ELECTRONIC SUPPLEMENTARY MATERIAL

Targeted and Untargeted Metabolomics as an Enhanced Tool for the Detection of Pomegranate Juice Adulteration

Marilena E. Dasenaki*, Sofia K. Drakopoulou, Reza Aalizadeh, Nikolaos S. Thomaidis

Electronic Supplementary Material

Table of contents

Table S1.	Target list of phenolic compounds	Page 3
Table S2.	Validation Data of target screening methodology	Page 6
Table S3	Mass features revealing pomegranate adulteration with apple in different adulterat levels	ion Page 8
Table S4	Mass features revealing pomegranate adulteration with grape in different adulterat levels	ion Page 11
Figure S1	EICs and MS spectra of caffeic acid in authentic and adulterated Ermioni pomegi	anate Page 13
Figure S2	EICs and MS spectra of catechin and epicatechin in authentic and adulterated pomegranate juices.	Page 14
Figure S3	EICs and MS spectra of hydroxytyrosol and resveratrol in authentic and adulterat pomegranate juices.	ed Page 15
Figure S4	Identification data for the mass feature m/z 193.0509_6.1 min (vanillin acetate)	Page 16
Figure S5	Identification data for the mass feature m/z 273.0769_5.9 min (phloridzin in-sour fragment)	rce Page 17
Figure S6	Identification data for the mass features m/z 337.0943_3.9 min and m/z 337.0943 min (p-coumaroylquinic acid isomers)	_3.3 Page 19
Figure S7	Identification data for the mass feature m/z 191.0551_1.3 min (quinic acid)	Page 21
Figure S8	Identification data for the mass feature m/z 307.1762_6.3 min ((R)-1-O-b-D-glucopyranosyl-1,3-octanediol)	Page 22
Figure S9	Identification data for the mass feature m/z 351.1309_3.9 min (2-O-acetyl-alpha-abequopyranosyl-(1->3)-alpha-D-mannopyranose)	D- Page 23
Figure S10	Identification data for the mass feature m/z 517.2284 _4.5 min (Vomifoliol 9-[xy >6)-glucoside])	losyl-(1- Page 24
Figure S11	Identification data for the mass feature m/z 289.0830 _2.8 min (N2-malonyl-D-tryptophan)	Page 25
Figure S12	Identification data for the mass feature m/z 273.0766 _7.5 min (phloretin)	Page 26
Figure S13	Identification data for the mass feature m/z 491.1191_4.7 min (malvidin-3-O-glu	icoside) Page 28
Figure S14	Identification data for the mass feature m/z 261.0403 _4.9 min (maclurin)	Page 29
Figure S15	Identification data for the mass feature m/z 389.1242 4.8 min (resveratrol 3-glu	icoside) Page 30
Figure S16	Identification data for the mass feature m/z 295.0464_1.7 min (cis-coutaric acid)	Page 31
Figure S17	Identification data for the mass feature m/z 261.1344_3.0 min (phaseolic acid)	Dage 22
Figure S18	Identification data for the mass feature m/z 261.1344_3.0 min (procyanidin B)	Page 32 Page 33

 Table S1. Target list of phenolic compounds

Compound	Molecular formula	[M-H] ⁻ (m/z)	t _R (min)	Fragments (m/z)	Fragment elemental formula
2',4'-Dihydroxychalcone	C15H12O3	239.0714	10.10	119.0491	C8H7O
41 1 1 1	C II O	127.0244	1.40	93.0340	C ₆ H ₅ O
4-hydroxybenzoic acid	$C_7H_6O_3$	137.0244	1.40	65.0390	C5H5
	C H O	220 1220	10.00	219.0657	$C_{12}H_{11}O_4$
8-PrenyInaringenin	$C_{20}H_{20}O_5$	339.1238	10.00	119.0497	C8H7O
<u> </u>	C II O	260.0455	0.10	117.0340	C8H5O
Apigenin	$C_{15}H_{10}O_5$	269.0455	8.10	151.0031	C7H3O4
	C H O	170.0250	1.40	135.0446	C8H7O2
Caffeic acid	$C_9H_8O_4$	179.0350	1.40	134.0346	C8H6O2
		200.0710	2.00	203.0705	C12H11O3
Catechin	$C_{15}H_{14}O_6$	289.0718	3.80	123.0458	C7H7O2
ci.			0.50	209.0597	C14H9O2
Chrysin	$C_{15}H_{10}O_{4}$	253.0506	9.70	143.0491	C10H7O
	C9H8O2	147.0452		103.0548	C8H7
Cinnamic acid			4.50	147.0446	C9H7O2
				146.8973	C ₈ H ₃ O ₃
D ' - 1'		200.0710	4.20	137.0244	C7H5O3
Epicatechin	$C_{15}H_{14}O_6$	289.0/18	4.30	151.0401	C8H5O4
	C II O	297.05(1	(10	151.0037	C7H3O4
Eriodiciyoi	C15H12O6	287.0301	0.40	135.0452	$C_8H_7O_2$
				136.0181	C7H4O3
Ethyl vanillin	C9H10O3	165.0557	5.60	137.0233	C7H5O3
				108.0219	C ₆ H ₄ O ₂
F 1' '1	0 11 0	102.0506	2.00	134.0373	C8H6O2
Ferulic acid	$C_{10}H_{10}O_4$	193.0506	3.00	178.0272	C9H6O4
		260.0455	10.00	213.0546	C ₁₃ H ₉ O ₃
Galangin	$C_{15}H_{10}O_5$	269.0455	10.00	169.0657	C ₁₂ H9O

				197.0597	C13H9O2
				125.0244	C6H5O3
Gallic acid	C7H6O5	169.0142	1.30	69.0344	C4H5O
				97.0295	C5H5O2
				133.0284	C8H5O2
Genistein	C15H10O5	269.0455	7.50	225.0546	C14H9O3
				159.044	$C_{10}H_7O_2$
Contintio ani 1	CILO	152 0102	2.40	108.0215	$C_6H_4O_2$
Genustic acid	C7H6O4	155.0195	2.40	109.0278	$C_6H_5O_2$
Haspanstin		201.0719	7.40	151.0025	C7H3O4
Hespereun	$C_{16}H_{14}O_{6}$	301.0/18	/.40	195.9988	C8H4O6
Hydroxytyrosol	C ₈ H ₁₀ O ₃	153.0557	3.50	123.0452	C7H7O2
Teste 1's		295.0405	7.55	133.0295	C8H5O2
Luteolin	$C_{15}H_{10}O_{6}$	285.0405	/.55	151.0037	C7H3O4
Marriantin	C15H10O8	317.0303	6.10	151.0031	C7H3O4
Myriceun				178.998	C8H3O5
				119.0502	C ₈ H ₇ O
Naringenin	$C_{15}H_{12}O_5$	271.0612	7.20	151.0037	C7H3O4
				177.0193	C9H5O4
	C II O	1(2,0401	2 (0	119.0502	C8H7O
p-coumaric acid	C9H8O3	163.0401	2.60	93.0344	C ₆ H ₅ O
				253.0495	C15H9O4
Pinobanksin	C15H12O5	271.0612	7.20	197.0597	$C_{13}H_9O_2$
				225.0546	C14H9O3
Dingganhain	СИО	255.0((2	0.20	151.0025	C7H3O4
Pinocembrin	C15H12O4	255.0005	9.20	213.0546	C13H9O3
Pinoresinol	C ₂₀ H ₂₂ O ₆	357.1344	6.49	151.0399	C ₈ H ₇ O ₃
		152 0102	1 20	109.0290	C ₆ H ₅ O ₂
Protocalecnuic acid	U7H6U4	155.0193	1.30	108.0218	C ₆ H ₄ O ₂
Quercetin	C15H10O7	301.0354	7.10	151.0036	C7H3O4

				178.9959	C8H3O5
				121.0288	C7H5O2
D tu-1	C. IL O	227.0714	5.90	143.0502	C ₁₀ H ₇ O
Resveratroi	C14H12O3	227.0714	5.80	185.0608	C12H9O2
				161.0233	C9H5O3
Rosmarinic acid	C18H16O8	359.0772	4.30	197.0444	C9H9O5
				179.0338	C9H7O4
Dutin	CHINON	600 1461	5 50	301.0345	C15H9O7
Kuun	C27H30O16	009.1401	5.50	300.0274	$C_{15}H_8O_7$
Saliavlia agid	C-ILO.	127.0244	2 60	93.034	C ₆ H ₅ O
Sancyne aeld	C7H6O3	137.0244	5.00	65.0399	C5H5
				151.0031	C7H3O4
Syringaldehyde	C9H10O4	181.0506	4.70	123.0082	C ₆ H ₃ O ₃
				166.0265	$C_8H_6O_4$
Suringia agid	CalliaOr	107.0455	1.40	123.008	$C_6H_3O_3$
Synnigic acid	C91110O5	197.0433	1.40	166.9976	C7H3O5
				125.0227	$C_6H_5O_3$
Taxifolin	$C_{15}H_{12}O_7$	303.051	4.80	285.0408	$C_{15}H_9O_6$
				153.0193	C7H5O4
				119.0495	C ₈ H ₇ O
Tyrosol	$C_8H_{10}O_2$	137.0608	4.10	107.0496	C7H7O
				93.034	C ₆ H ₅ O
Vanillic acid	C ₈ H ₈ O ₄	167.035	1.40	125.0244	$C_6H_5O_3$
Vanillin	C8H8O3	151.0401	4.70	136.0158	C7H4O3

Analyte	Trueness % Recovery	Repeatability %RSD (n=6)	%Matrix Effect	MLOD (µg/L)	MLOQ (µg/L)
2',4'-Dihydroxychalcone	103	2.10	30	70.0	210.0
4-hydroxybenzoic acid	83.2	3.94	14	75.0	225.0
8-Prenylnaringenin	89.8	4.53	18	50.0	150.0
Apigenin	61.6	1.59	-23	5.4	16.1
Caffeic acid	90.1	2.11	-6	12.7	38.1
Catechin	87.9	1.15	-31	86.8	260.5
Chrysin	67.3	0.92	-1	7.4	22.2
Cinnamic acid	83.7	5.95	-19	55.0	165.0
Epicatechin	81.6	1.23	-62	11.5	34.4
Eriodictyol	58.8	4.27	-37	33.0	99.0
Ethyl vanillin	90.4	6.30	12	47.1	141.3
Ferulic acid	81.2	1.93	-23	55.0	165.0
Galangin	78.1	4.68	32	25.3	75.9
Gallic acid	61.8	1.27	-62	11.8	35.4
Genistein	60.1	1.18	-24	12.9	38.7
Gentistic acid	84.8	3.32	37	75.0	225.0
Hesperetin	77.9	3.80	0	9.5	28.5
Hydroxytyrosol	86.4	3.66	-23	106.3	318.8
Luteolin	55.3	5.08	11	17.5	52.5
Myricetin	63.9	3.65	80	34.4	103.1
Naringenin	82.6	1.64	-15	10.0	30.0
p-coumaric acid	68.1	5.19	-100	68.8	206.3
Pinobanksin	94.7	1.60	-16	8.3	24.9
Pinocembrin	75.3	1.35	-12	25.0	75.0
Pinoresinol	76.2	7.02	-10	21.2	63.5
Protocatechuic acid	72.3	1.41	-32	25.8	77.3

 Table S2. Validation Data of target screening methodology

Quercetin	59.8	4.03	10	5.7	17.1
Resveratrol	91.1	6.11	-3	25.0	75.0
Rosmarinic acid	79.9	2.11	31	20.1	60.4
Rutin	69.8	4.97	12	80.0	240.0
Salicylic acid	92.3	7.25	77	29.7	89.1
Syringaldehyde	82.3	4.41	4	20.5	61.5
Syringic acid	81.4	4.60	18	48.5	145.6
Taxifolin	82.8	5.63	-43	7.2	21.7
Tyrosol	82.3	4.55	-19	27.0	81.1
Vanillic acid	59.7	2.30	37	91.7	275.0
Vanillin	85.3	1.70	111	103.1	309.4

/	Retention time	20%	10%	5%	3%	2%	1%
m/z	(min)	adulteration	adulteration	adulteration	adulteration	adulteration	adulteration
191.0564	2.9	√	✓	✓	\checkmark	✓	✓
353.0877	2.9	√	√	✓	√	√	✓
193.0509	6.1	√	√	✓	√	√	✓
337.0942	3.9	√	√	✓	√	√	×
353.088	3.4	√	✓	√	✓	✓	×
338.0963	3.9	√	√	✓	√	√	×
183.0664	3.7	√	√	✓	√	✓	×
351.1307	3.9	√	√	✓	√	×	×
273.0769	5.9	√	√	✓	√	×	×
307.1763	6.3	√	√	✓	√	×	×
173.0458	3.9	√	√	✓	√	×	×
192.0596	2.9	√	√	✓	√	×	×
191.0568	1.3	√	√	✓	√	×	×
161.0819	2.1	√	√	✓	\checkmark	×	×
			•				
563.235	4.5	\checkmark	\checkmark	\checkmark	×	×	×
707.1808	2.9	~	\checkmark	\checkmark	×	×	×
245.0935	2.8	\checkmark	\checkmark	\checkmark	×	×	×
289.0832	2.8	\checkmark	\checkmark	\checkmark	×	×	×
405.1767	3.5	\checkmark	\checkmark	\checkmark	×	×	×
471.1057	5.9	\checkmark	\checkmark	\checkmark	×	×	×
473.1048	5.9	\checkmark	\checkmark	\checkmark	×	×	×
517.2289	4.5	\checkmark	✓	\checkmark	×	×	×
498.1246	5.9	\checkmark	✓	✓	×	×	×
337.0942	3.4	√	√	✓	×	×	×
165.0777	1.5	√	✓	✓	×	×	×
393.1768	5	✓	✓	✓	×	×	×
195.0882	1.5	\checkmark	✓	✓	×	×	×
425.1663	3.9	\checkmark	✓	\checkmark	×	×	×

 Table S3: Mass features revealing pomegranate adulteration with apple in different adulteration levels.

351.1299	3.6	✓	✓	×	×	×	×
451.1243	5.3	✓	✓	×	×	×	×
497.2234	5.1	✓	✓	×	×	×	×
307.1763	6	✓	✓	×	×	×	×
96.009	2.6	✓	✓	×	×	×	×
437.2023	5.1	✓	✓	×	×	×	×
456.151	4.1	✓	✓	×	×	×	×
517.3162	7.4	✓	✓	×	×	×	×
447.0952	6.0	✓	✓	×	×	×	×
191.0565	3.4	✓	✓	×	×	×	×
429.1769	3.6	✓	✓	×	×	×	×
469.2284	5.8	✓	✓	×	×	×	×
577.2506	4.5	✓	✓	×	×	×	×
179.0352	2.9	✓	✓	×	×	×	×
510.0888	6.0	✓	✓	×	×	×	×
568.1744	5.5	✓	✓	×	×	×	×
567.172	5.5	✓	✓	×	×	×	×
439.218	6.0	✓	✓	×	×	×	×
518.2318	4.5	✓	✓	×	×	×	×
501.3215	10.6	✓	✓	×	×	×	×
		•					
413.1306	1.5	✓	×	×	×	×	×
273.0769	7.5	✓	×	×	×	×	×
475.1313	1.4	✓	×	×	×	×	×
728.2276	3.4	✓	×	×	×	×	×
485.2236	6.0	✓	×	×	×	×	×
609.1946	3.3	✓	×	×	×	×	×
93.0345	2.9	\checkmark	×	×	×	×	×
467.1191	2.0	✓	×	×	×	×	×
597.1814	5.2	√	×	×	×	×	×
289.0718	5.3	✓	×	×	×	×	×
588.1902	3.4	\checkmark	×	×	×	×	×
579.1475	1.0	✓	×	×	×	×	×
207.0652	7.0	✓	×	×	×	×	×
481.1341	5.8	✓	X	×	×	×	×

425.2025	5.7	\checkmark	×	×	×	×	×
463.0883	5.5	\checkmark	×	×	×	×	×
446.0816	1.0	\checkmark	×	×	×	×	×
580.2253	4.5	✓	×	×	×	×	×
337.114	3.1	\checkmark	×	×	×	×	×
Total Ma	arkers	67	48	28	14	7	3

	Retention time	20%	10%	5%	3%	2%	1%
m/z	(min)	adulteration	adulteration	adulteration	adulteration	adulteration	adulteration
369.0288	2.2	√	√	✓	✓	✓	✓
149.0096	1.2	√	√	✓	✓	✓	✓
287.1502	4.0	√	√	✓	✓	✓	✓
491.1191	4.7	\checkmark	✓	✓	✓	✓	×
295.0464	1.7	√	✓	✓	✓	×	×
261.0405	4.9	√	√	✓	√	×	×
389.1242	4.8	√	√	✓	√	×	×
283.0396	2.7	√	√	✓	√	×	×
311.0808	2.3	√	√	✓	√	×	×
261.1344	3.0	\checkmark	√	✓	✓	×	×
	·		•				•
477.0671	5.0	\checkmark	✓	✓	×	×	×
369.0288	3.2	\checkmark	✓	✓	×	×	×
509.1298	3.3	√	√	✓	×	×	×
167.0348	5.5	√	✓	✓	×	×	×
427.0340	4.1	√	✓	✓	×	×	×
577.1346	3.4	√	√	✓	×	×	×
295.0858	3.8	√	√	✓	×	×	×
429.2132	3.4	\checkmark	✓	×	×	×	×
121.0293	2.6	√	√	×	X	×	×
190.0541	2.8	√	√	×	X	×	×
315.0725	2.0	√	√	×	X	×	×
203.1076	6.6	√	✓	×	×	×	×
293.1030	6.6	√	√	×	×	×	×
161.0818	2.1	√	√	×	×	×	×
397.0235	4.1	√	√	×	×	×	×
295.0857	4.5	√	√	×	×	×	×
461.1088	4.6	\checkmark	✓	×	×	×	×
231.1027	5.4	\checkmark	✓	×	×	×	×

Table S4: Mass features revealing **pomegranate** adulteration with **red grape** in different adulteration levels.

219.1027	6.6	✓	✓	×	×	×	×
637.1555	6.9	√	✓	×	×	×	×
423.0720	7.9	√	✓	×	×	×	×
591.1022	2.0	✓	✓	×	×	×	×
446.0759	2.4	✓	✓	×	×	×	×
369.0288	3.0	\checkmark	✓	×	×	×	×
577.1346	3.8	\checkmark	✓	×	×	×	×
305.0303	3.8	\checkmark	✓	×	×	×	×
209.0304	1.1	\checkmark	✓	×	×	×	×
449.1087	5.3	\checkmark	×	×	×	×	×
163.0401	1.7	\checkmark	×	×	×	×	×
131.0712	3.1	\checkmark	×	×	×	×	×
330.2037	3.3	\checkmark	×	×	×	×	×
366.1198	3.5	\checkmark	×	×	×	×	×
107.0502	3.7	\checkmark	×	×	×	×	×
373.1143	3.2	✓	×	×	×	×	×
187.0974	3.3	\checkmark	×	×	×	×	×
243.1239	3.6	\checkmark	×	×	×	×	×
413.2403	5.3	✓	×	×	×	×	×
		1					
Total Ma	arkers	47	37	17	10	4	3

Figure S1. EICs and MS spectra of caffeic acid in authentic and adulterated Ermioni pomegranate juices.

Figure S2. EICs and MS spectra of catechin and epicatechin in authentic and adulterated pomegranate juices.

Figure S3. EICs and MS spectra of hydroxytyrosol and resveratrol in authentic and adulterated pomegranate juices.

Tentative identification of characteristic markers of apple juice obtained from untargeted workflow

Figure S4. Identification data for the mass feature m/z 193.0509_6.1 min (vanillin acetate)

Figure S5. Identification data for the mass feature m/z 273.0769_5.9 min (phloridzin in-source fragment).

Figure S6. Identification data for the mass features m/z 337.0943_3.9 min and m/z 337.0943_3.3 min (p-coumaroylquinic acid isomers)

Figure S7. Identification data for the mass feature m/z 191.0551_1.3 min (quinic acid).

Figure S8. Identification data for the mass feature m/z 307.1762_6.3 min ((R)-1-O-b-D-glucopyranosyl-1,3-octanediol).

Figure S9. Identification data for the mass feature m/z 351.1309_3.9 min (2-O-acetyl-alpha-D-abequopyranosyl-(1->3)-alpha-D-mannopyranose).

Figure S10. Identification data for the mass feature m/z 517.2284 _4.5 min (Vomifoliol 9-[xylosyl-(1->6)-glucoside]).

Figure S11. Identification data for the mass feature m/z 289.0830 _2.8 min (N²-malonyl-D-tryptophan).

Figure S12. Identification data for the mass feature m/z 273.0766 _7.5 min (phloretin).

Tentative Identification of characteristic markers of grape juice obtained from untargeted workflow

Figure S13. Identification data for the mass feature m/z 491.1191_4.7 min (malvidin-3-O-glucoside).

Figure S14. Identification data for the mass feature m/z 261.0403 _4.9 min (maclurin).

Figure S15. Identification data for the mass feature m/z 389.1242 _4.8 min (resveratrol 3-glucoside).

Figure S16. Identification data for the mass feature m/z 295.0464_1.7 min (cis-coutaric acid).

Figure S17. Identification data for the mass feature m/z 261.1344_3.0 min (phaseolic acid).

 $\overline{}$

Figure S18. Identification data for the mass feature m/z 261.1344_3.0 min (procyanidin B).