was re-equilibrated
for 5 min. The column temperature was 40 ◦C and the autosampler tray temperature was kept at 16 ◦C.
The flow rate was 0.25 mL/min and the injection volume was 5 µL.

2.4. Method Validation

The method was validated according to Commission Decision 2002/657/EC [28] in food matrices,
while for feed validation the scheme reported by Moretti et al. [23] was used. Both methods were
included in the scope of ISO 17,025 accreditation [29]; the method performance has been successfully
evaluated through participation in interlaboratory exercises organized by different international
organizations such as the Food Analysis Performance Assessment Scheme (FAPAS), the Progetto
Trieste-Proficiency Testing Schemes and the International European Union Reference Laboratory
(EURL). The Z-scores in all cases were satisfactory (|z| ≤ 2.0).

The standard additions approach was used to quantify target analytes, therefore known amounts of
the eleven coccidiostats were added to blank feed and food samples to obtain the target concentrations
at seven levels (0.003, 0.005, 0.050, 0.10, 0.50, 1.0, 10 mg/kg) in feed and at five levels (1, 3.2, 10, 32, 100,
320 µg/kg) in food.

Selectivity/specificity, linearity, matrix effect, limit of determination (LOD), limit of quantification
(LOQ), trueness (recovery), precision (repeatability and intra-laboratory reproducibility), decision limit
(CCα), detection capability (CCβ), ruggedness (minor changes) and measurement uncertainty were
evaluated. The experimental validation parameters are reported in Table 1.
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Table 1. Validation parameters for the methods used in the determination of coccidiostats in feed, muscle and eggs for residue control in Italy.

Analyte Matrix LOD
(µg/kg)

LOQ
(µg/kg) CV Repeatability (%) CV Reproducibility (%) Apparent Recovery

Range (%)
Relative Expanded

Uncertainty (%)
CCα

(µg/kg)
CCβ

(µg/kg)

NIC Feed 3 5 4.7 5.7 87–119 20.7

Eggs 1 1 3 4.7 83–115 323 348
Poultry 1 1 2.1 5.4 86–115 4354 4740

Other species 1 1 2.1 5.4 86–115 54 59

ROB Feed 3 5 3.6 5.4 87–119 20.4

Eggs 1 1 4.8 6.9 83–115 28 31
Poultry, rabbit 1 1 5.5 9.1 86–115 230 a 264 a

Other species 1 1 5.5 9.1 86–115 5.7 6.6

DIC Feed 3 5 5.1 6.3 87–119 21.4

Eggs 1 1 6.3 7.8 83–115 2.3 2.5
Poultry 1 1 4.2 8.5 86–115 570 649
Rabbit 1 1 4.2 8.5 86–115 171 195

Other species 1 1 4.2 8.5 86–115 5.7 6.5

HFG Feed 3 5 6.5 9.7 87–119 25.9

Eggs 1 1 14 20.6 83–115 8 11
Bovine 1 1 9.5 14.4 86–115 12 15

Other species 1 1 9.5 14.4 86–115 3.7 4.6

DEC Feed 3 5 3.4 5.3 87–119 20.3

Eggs 1 1 2.2 5.0 83–115 22 23
Poultry 1 1 2.3 10.7 86–115 588 691

Other species 1 1 2.3 10.7 86–115 24 28

LAS Feed 3 5 5.2 6.3 87–119 21.4

Eggs 1 1 4.5 9.6 83–115 174 201
Poultry 1 1 4.5 9.4 86–115 69 80
Bovine 1 1 4.5 9.4 86–115 12 13

Other species 1 1 4.5 9.4 86–115 5.7 b 6.6 b

MON Feed 3 5 4.4 6.9 87–119 22.1

Eggs 1 1 4.3 6.2 83–115 2.2 c 2.4 c

Bovine 1 1 4 6 86–115 2.2 2.4
Poultry 1 1 4 6 86–115 8.8 c 9.6 c

Other species 1 1 4 6 86–115 2.2 c 2.4 c
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Table 1. Cont.

Analyte Matrix LOD
(µg/kg)

LOQ
(µg/kg) CV Repeatability (%) CV Reproducibility (%) Apparent Recovery

Range (%)
Relative Expanded

Uncertainty (%)
CCα

(µg/kg)
CCβ

(µg/kg)

SAL Feed 3 5 4.5 6.2 87–119 21.3

Eggs 1 1 5.3 7 83–115 3.3 d 3.7 d

Poultry 1 1 3.5 6.1 86–115 16.5 d 18.1 d

Other species 1 1 3.5 6.1 86–115 2.2 d 2.4 d

NAR Feed 3 5 4.9 7.2 87–119 22.6

Eggs 1 1 5.6 7.3 83–115 2.2 2.5
Poultry 1 1 3.7 60 86–115 55 60

Other species 1 1 3.7 60 86–115 5.5 6

SEM Feed 3 5 7 9.6 87–119 25.8

Eggs 1 1 8.7 15.1 83–115 2.5 3.1
Other species 1 1 6.6 10.5 86–115 2.3 2.7

MAD Feed 3 5 6.6 9.2 87–119 25.3

Eggs 1 1 11.6 17.2 83–115 15 20
Poultry 1 1 6.7 11.4 86–115 36 e 43 e

Other species 1 1 6.7 11.4 86–115 2.4 2.8
a ROB hydrochloride, b LAS sodium, c MON sodium, d SAL sodium, e MAD ammonium.



Foods 2019, 8, 477 7 of 16

2.5. Human Dietary Exposure and Risk Assessment

Dietary exposure (DE) was calculated as reported in literature [30,31]. Briefly, the results of
coccidiostatic determination in food matrices (poultry meat and eggs) were combined with the food
consumption data available from national Italian dietary surveys [32] at a detailed level, for the two
mentioned food categories. Five age-based population groups were considered for the exposure
assessment: infants/toddlers (0–2 years old), children (3–9 years old), adolescents (10–17 years old),
adults (18–64 years old) and the elderly (65–97 years old). The body weight data for the groups
considered, referring to the age classes set in the national survey, were 11, 26, 53, 70 and 70 kg,
respectively [33]. A crucial step in DE evaluation, especially in chemical risk assessments, is managing
data below the LOD. These data are referred to as non-detects, and the occurrence distribution is
left-censored. During the present study, left-censored data was handled, as suggested in the literature
for studies in the field of food safety, with the substitution method [34,35]: non-detect samples
were replaced by zero in the lower bound (LB) approach and by LOD values in upper bound (UB),
representing the worst and the best case scenarios. The risk assessment for Italian consumers was
conducted by comparing the DE, estimated for high consumers (95th percentile of food consumption)
with the ADIs. Dietary coccidiostat exposure through meat and hen eggs also was reported as a
percentage contribution to ADI.

3. Results and Discussion

3.1. Results of Official Control: Targeted Samples

Concerning feedstuff, as reported in Table 2, during 2012–2017, 262 unmedicated feed samples
were subjected to official control in the Umbria and Marche regions, the majority of which (72.1%)
referred to poultry production, followed by bovine (11.4%), ovine (5.7%), rabbit (5.7%), swine (3.8%)
and equine production (1.4%). The percentage of positive (above LOQ) feed samples ranged from
17.2% in 2012 to 28.3% in 2017, resulting in an average percentage of positive samples for the whole
period tested of 25.6% (Table 2). Furthermore, 4.8% and 0.75% of total samples were found to be
positive for two and three molecules, respectively.

Moretti et al. [23] found higher rates of multiple residue contamination in feed during 2010–2012,
reporting 18%, 15%, 6% and 2% of tested samples simultaneously contaminated by two, three, four
and five coccidiostats, respectively.

Concerning non-compliant samples, as shown in Table 2, the average percentage values moved
from the 6.9% registered in 2012 to 1.7% in 2016; the following year (2017) the value recorded was 6.3%.
It is to be noticed that the non-compliance rate varies mainly as a result of an increase in samples tested
during the years examined, rather than an effective decrease in positive samples. Ionophoric molecules
were detected in 28 feed samples (10.4%), while non-ionophoric molecules were found in 54 samples
(20.15%); these results differ from those reported by Annunziata et al. [1] for ionophoric compounds
(32.4%) and are comparable to those reported by the same authors in 2018 [36] for non-ionophoric
residues in feed samples (20.3%) collected as part of the official Italian monitoring plan in other regions
of Italy. Among ionophoric molecules, the most frequently detected coccidiostat in untreated feed
was LAS, found in 11 samples, one of which exceeded the regulatory limit, followed by NAR found
in 7 samples of which one was a noncompliant sample (Table 3). These results diverge from those
reported by Annunziata et al. [1] and Moretti et al. [23] who found MON as the most frequently
detected carry-over ionophore coccidiostat in feedstuff collected according to Italian NRCP (22% and
35%, respectively).
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Table 2. Results for residue control of coccidiostats in central Italy during 2012–2017 in feed and food (muscle and eggs).

2012 2013 2014 2015 2016 2017 Total

No.
Tested

No.
Positive

No.
Nc

No.
Tested

No.
Positive

No.
Nc

No.
Tested

No.
Positive

No.
Nc

No.
Tested

No.
Positive

No.
Nc

No.
Tested

No.
Positive

No.
Nc

No.
Tested

No.
Positive

No.
Nc

No.
Tested

No.
Positive

No.
Nc

Feed
Bovine 3 1 3 3 6 10 2 5 1 30 4
Swine 1 2 1 1 1 4 2 1 10 2 1
Equine 1 1 1 1 1 3 1 1
Poultry 20 2 1 21 5 2 22 7 1 50 13 1 44 12 1 32 8 1 189 47 7
Ovine 2 3 3 3 1 2 2 15 1
Rabbit 3 2 1 1 1 1 1 6 6 2 1 2 1 15 12 2

Total 29 5 2 30 6 2 30 8 1 67 20 1 60 15 1 46 13 3 262 67 10

% 17.2 6.9 20.0 6.7 26.7 3.3 29.9 1.5 25.0 1.7 28.3 6.3 25 3.8

Food
Bovine 2 1 1 1 5
Swine 4 8 4 4 4 5 29

Poultry 28 3 31 12 33 14 6 1 34 19 34 19 166 68
Ovine 1 1 1 1
Rabbit 1 1 1 1

Total 34 5 41 12 38 14 11 1 39 19 39 19 202 70

% 14.7 29.3 36.8 9.1 - 48.7 48.7 33.7

Eggs 20 3 18 3 47 2 1 30 10 2 24 4 12 2 151 24 3
% 15.0 16.7 4.3 2.1 33.3 6.7 16.7 16.7 15.9 2.0

The total number of tested samples is presented.
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Table 3. Incidence of positive and noncompliant (n.c.) samples, residue concentration range in feed and food matrix collected within the Italian National Residue
Control Plan during 2012–2017.

Feed Food (Hen Eggs and Meat)

Positive
Samples (n.c)

Incidence
(%) *

Min–Max
(mg/kg) Specie Involved Positive

Samples (n.c)
Incidence

(%)
Min–Max

(µg/kg) Specie Involved

2012 2012

LAS 2 6.9 0.2 Poultry, Rabbit NIC 4 7.4 1.4–9.6 Poultry, Ovine,
Eggs

DIC 3 (1) 10.3 (3.4) 0.011–0.081 Rabbit LAS 2 3.7 1.5–2.0 Poultry, Eggs
NAR 1 3.4 0.1 Bovine ROB 1 1.9 1.3 Rabbit
ROB 1 (1) 3.4 0.9 Poultry MAD 1 1.9 1.5 Eggs

2013 2013

LAS 1 3.3 0.5 Poultry NIC 9 15.3 1.2–21 Poultry, Eggs
ROB 5 (1) 16.7 0.2–2.0 Poultry, Rabbit LAS 2 3.4 2.5–8.2 Poultry
MON 1 (1) 3.3 (3.3) 4 Poultry ROB 1 1.7 1.8 Eggs
SAL 1 3.3 0.1 Poultry DIC 2 3.4 3.3–7.4 Poultry

SAL 1 1.7 3 Eggs

2014 2014

LAS 1 3.3 0.4 Poultry NIC 14 16.5 1.3–238 Poultry, Eggs
DIC 4 (2) 13.3 (6.7) 0.007–0.038 Poultry, Rabbit LAS 1 1.2 1.2 Eggs
ROB 4 13.3 0.1–0.6 Poultry ROB 1 1.2 1.6 Poultry
MAD 1 3.3 0.003 Poultry DIC 1 (1) 1.2 (1.2) 2.4 Eggs

2015 2015

LAS 2 (1) 3.0 (1.5) 0.4–5.9 Poultry LAS 4 (2) 9.8 (4.9) 2.8–1002 Eggs

DIC 10 14.9 0.003
Poultry, Rabbit,

Ovine ROB 7 17.1 1.2–4.7 Poultry, Eggs

NAR 3 4.5 0.6–2.1 Poultry DIC 1 2.4 1.2 Eggs
ROB 4 6.0 0.3–0.8 Poultry, Rabbit DEC 1 2.4 1.8 Eggs
SAL 1 1.5 0.4 Rabbit

MAD 1 1.5 0.05 Poultry
DEC 3 4.5 0.2–0.7 Ovine, Rabbit
NIC 2 3.0 0.2–0.8 Poultry

2016 2016

LAS 4 6.7 0.1–1.1 Poultry NIC 20 31.7 1.3–516 Poultry, Eggs
DIC 6 10.0 0.007–0.038 Poultry, Bovine LAS 1 1.6 26 Eggs
ROB 2 3.3 0.2 Poultry, Rabbit NAR 1 1.6 1.3 Poultry
MON 2 (1) 3.3 (1.7) 0.3–1.8 Poultry DEC 1 1.6 70 Poultry
MAD 1 1.7 0.003 Poultry
DEC 1 1.7 0.4 Bovine
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Table 3. Cont.

Feed Food (Hen Eggs and Meat)

Positive
Samples (n.c)

Incidence
(%) *

Min–Max
(mg/kg) Specie Involved Positive

Samples (n.c)
Incidence

(%)
Min–Max

(µg/kg) Specie Involved

2017 2017

LAS 1 2.2 0.4 Swine NIC 13 25.5 1.0–32.1 Poultry, Eggs
DIC 4 8.7 0.004–0.014 Poultry, Rabbit DIC 4 7.8 1.4–11 Poultry
NAR 3 (1) 6.5 (2.2) 0.1–56 Poultry DEC 2 3.9 2.5–5.4 Eggs
ROB 1 2.2 0.2 Poultry MAD 1 2.0 1 Eggs
MON 1 2.2 0.1 Poultry NAR 1 2.0 3.4 Poultry
MAD 1 2.2 0.007 Poultry

DEC 3 (2) 6.5 (4.3) 0.3–4.6 Equine, Swine,
Bovine

NIC 2 4.3 0.1–0.4 Poultry

* Incidence was calculated referring to the total samples tested in each year as reported in Table 2.
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Among non-ionophoric anticoccidials, the most frequently detected compound was DIC, found
in 27 samples, 3 of which were above the maximum residue level, followed by ROB that exceeded
the regulatory limit in 1 out of 17 positive samples (Table 3). These results are in partial agreement
with Moretti et al. [23] and with Annunziata et al. [36], whose studies also refer to ROB being the most
frequently detected non-ionophoric molecule in feed samples.

Considering the results from different countries (Table 4), Pietruk et al. [37] analysed commercial
feed in Poland during 2014 and found that coccidiostats were detected in 72.7% of samples analysed
and 18% were contaminated with more than one analyte, showing higher rates of both positive and
multi-molecule positive samples than those reported in this study. The authors also found that SAL
was the most common ionophoric coccidiostat (45.5%), followed by NAR (18.2%) while, similar to
the results presented in this study, DIC and ROB were the most frequently detected non-ionophoric
molecules (12.1% and 9.1%, respectively). Moreover, a Belgian study by Delahaut et al. [14] reported
levels of carry-over contamination of 15% of sampled feedstuff and detected mainly SAL, MON, NIC,
ROB and NAR. Moreover, Agunos et al. [38] published a study about antimicrobial use surveillance in
broiler chicken flocks in Canada during 2013–2015, in which SAL and NIC were the most frequently
found ionophoric and chemical (non-ionophoric) coccidiostats in broiler feed, respectively, followed
by the NAR–NIC combination. The authors also referred to seasonal variations observed in the use
of coccidiostats. During summer, the most frequently reported coccidiostats were SAL, MAD and
DEC, while in winter the most frequently reported coccidiostats were MON and NIC. As mentioned
above, the occurrence of coccidiostats in feed due to cross-contamination may result in the presence
of residues of these substances in food of animal origin, representing a potential threat to human
health due to allergic reactions or to toxic effects. Particularly, the presence of coccidiostat residues in
edible tissues and eggs has been reported in several countries since the late 1990s [39,40]. This has
encouraged research and application of surveillance programs in many countries to monitor and
prevent unacceptable contamination of food of animal origin [24]. Two hundred and two samples
of meat of different species (5 bovine, 29 swine, 166 poultry, 1 ovine and 1 rabbit), and 151 of hen
eggs were analysed for coccidiostat residues during 2012–2017 in the present study, in compliance
with the NRCP. As for feed samples, poultry was the most represented species in the sampling plan,
representing 82.2% of all meat samples and 97% of positive samples. During the time frame considered,
positive samples of animal muscle ranged from 14.7% to 48.7%; the overall mean value of positive
samples for the years considered was 33.7% (Table 2). Ionophoric molecules were detected in 6 meat
samples (2.8%), and the most represented molecules were LAS and NAR; non-ionophoric compounds
were found in 66 samples (31.7%) and, among these, the most frequently detected were NIC and DIC
(Table 3). Contrary to what has been previously reported for feed, no meat samples were found positive
for more than one coccidiostatic molecule, and the concentrations detected in no case exceeded the
MRLs. The results presented differ from those reported by Moretti et al. [23] concerning the survey of
food samples collected within the Italian Control Programme 2010–2012, according to which only 5%
of meat samples were positive for coccidiostats, and NIC (9.6–44 µg/kg), ROB (2.1 µg/kg) and LAS (2.0
µg/kg) were the most frequently detected molecules.

Furthermore, a recent study in Greece regarding the presence of coccidiostats in animal tissue,
revealed a positive rate (20.7%) close to the value reported here (Table 2), although a higher
non-compliant rate (1.21%) was registered [24]. Furthermore, the authors reported that 47% of
positive samples were found to be contaminated with more than one molecule, DEC, SAL and MAD
being the most prevalent ones in animal tissues, mainly poultry muscle, suggesting that combined
treatment may represent a common practice for Greek farmers while, as previously reported, no meat
samples of the present study were found to contain more than one coccidiostat residue. Moreover,
according to the latest EFSA report on the results from the monitoring of veterinary medicinal product
residues and other substances in live animals and animal products [41], samples of non-compliant for
anticoccidials were reported in pigs (0.04%, mainly for toltrazuril sulphone), poultry (0.12%, mainly
for SAL) and rabbit (0.59%, mainly for SAL), describing a non-compliance rate that was not detected
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in the samples analysed in the present study. Theoretically, the use of coccidiostats for laying hens
is, from a clinical point of view, not needed, because at that age animals are usually immunized.
Nevertheless, laying hens are the most likely of the non-target species to be exposed to coccidiostats
in practical conditions. This is due to the fact that traces of feeds for rearing chickens, for which
coccidiostats are licensed until the age of 14 or 15 weeks, may remain in feed silos and, subsequently,
be consumed by laying animals [25]. Data from this study reveal that the percentage of positive egg
samples varied noticeably during the years considered, as reported in Table 2, from the lowest value
recorded in 2014 (4.3%) to the highest recorded in 2015 (33.3%) and with an overall mean value of
positive samples of 15.9%. Non-ionophoric compounds were detected in a larger number of samples
in comparison to ionophoric molecules, 13.6% and 7.2% respectively; furthermore, NIC and ROB
were the two most frequently found non-ionophoric molecules while LAS and MAD were the most
detected coccidiostats of synthetic origin (Table 3). The presence of LAS in eggs has been reported
since the 1990s; an Irish study (Table 4) estimated that 66% of eggs were positive in 1994, and despite
substitution of the powdered formulation with a granular premix leading to a decrease in the incidence
of LAS in eggs (21% in 1995), this molecule continues to be detected in both eggs and poultry, albeit
in a lower proportion of cases [42]. During 2005, an EU survey (Table 4) indeed reported LAS to be
the most frequent coccidiostat found in eggs in the UK, being detected in 22.6% of egg samples [43].
A factor that may contribute to the accumulation of LAS in eggs is the great affinity for egg yolk shown
by the molecule [25,44]. As well as not being previously reported for meat, simultaneous positivity
for more than one anticoccidial has not been recorded for egg samples either. Nevertheless, violative
residues were detected in 2.2% of total samples analysed (3 samples, 1 in 2014 for DIC and 2 in 2015
for LAS) (Table 3). These results differ slightly from those reported by the EU-wide Surveillance on
Coccidiostat Residues in Food report, in which hen eggs were attributed non-compliance rates of 1.2%,
0.72% and 0.54% for the years 2010, 2011 and 2015, respectively, as shown in Table 4 [45,46]. A slightly
lower prevalence of contaminated egg samples (13%) was reported by Moretti et al. [23], referring to
the above-mentioned Italian Control Programme, in which NIC (1–32 µg/kg), ROB (1.1–11 µg/kg), LAS
(1.0–21 µg/kg) and DIC (2.1 µg/kg) were the most frequently recovered anticoccidial compounds in
eggs, albeit always under the acceptable limits. Furthermore, Dubreil–Chéneau et al. [47] published
the results of a French monitoring plan conducted in 2007 that differ noticeably to those reported in
this study. The authors reported that 49% of egg samples analysed were positive for one or more
anticoccidials (Table 4), mainly NIC (18%), DIC (7%), ROB (7%) and MAD (1%); 29% of positive
samples were found to be non-compliant. Seen in the above-mentioned EFSA report [41], a lower
percentage (0.81%) of egg samples was found to exceed anticoccidial reference limits, and the majority
of violative samples were found to be positive for SAL and DIC, among ionophores and non-ionophores,
respectively. As shown, data concerning the presence of coccidiostats in feed and food attributable to
unavoidable carry-over presents a certain degree of variability; furthermore, comparison of the results
with those in the literature may be difficult due to the lack of detailed information on the range of
coccidiostats subjected to control, types of matrices analysed and established limits, especially for
non-EU members. Even within the EU, the scope for residue control varies among different member
states, as do breeding practices. Moreover, it should be noted that the majority of the legislation
concerning maximum limits for coccidiostats in food of animal origin has been revised in the last few
years; therefore, according to the law in force at a specific time, the non-compliance rate may vary [40].

3.2. Human Dietary Exposure and Risk Assessment

Concerning coccidiostats, an appropriate measure for the potency of the substance is the ADI:
the amount of a substance in food that can be ingested on a daily basis over a lifetime without an
appreciable health risk. Therefore, ADI values provide a measure of safety during long-term exposure
to repeated ingestion of substances in foods [48]. To estimate the DE to coccidiostats, food consumption
data were collected.
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Table 4. Positive samples recorded from different countries.

Country Year Matrix Coccidiostat Most Frequently
Detected Coccidiostat % Positive Reference

Poland 2014 Feed various SAL 72.7 Pietruk et al. [37]

Belgium 2009 feed various SAL 15 Delahaut et al. [14]

Canada 2013–2015 Feed various SAL n.d. Agunos et al. [38]

Italy 2010–2012 feed various MON 62 Moretti et al. [23]

Greece 2016 Food various DEC, SAL, MAD 20.7 Dasenaki et al. [24]

Ireland 1996 Food LAS LAS 66 Kennedy et al. [42]

UK 2005 Food various LAS 35.6 Mortier et al. [43]

France 2007 Food various NIC 49 Dubreil–Chéneau et al. [47]

Italy 2010–2012 Food various NIC 9 Moretti et al. [23]

Europe 2010 Food various n.d. 1.2 EU Commission [45]

2011 Food various n.d. 0.72 EU Commission [45]

2015 Food various n.d. 0.54 EU Commission [46]

n.d. not defined.

Data show that daily consumption of meat decreases with increasing age and ranges from
4.35 g/kg bw/kg for toddlers to 1.07 g/kg bw/kg for the elderly aged 65–97 years. Similarly, daily
egg consumption decreased with increasing age, from 1.99 g/kg bw/kg for the 0–2 years population
to 0.87 g/kg bw/kg for the elderly, with the exception of the group of 3- to 9-years-old children
(2.64 g/kg bw/kg) representing the highest value. Combining data from food consumption surveys
with the analytical data of coccidiostat residues in food, the risk for human health related to the
consumption of positive foodstuffs was assessed, and the contribution to ADI was calculated. Data
reveal that the exposure to coccidiostats through the consumption of meat represents less than 1% of the
ADIs for all the molecules and for all the age categories considered, for both LB and UB. As mentioned
above, laying hens are the most likely of the non-target species to be exposed to coccidiostats; therefore,
residual levels of such molecules in eggs have to be considered, in addition to possible tissue levels in
target and non-target animal species, in a human exposure assessment [25]. Similarly, the intake of
coccidiostats through hen eggs represents less than 1% of the ADIs for all the age categories considered,
and for both LB and UB scenarios. Results indicate that the direct public health risk represented by
the intake of coccidiostats via meat and egg consumption is negligible. Similar conclusions have
been reported by Dorne et al. [25] who reported that no appreciable risk for consumers could be
identified for LAS, MAD, MON, NAR, NIC, SAL, DEC, DIC and ROB following the consumption
of meat, offal or eggs derived from non-target animals. Another study developed by Bacila et al. [7]
reports that the consumption of usual daily quantities of poultry products, considering the ADIs,
is unlikely to pose any risk to human health related to NIC, one of the most used anticoccidials
in poultry production. These considerations on health risk posed by coccidiostatic residues also
were corroborated by Kadykalo et al. [5] who analyzed several aspects of the problem. The authors
concluded that, even though the residue level of zero is not achievable, the withdrawal times applied
by the poultry industry will result in residues below the MRL, effectively eliminating any potential
human risk in poultry; furthermore, even when cross-contamination of anticoccidials occurs, it does
not represent a threat to human health because the exposure remains below the value needed to exceed
the ADI.

Other studies have considered the risk to human health due to coccidiostat residues present
in contaminated vegetables [49]. The authors provided information on the DE of consumers to
coccidiostats via vegetables grown with contaminated poultry manure, demonstrating that some
plants, such as carrots and lettuce, are capable of taking up coccidiostats from the soil. Nevertheless,
the authors also reported that coccidiostats in vegetables, due to the low incorporation levels coupled
with food consumption data, are unlikely to represent a threat to public health, as proved by the low
contribution to ADI (around 1%).
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4. Conclusions

Reported data indicate that in the central Italy context, contamination of untreated feedstuffs as a
consequence of carry-over occurs widely for almost all animal productions, leading indirectly to the
presence of coccidiostat residues in foodstuffs. Evidence shows that poultry production (egg and meat)
presents the higher rate of positive samples, although the related public health risk represented by
the intake of anticoccidials is negligible, as confirmed by the low contribution to ADIs. The results
obtained also suggest that the monitoring for residues in food and feed, the establishment of safe
residue limits, and risk assessment studies are well-handled by the authorities, therefore resulting in
effective strategies for ensuring the safety of food production where anticoccidials are used.
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