Overall Nutritional and Sensory Profile of Different Species of Australian Wattle Seeds (Acacia spp.): Potential Food Sources in the Arid and Semi-Arid Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Proximate Analysis
2.3. Sugar Analysis
2.4. Fatty Acid Profiles
2.5. Amino Acid Analysis
2.6. Mineral Analysis
2.7. Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.8. Rapid Sensory Profiling
2.9. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition
3.2. Fatty Acid Composition
3.3. Amino Acid Composition
3.4. Mineral Composition
3.5. Sugar Profile
3.6. SDS-PAGE Profile of Soluble Proteins Extracted from Raw and Roasted Wattle Seed Species
3.7. Rapid Sensory Profiling
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karhagomba, I.B.; Mirindi, T.A.; Mushagalusa, T.B.; Nabino, V.B.; Koh, K.; Kim, H.S. The cultivation of wild food and medicinal plants for improving community livelihood: The case of the Buhozi site, DR Congo. Nutr. Res. Pract. 2013, 7, 510–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falade, M.S.; Owoyomi, O.; Harwood, C.E.; Adewusi, S.R.A. Chemical composition and starch hydrolysis of Acacia colei and Acacia tumida seeds. Cereal Chem. 2005, 82, 479–484. [Google Scholar] [CrossRef]
- Ee, K.Y.; Yates, P. Nutritional and antinutritional evaluation of raw and processed Australian wattle (Acacia saligna) seeds. Food Chem. 2013, 138, 762–769. [Google Scholar] [CrossRef]
- El-Adawy, T.A.; Khalil, A.H. Characteristics of roselle seeds as a new source of protein and lipid. J. Agric. Food Chem. 1994, 42, 1896–1900. [Google Scholar] [CrossRef]
- Embaby, H.E.S.; Mokhtar, S.M. Chemical composition and nutritive value of lantana and sweet pepper seeds and nabak seed kernels. J. Food Sci. 2011, 76, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.K.; Johnson, K.A. Horticultural development of Australian native edible plants. Aus. J. Bot. 2000, 48, 417–426. [Google Scholar] [CrossRef]
- Seigler, D.S. Economic potential of Western Australian Acacia species: Secondary plant products. Conserv. Sci. West. Aust. 2002, 4, 109–116. [Google Scholar]
- Adewusi, S.R.A.; Falade, O.S.; Harwood, C. Chemical composition of Acacia colei and Acacia tumida seeds—Potential food sources in the semi-arid tropics. Food Chem. 2003, 80, 187–195. [Google Scholar] [CrossRef]
- Rinaudo, A.; Cunningham, P. Australian Acacias as multi-purpose agro-forestry species for semi-arid regions of Africa. Muelleria 2008, 26, 79–85. [Google Scholar]
- Maslin, R.; McDonald, M.W. AcaciaSearch: Evaluation of Acacia as a Woody Crop Option for Southern Australia: Canberra; Rural Industries Research and Development Corporation: Macquaire Street, Barton, ACT, Australia, 2004. [Google Scholar]
- Zhao, J.; Agboola, S. A Report for the Rural Industries Research and Development Corporation: Functional Properties of AUSTRALIAN Bush Food; Canberra, Rural Industries Research and Development Corporation: Canberra, Australia, 2007. [Google Scholar]
- Maslin, B.R.; Thomson, L.A.J.; McDonald, M.W.; Hamilton-Brown, S. Edible Wattle Seeds of Southern Australia: A Review of Species for Use in Semi-Arid Regions; CSIRO Publishing: Collingwood, Australia, 1998. [Google Scholar]
- Agboola, S.; Ee, K.Y.; Mallon, L.; Zhao, J. Isolation, characterization, and emulsifying properties of wattle seed (Acacia victoriae Bentham) extracts. J. Agric. Food Chem. 2007, 55, 5858–5863. [Google Scholar] [CrossRef]
- Ee, K.Y.; Zhao, J.; Rehman, A.; Agboola, S. Characterisation of trypsin and α-chymotrypsin inhibitors in Australian wattle seed (Acacia victoriae Bentham). Food Chem. 2008, 107, 337–343. [Google Scholar] [CrossRef]
- Agrawal, N.K.; Gupta, U. Evaluation of hypoglycemic and antihyperglycemic effects of Acacia tortilis seed extract in normal and diabetic rats. Int. J. Pharm. Technol. Res. 2013, 5, 330–336. [Google Scholar]
- ILDIS. International Legume Database & Information Service: LegumeWeb. Available online: https://ildis.org/cgi-bin/Araneus.pl?version~10.01&LegumeWeb&tno~5839&genus~Acacia&species~retinodes (accessed on 16 June 2018).
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Rühmann, B.; Schmid, J.; Sieber, V. Fast carbohydrate analysis via liquid chromatography coupled with ultra violet and electrospray ionization ion trap detection in 96-well format. J. Chromatogr. A 2014, 1350, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.F.; Tinggi, U.; Yang, X.; Fry, B. Stable isotope and trace metal compositions of Australian prawns as a guide to authenticity and wholesomeness. Food Chem. 2015, 170, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.B.; James, K.W.; Maggiore, P.M.A. Tables of Composition of Australian Aboriginal Foods; Aboriginal Studies Press: Canberra, ACT, Australia, 1993. [Google Scholar]
- Embaby, H.E.; Rayan, A.M. Chemical composition and nutritional evaluation of the seeds of Acacia tortilis (Forssk.) Hayne ssp. raddiana. Food Chem. 2016, 200, 62–68. [Google Scholar] [CrossRef]
- Siddhuraju, P.; Vijayakumari, K.; Janardhanan, K. Chemical composition and nutritional evaluation of an underexploited legume, Acacia nilotica (L.). Del. Food Chem. 1996, 57, 385–391. [Google Scholar] [CrossRef]
- Thorburn, A.W.; Brand, J.C.; Cherikoff, V.; Truswell, A.S. Lower postprandial plasma glucose and insulin after addition of Acacia coriacea flour to wheat bread. Aust. N. Z. J. Med. 1987, 17, 24–26. [Google Scholar] [CrossRef]
- Thorburn, A.W.; Brand, J.C.; Truswell, A.S. Slowly digested and absorbed carbohydrate in traditional bushfoods: A protective factor against diabetes? Am. J. Clin. Nutr. 1987, 45, 98–106. [Google Scholar] [CrossRef]
- Mukhtar, A. Oil and fatty acid composition of peanut species grown in Pakistan. Pak. J. Bot. 2012, 44, 627–630. [Google Scholar]
- Kalogeropoulos, N.; Chiou, A.; Ioannou, M.; Karathanos, V.T.; Hassapidou, M.; Andrikopoulos, N.K. Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chem. 2010, 121, 682–690. [Google Scholar] [CrossRef]
- Ee, K.Y.; Zhao, J.; Rehman, A.U.; Agboola, S. Effects of roasting on the characteristics of Australian wattle (Acacia victoriae Bentham) seed and extracts. Int. J. Food Prop. 2013, 16, 1135–1147. [Google Scholar] [CrossRef]
- El Adawy, T.A.; Taha, K.M. Characteristics and composition of different seed oils and flours. Food Chem. 2001, 74, 47–54. [Google Scholar] [CrossRef]
- Coffmann, C.W.; Garciaj, V.V. Functional properties and amino acid content of a protein isolate from mung bean flour. Int. J. Food Sci. Technol. 1977, 12, 473–484. [Google Scholar] [CrossRef]
- Deshpande, S.S. Food legumes in human nutrition: A personal perspective. Crit. Rev. Food Sci. Nutr. 1992, 32, 333–363. [Google Scholar] [CrossRef] [PubMed]
- Ekpenyong, T.E.; Borchers, R.L. Amino acid profile of the seed and other parts of the winged bean. Food Chem. 1982, 9, 175–182. [Google Scholar] [CrossRef]
- Chivandi, E.; Davidson, B.C.; Erlwanger, K.H. Proximate, mineral, fibre, phytate-phosphate, vitamin E, amino acid and fatty acid composition of Terminalia sericea. S. Afr. J. Bot. 2013, 88, 96–100. [Google Scholar] [CrossRef]
- FAO/WHO. Protein quality evaluation. In Report of a Joint FAO/WHO Expert Consultation; Viale delle Terme di Caracalla: Rome, Italy, 1990. [Google Scholar]
- Lehrfeld, J.; Wu, Y.V. Distribution of phytic acid in milled fractions of scout-66 hard red winter-wheat. J. Agric. Food Chem. 1991, 39, 1820–1824. [Google Scholar] [CrossRef]
- National Health and Medical Research Council (NHMRC). Recommended Dietary Intakes for Use in Australia; Australian Government Publishing Service: Canberra, Australia, 1991.
- Arise, A.K.; Alashi, A.M.; Nwachukwu, I.D.; Ijabadeniyi, O.A.; Aluko, R.E.; Amonsou, E.O. Antioxidant activities of bambara groundnut (Vigna subterranea) protein hydrolysates and their membrane ultrafiltration fractions. Food Funct. 2016, 7, 2431–2437. [Google Scholar] [CrossRef]
- Ejigui, J.; Savoie, L.; Marin, J.; Desrosiers, T. Influence of traditional processing methods on the nutritional composition and antinutritional factors of red peanuts (Arachis hypogyea) and small red kidney beans (Phaseolus vulgaris). J. Biol. Sci. 2005, 5, 597–605. [Google Scholar] [CrossRef]
- Smyth, H.E.; Sanderson, J.E.; Sultanbawa, Y. Lexicon for the sensory description of Australian native plant foods and ingredients. J. Sens. Stud. 2012, 27, 471–481. [Google Scholar] [CrossRef]
Composition | A. cowleana * | A. coriacea | A. sophorae | A. retinodes | A. victoriae [19] |
---|---|---|---|---|---|
Moisture (%) | 5.3 | 8.6 | 7.5 | 5.6 | 6.9 |
Crude protein (%) | 23.0 | 22.5 | 22.7 | 27.5 | 17.5 |
Crude fat (%) | 19.3 | 9.8 | 14.8 | 16.4 | 3.2 |
Ash (%) | 3.4 | 3.9 | 3.5 | 3.7 | 3.5 |
Dietary fibre (%) | 33.7 | 41.4 | 36.0 | 34.0 | 29.4 |
Non-fibre carbohydrate (%) | 15.2 | 13.7 | 15.6 | 12.8 | 67.5 |
Energy (kJ) | 1634.0 | 1310.0 | 1485.0 | 1563.0 | 1384.0 |
Fatty acid (%) | A. cowleana | A. coriacea | A. sophorae | A. retinodes |
---|---|---|---|---|
Lauric acid (C12:0) | 0 b | 0 b | 0.56 ± 0.03 a | 0 b |
Myristic acid (14:0) | 0 b | 0 b | 1.33 ± 0.07 a | 0 b |
Palmitic acid (C16:0) | 21.3 ± 0.35 b | 23.8 ± 0.35 a | 21.6 ± 0.77 b | 17.7 ± 0.11 c |
Stearic acid (C18:0) | 4.15 ± 0.05 c | 4.36 ± 0.17 c | 7.51 ± 0.31 b | 10.1 ± 0.21 a |
Arachidonic acid (C20:0) | 0.99 ± 0.05 a | 1.07 ± 0.10 a | 0.86 ± 0.03 b | 0.95 ± 0.06 ab |
Behenic acid (C22:0) | 2.49 ± 0.07 a | 1.80 ± 0.13 b | 0.34 ± 0.03 c | 1.02 ± 0.04 b |
Lignoceric acid (C24:0) | 0 b | 0 b | 0.16 ± 0.01 a | 0 b |
Total SFA | 28.9 ± 0.52 c | 31.0 ± 0.75 ab | 32.4 ± 1.25 a | 29.8 ± 0.42 bc |
Palmitic acid (C16:1) | 3.40 ± 0.03 b | 0.45 ± 0.01 c | 3.84 ± 0.27 a | 0.46 ± 0.03 c |
Oleic acid (C18:1) | 32.8 ± 0.43 c | 50.8 ± 0.26 b | 57.6 ± 0.49 a | 50.1 ± 1.34 b |
Ecosanoic acid (C20:1) | 0 c | 0 c | 0.37 ± 0.01 b | 1.57 ± 0.02 a |
Erucic acid (C22:1) | 0 b | 0 b | 0 b | 0.52 ± 0.01 a |
Total MUFA | 36.2 ± 0.46 c | 51.3 ± 0.27 b | 61.8 ± 0.77 a | 52.7 ± 1.4 b |
Linoleic acid (C18:2) | 34.3 ± 0.08 a | 17.4 ± 0.33 b | 6.76 ± 0.75 c | 16.0 ± 1.64 b |
Linolenic acid (C18:3) | 0.49 ± 0.02 b | 0.27 ± 0.04 c | 0.41 ± 0.04 b | 1.61 ± 0.08 a |
Total PUFA | 34.8 ± 0.10 a | 17.7 ± 0.73 b | 7.17 ± 0.79 c | 17.6 ± 1.72 b |
Amino acid | A. cowleana | A. coriacea | A. sophorae | A. retinodes | FAO/WHO References [32] |
---|---|---|---|---|---|
Essential amino acids | |||||
Histidine | 2.8 | 2.6 | 4.3 | 2.4 | 1.9 |
Threonine | 4.1 | 4.0 | 4.2 | 4.3 | 3.4 |
Lysine | 7.0 | 6.8 | 7.4 | 7.0 | 5.8 |
Tyrosine | 2.0 | 2.1 | 2.1 | 2.2 | 6.3 |
Methionine | 0.4 | 0.4 | 0.3 | 0.3 | |
Valine | 5.9 | 5.8 | 6.0 | 6.2 | 3.5 |
Isoleucine | 4.4 | 4.2 | 4.4 | 4.3 | 2.8 |
Leucine | 8.4 | 8.0 | 8.6 | 8.5 | 6.6 |
Phenylalanine | 3.6 | 3.3 | 3.5 | 3.5 | |
Non-essential amino acids | |||||
Serine | 7.0 | 7.7 | 7.1 | 7.1 | |
Arginine | 6.0 | 7.1 | 6.0 | 6.3 | |
Glycine | 9.7 | 10.6 | 9.5 | 10 | |
Aspartic acid | 10.5 | 11.5 | 9.4 | 10.7 | |
Glutamic acid | 15.3 | 13.3 | 14.2 | 14.2 | |
Alanine | 7.3 | 6.7 | 7.1 | 7.0 | |
Proline | 5.7 | 5.8 | 6.0 | 6.0 |
Minerals (mg/kg DW) | A. cowleana | A. coriacea | A. sophorae | A. retinodes |
---|---|---|---|---|
Major | ||||
Ca | 2300 ± 0.0 c | 4300 ± 141.4 a | 2600 ± 424.3 c | 3150 ± 212.1 b |
K | 8700 ± 0.0 b | 11000 ± 0.0 a | 7300 ± 141.4 c | 9050 ± 495.0 b |
Mg | 1700 ± 0.0 b | 2350 ± 70.7 a | 1700 ± 0.0 b | 2400 ± 141.4 a |
Na | <20 c | <20 c | 1100 ± 0.0 a | 940 ± 70.7 b |
P | 1700 ± 0.0 b | 2350 ± 70.7 a | 2300 ± 0.0 a | 2300 ± 141.4 a |
Trace | ||||
Co | 0.1 ± 0.0 c | 0.04 ± 0.0 b | 0.365 ± 0.0 a | 0.095 ± 0.0 c |
Cr | 2.1 ± 0.2 a | 0.8 ± 0.1 c | 1.95 ± 0.2 a | 1.15 ± 0.2 b |
Cu | 4.8 ± 0.1 c | 5.0 ± 0.0 c | 8.65 ± 0.2 a | 7.2 ± 0.1 b |
Fe | 75.0 ± 0.0 b | 50.5 ± 0.7 b | 195.0 ± 35.4 a | 49.5 ± 0.7 b |
Mn | 14.0 ± 0.0 c | 14.0 ± 0.0 c | 46.5 ± 2.1 b | 130.0 ± 0.0 a |
Mo | 0.9 ± 0.2 c | 0.84 ± 0.1 c | 1.75 ± 0.1 b | 2.0 ± 0.0 a |
Se | 0.9 ± 0.0 a | 0.68 ± 0.0 b | 0.165 ± 0.0 c | 0.34 ± 0.0 d |
Zn | 24.5 ± 0.7 b | 23.0 ± 0.0 c | 21.0 ± 0.0 d | 34.0 ± 0.0 a |
Other minerals | ||||
Al | 42.0 ± 1.4 b | 16.5 ± 2.1 c | 77.5 ± 3.5 a | 3.75 ± 0.4 d |
As | ND | <0.005 b | 0.87 ± 0.2 a | <0.005 b |
Ba | 3.2 c | 49.0 ± 1.4 a | 1.0 ± 0.0 d | 7.15 ± 0.1 b |
Cd | <0.005 c | <0.005 c | 0.054 ± 0.0 a | 0.011 ± 0.0 b |
Hg | <0.005 a | <0.005 a | <0.005 a | <0.005 a |
Ni | 2.7 ± 0.1 c | 1.1 ± 0.0 d | 3.8 ± 0.0 a | 3.05 ± 0.1 b |
Pb | 0.1 ± 0.0 ab | 0.074 ± 0.0 b | 0.175 ± 0.1 a | 0.0085 ± 0.0 b |
Sb | ND | 0.01 ± 0.0 a | <0.01 a | <0.01 a |
Sn | <0.05 b | 0.85 ± 0.1 a | <0.05 b | <0.05 b |
Sr | 19.0 ± 0.0 b | 24.0 ± 1.4 a | 5.9 ± 0.1 d | 13.0 ± 0.0 c |
V | 0.1 ± 0.0 b | 0.035 ± 0.0 b | 1.65 ± 0.4a | 0.01 ± 0.0b |
Sugar Composition (mg/g biomass) | A. cowleana | A. coriacea | A. sophorae | A. retinodes |
---|---|---|---|---|
Glucose | 22.1 ± 1.30 c | 37.8 ± 1.01 b | 44.4 ± 1.60 a | 43.9 ± 2.16 a |
Mannose | 4.17 ± 0.39 b | 4.05 ± 0.31 b | 4.47 ± 0.21 b | 5.48 ± 0.57 a |
Galactose | 34.2 ± 1.30 c | 57.6 ± 2.23 b | 65.5 ± 3.35 a | 67.3 ± 2.91 a |
Galacturonic acid | 30.3 ± 1.28 c | 51.7 ± 3.68 a | 44.1 ± 0.55 b | 51.3 ± 1.50 a |
Rhamnose | 4.98 ± 0.32 c | 7.90 ± 0.53 a | 5.40 ± 0.32 c | 5.82 ± 0.19 b |
Fucose | 2.77 ± 0.29 a | 2.43 ± 0.35 a | 2.63 ± 0.28 a | 2.75 ± 0.38 a |
Xylose/Arabinose | 79.7 ± 3.43 b | 71.5 ± 4.84 c | 84.2 ± 2.24 a | 78.4 ± 1.08 b |
Characteristics | A. retinodes | A. cowleana | A. coriacea | A. sophorae |
---|---|---|---|---|
Aroma ground powder | Mushroom, gravy, onion, coffee, chocolate, roasted nuts, lemon | Spicy, curried, savoury, popcorn, burnt toast, savoury jam, chemical fish stock. | Savoury, spinach, chocolate, sweet, fairy floss, tropical fruit, water of boiled vegetables | Yeasty (vegemite), meaty, burnt tyres, roasted onion |
Aroma ground powder in semolina | Earthy, grassy, musty, pepper, oily peanut butter | Smoky, broth, lentil, turmeric, chemical | Cinnamon, dairy | Buttery, popcorn, big change from peppery, meaty to earthy. |
Flavour | Bitter, nutty, leaves, earthy, peanut, sesame paste | Intense, bitter, burnt, peppery, chives, onion salt, roasted chicken stuffing, dried legumes. | Fruity, almost coffee, tahini, mashed vegetables, cereal, not very intense | Vegemite, nutty, savoury, slight grassy, onion |
After taste | Grass, barnyard, smoky, savoury, cucumber. | Bitter, pepper, very lingering | Spinach, not very lingering | Mild, grassy, bitter, savoury |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shelat, K.J.; Adiamo, O.Q.; Olarte Mantilla, S.M.; Smyth, H.E.; Tinggi, U.; Hickey, S.; Rühmann, B.; Sieber, V.; Sultanbawa, Y. Overall Nutritional and Sensory Profile of Different Species of Australian Wattle Seeds (Acacia spp.): Potential Food Sources in the Arid and Semi-Arid Regions. Foods 2019, 8, 482. https://doi.org/10.3390/foods8100482
Shelat KJ, Adiamo OQ, Olarte Mantilla SM, Smyth HE, Tinggi U, Hickey S, Rühmann B, Sieber V, Sultanbawa Y. Overall Nutritional and Sensory Profile of Different Species of Australian Wattle Seeds (Acacia spp.): Potential Food Sources in the Arid and Semi-Arid Regions. Foods. 2019; 8(10):482. https://doi.org/10.3390/foods8100482
Chicago/Turabian StyleShelat, Kinnari J., Oladipupo Q. Adiamo, Sandra M. Olarte Mantilla, Heather E. Smyth, Ujang Tinggi, Sarah Hickey, Broder Rühmann, Volker Sieber, and Yasmina Sultanbawa. 2019. "Overall Nutritional and Sensory Profile of Different Species of Australian Wattle Seeds (Acacia spp.): Potential Food Sources in the Arid and Semi-Arid Regions" Foods 8, no. 10: 482. https://doi.org/10.3390/foods8100482
APA StyleShelat, K. J., Adiamo, O. Q., Olarte Mantilla, S. M., Smyth, H. E., Tinggi, U., Hickey, S., Rühmann, B., Sieber, V., & Sultanbawa, Y. (2019). Overall Nutritional and Sensory Profile of Different Species of Australian Wattle Seeds (Acacia spp.): Potential Food Sources in the Arid and Semi-Arid Regions. Foods, 8(10), 482. https://doi.org/10.3390/foods8100482