Dynamic Oral Texture Properties of Selected Indigenous Complementary Porridges Used in African Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Sample Preparation
2.2. Sensory Analysis
2.3. Data Analysis
3. Results
3.1. Dynamic Oral Texture: TCATA Product Profiles
3.2. Dynamic Oral Processing Trajectories for Selected Indigenous/Local CPs and a Commercial Porridge Reference
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, J. Food oral processing—A review. Food Hydrocoll. 2009, 23, 1–25. [Google Scholar] [CrossRef]
- Stieger, M.; van de Velde, F. Microstructure, texture and oral processing: New ways to reduce sugar and salt in foods. Curr. Opin. Colloid Interface Sci. 2013, 18, 334–348. [Google Scholar] [CrossRef]
- Aguayo-Mendoza, M.G.; Ketel, E.C.; van der Linden, E.; Forde, C.G.; Piqueras-Fiszman, B.; Stieger, M. Oral processing behavior of drinkable, spoonable and chewable foods is primarily determined by rheological and mechanical food properties. Food Qual. Prefer. 2019, 71, 87–95. [Google Scholar] [CrossRef]
- Seidel, K.; Kahl, J.; Paoletti, F.; Birlouez, I.; Busscher, N.; Kretzschmar, U.; Särkkä-Tirkkonen, M.; Seljåsen, R.; Sinesio, F.; Torp, T. Quality assessment of baby food made of different pre-processed organic raw materials under industrial processing conditions. J. Food Sci. Technol. 2015, 52, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Breen, S.P.; Etter, N.M.; Ziegler, G.R.; Hayes, J.E. Oral somatosensatory acuity is related to particle size perception in chocolate. Sci. Rep. 2019, 9, 7437. [Google Scholar] [CrossRef] [PubMed]
- WHO/UNICEF. Global Strategy for Infant and Young Child Feeding; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Faber, M.; Laubscher, R.; Berti, C. Poor dietary diversity and low nutrient density of the complementary diet for 6-to 24-month-old children in urban and rural KwaZulu-Natal, South Africa. Matern. Child Nutr. 2016, 12, 528–545. [Google Scholar] [CrossRef] [PubMed]
- Ratnayake, W.S.; Jackson, D.S. Gelatinization and solubility of corn starch during heating in excess water: New insights. J. Agric. Food Chem. 2006, 54, 3712–3716. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shoemaker, C.F.; Ma, J.; Moon, K.J.; Zhong, F. Structure-viscosity relationships for starches from different rice varieties during heating. Food Chem. 2008, 106, 1105–1112. [Google Scholar] [CrossRef]
- Amagloh, F.K.; Mutukumira, A.N.; Brough, L.; Weber, J.L.; Hardacre, A.; Coad, J. Carbohydrate composition, viscosity, solubility, and sensory acceptance of sweetpotato-and maize-based complementary foods. Food Nutr. Res. 2013, 57. [Google Scholar] [CrossRef]
- Schwartz, C.; Vandenberghe-Descamps, M.; Sulmont-Rossé, C.; Tournier, C.; Feron, G. Behavioral and physiological determinants of food choice and consumption at sensitive periods of the life span, a focus on infants and elderly. Innov. Food Sci. Emerg. Technol. 2018, 46, 91–106. [Google Scholar] [CrossRef]
- Akombi, B.J.; Agho, K.E.; Merom, D.; Renzaho, A.M.; Hall, J.J. Child malnutrition in sub-Saharan Africa: A meta-analysis of demographic and health surveys (2006–2016). PLoS ONE 2017, 12, e0177338. [Google Scholar] [CrossRef] [PubMed]
- Dewey, K.G.; Brown, K.H. Update on technical issues concerning complementary feeding of young children in developing countries and implications for intervention programs. Food Nutr. Bull. 2003, 24, 5–28. [Google Scholar] [CrossRef] [PubMed]
- Demonteil, L.; Tournier, C.; Marduel, A.; Dusoulier, M.; Weenen, H.; Nicklaus, S. Longitudinal study on acceptance of food textures between 6 and 18 months. Food Qual. Prefer. 2019, 71, 54–65. [Google Scholar] [CrossRef]
- Nicklaus, S.; Demonteil, L.; Tournier, C. Modifying the texture of foods for infants and young children. In Modifying Food Texture; Chen, J., Rosenthal, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 187–222. [Google Scholar]
- Le Révérend, B.J.; Edelson, L.R.; Loret, C. Anatomical, functional, physiological and behavioural aspects of the development of mastication in early childhood. Br. J. Nutr. 2014, 111, 403–414. [Google Scholar] [CrossRef] [PubMed]
- WHO. Complementary Feeding: Report of the Global Consultation, and Summary of Guiding Principles for Complementary Feeding of the Breastfed Child; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Balasubramanian, S.; Kaur, J.; Singh, D. Optimization of weaning mix based on malted and extruded pearl millet and barley. J. Food Sci. Technol. 2014, 51, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.; Henretty, N.; Chary, A.; Webb, M.F.; Wehr, H.; Moore, J.; Baird, C.; Díaz, A.K.; Rohloff, P. Mixed-methods study identifies key strategies for improving infant and young child feeding practices in a highly stunted rural indigenous population in Guatemala. Matern. Child Nutr. 2016, 12, 262–277. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, E.; Shibata, S.; Matsuo, K.; Baba, M.; Fujii, W.; Palmer, J.B. Chewing and food consistency: Effects on bolus transport and swallow initiation. Dysphagia 2007, 22, 100–107. [Google Scholar] [CrossRef]
- Alsanei, W.A.; Chen, J. Studies of the oral capabilities in relation to bolus manipulations and the ease of initiating bolus flow. J. Texture Stud. 2014, 45, 1–12. [Google Scholar] [CrossRef]
- Steele, C.; Alsanei, W.; Ayanikalath, S.; Barbon, C.; Chen, J.; Cichero, J.; Coutts, K.; Dantas, R.; Duivestein, J.; Giosa, L. The influence of food texture and liquid consistency modification on swallowing physiology and function: A systematic review. Dysphagia 2015, 30, 2–26. [Google Scholar] [CrossRef]
- Black, R.E.; Makrides, M.; Ong, K.K. Complementary Feeding: Building the Foundations for a Healthy Life: 87th Nestlé Nutrition Institute Workshop, Singapore, May 2016; Karger Medical and Scientific Publishers: Basel, Switzerland, 2017. [Google Scholar]
- Plemmons, L.; Resurreccion, A. A warm-up sample improves reliability of responses in descriptive analysis. J. Sens. Stud. 1998, 13, 359–376. [Google Scholar] [CrossRef]
- Guinard, J.-X. Sensory and consumer testing with children. Trends Food Sci. Technol. 2000, 11, 273–283. [Google Scholar] [CrossRef]
- Haro-Vicente, J.; Bernal-Cava, M.; Lopez-Fernandez, A.; Ros-Berruezo, G.; Bodenstab, S.; Sanchez-Siles, L. Sensory acceptability of infant cereals with whole grain in infants and young children. Nutrients 2017, 9, 65. [Google Scholar] [CrossRef] [PubMed]
- Kevin, K. You’ve come a long way, baby-food. Food Process. 1995, 56, 61–64. [Google Scholar]
- Madrelle, J.; Lange, C.; Boutrolle, I.; Valade, O.; Weenen, H.; Monnery-Patris, S.; Issanchou, S.; Nicklaus, S. Development of a new in-home testing method to assess infant food liking. Appetite 2017, 113, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Longfier, L.; Soussignan, R.; Reissland, N.; Leconte, M.; Marret, S.; Schaal, B.; Mellier, D. Emotional expressiveness of 5–6 month-old infants born very premature versus full-term at initial exposure to weaning foods. Appetite 2016, 107, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Rombo, G.O.; Taylor, J.R.N.; Minnaar, A. Effect of irradiation, with and without cooking of maize and kidney bean flours, on porridge viscosity and in vitro starch digestibility. J. Sci. Food Agric. 2001, 81, 497–502. [Google Scholar] [CrossRef]
- Thaoge, M.; Adams, M.; Sibara, M.; Watson, T.; Taylor, J.; Goyvaerts, E. Production of improved infant porridges from pearl millet using a lactic acid fermentation step and addition of sorghum malt to reduce viscosity of porridges with high protein, energy and solids (30%) content. World J. Microbiol. Biotechnol. 2003, 19, 305–310. [Google Scholar] [CrossRef]
- Cichero, J.A. Unlocking opportunities in food design for infants, children, and the elderly: Understanding milestones in chewing and swallowing across the lifespan for new innovations. J. Texture Stud. 2017, 48, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Cook, D.J.; Hollowood, T.A.; Linforth, R.S.T.; Taylor, A.J. Correlating instrumental measurements of texture and flavour release with human perception. Int. J. Food Sci. Technol. 2005, 40, 631–641. [Google Scholar] [CrossRef]
- Wool, R.P. Polymer entanglements. Macromolecules 1993, 26, 1564–1569. [Google Scholar] [CrossRef]
- Mezger, T.G. The Rheology Handbook, 4th ed.; Vincentz Network: Hannover, Germany, 2014. [Google Scholar]
- Gina. Basics of Applied Rheology; Anton Paar: Graz, Austria, 2016. [Google Scholar]
- Vickers, Z.; Damodhar, H.; Grummer, C.; Mendenhall, H.; Banaszynski, K.; Hartel, R.; Hind, J.; Joyce, A.; Kaufman, A.; Robbins, J. Relationships among rheological, sensory texture, and swallowing pressure measurements of hydrocolloid-thickened fluids. Dysphagia 2015, 30, 702–713. [Google Scholar] [CrossRef] [PubMed]
- Boesveldt, S.; Bobowski, N.; McCrickerd, K.; Maître, I.; Sulmont-Rossé, C.; Forde, C.G. The changing role of the senses in food choice and food intake across the lifespan. Food Qual. Prefer. 2018, 68, 80–89. [Google Scholar] [CrossRef]
- Ndagire, C.T.; Muyonga, J.H.; Manju, R.; Nakimbugwe, D. Optimized formulation and processing protocol for a supplementary bean-based composite flour. Food Sci. Nutr. 2015, 3, 527–538. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization. Sensory Analysis: General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors, 1st ed.; International standard; ISO 8586; International Organization for Standardization: Geneva, Switzerland, 2012. [Google Scholar]
- Castura, J.C.; Antúnez, L.; Giménez, A.; Ares, G. Temporal Check-All-That-Apply (TCATA): A novel dynamic method for characterizing products. Food Qual. Prefer. 2016, 47, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Ares, G.; Alcaire, F.; Antúnez, L.; Vidal, L.; Giménez, A.; Castura, J.C. Identification of drivers of (dis) liking based on dynamic sensory profiles: Comparison of Temporal Dominance of Sensations and Temporal Check-all-that-apply. Food Res. Int. 2017, 92, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Esmerino, E.A.; Castura, J.C.; Ferraz, J.P.; Filho, E.R.T.; Silva, R.; Cruz, A.G.; Freitas, M.Q.; Bolini, H.M. Dynamic profiling of different ready-to-drink fermented dairy products: A comparative study using Temporal Check-All-That-Apply (TCATA), Temporal Dominance of Sensations (TDS) and Progressive Profile (PP). Food Res. Int. 2017, 101, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, S.R.; Alcaire, F.; Hunter, D.C.; Jin, D.; Castura, J.C.; Ares, G. Number of terms to use in temporal check-all-that-apply studies (TCATA and TCATA Fading) for sensory product characterization by consumers. Food Qual. Prefer. 2018, 64, 154–159. [Google Scholar] [CrossRef]
- Baker, A.K.; Castura, J.C.; Ross, C.F. Temporal check-all-that-apply characterization of Syrah wine. J. Food Sci. 2016, 81, S1521–S1529. [Google Scholar] [CrossRef]
- Varela, P.; Ares, G. Novel Techniques in Sensory Characterization and Consumer Profiling; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Reyes, M.M.; Castura, J.C.; Hayes, J.E. Characterizing dynamic sensory properties of nutritive and nonnutritive sweeteners with temporal check-all-that-apply. J. Sens. Stud. 2017, 32, 1–25. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Kravchuk, O.; Bhandari, B.; Prakash, S. Effect of different hydrocolloids on texture, rheology, tribology and sensory perception of texture and mouthfeel of low-fat pot-set yoghurt. Food Hydrocoll. 2017, 72, 90–104. [Google Scholar] [CrossRef] [Green Version]
- Dietitians Association of Australia; The Speech Pathology Association of Australia Limited. Texture-modified foods and thickened fluids as used for individuals with dysphagia: Australian standardised labels and definitions. Nutr. Diet. 2007, 64, S53–S76. [Google Scholar] [CrossRef]
- Lazo, O.; Claret, A.; Guerrero, L. A comparison of two methods for generating descriptive attributes with trained assessors: Check-all-that-apply (CATA) vs. free choice profiling (FCP). J. Sens. Stud. 2016, 31, 163–176. [Google Scholar] [CrossRef]
- Chambers, E., IV; Jenkins, A.; Garcia, J.M. Sensory texture analysis of thickened liquids during ingestion. J. Texture Stud. 2017, 48, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Meyners, M.; Castura, J.C. Randomization of CATA attributes: Should attribute lists be allocated to assessors or to samples? Food Qual. Prefer. 2016, 48, 210–215. [Google Scholar] [CrossRef]
- McMahon, K.M.; Culver, C.; Castura, J.C.; Ross, C.F. Perception of carbonation in sparkling wines using descriptive analysis (DA) and temporal check-all-that-apply (TCATA). Food Qual. Prefer. 2017, 59, 14–26. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 16 February 2019).
- Castura, J.C. tempR: Temporal Sensory Data Analysis. 2018. Available online: http://www.cran.r-project.org/package=tempR/ (accessed on 16 February 2019).
- Meyners, M.; Castura, J.C. The analysis of temporal check-all-that-apply (TCATA) data. Food Qual. Prefer. 2018, 67, 67–76. [Google Scholar] [CrossRef]
- XLStat. XLStat Help Documentation. 2018. Available online: https://help.xlstat.com/customer/en/portal/articles/2178395-download-the-xlstat-help-documentation (accessed on 27 May 2019).
- Addinsoft. XLSTAT Statistical and Data Analysis Solution; Addinsoft: Long Island, NY, USA, 2019. [Google Scholar]
- Marascuilo, L.A.; McSweeney, M. Nonparametric and Distribution-Free Methods for the Social Sciences; Brooks-Cole Publishing Co.: Stamford, CT, USA, 1977. [Google Scholar]
- Devezeaux de Lavergne, M.; van de Velde, F.; Stieger, M. Bolus matters: The influence of food oral breakdown on dynamic texture perception. Food Funct. 2017, 8, 464–480. [Google Scholar] [CrossRef]
- Scholten, E. Understanding perception of food types in terms of their structures: The missing links. Food Funct. 2017, 8, 462–463. [Google Scholar] [CrossRef]
- Szczesniak, A.S. Texture is a sensory property. Food Qual. Prefer. 2002, 13, 215–225. [Google Scholar] [CrossRef]
- Assad-Bustillos, M.; Tournier, C.; Septier, C.; della Valle, G.; Feron, G. Relationships of oral comfort perception and bolus properties in the elderly with salivary flow rate and oral health status for two soft cereal foods. Food Res. Int. 2019, 118, 13–21. [Google Scholar] [CrossRef]
- Aboubacar, A.; Kirleis, A.W.; Oumarou, M. Important Sensory Attributes Affecting Consumer Acceptance of Sorghum Porridge in West Africa as Related to Quality Tests. J. Cereal Sci. 1999, 30, 217–225. [Google Scholar] [CrossRef]
- Fucile, S.; Wright, P.M.; Chan, I.; Yee, S.; Langlais, M.E.; Gisel, E.G. Functional oral-motor skills: Do they change with age? Dysphagia 1998, 13, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lolivret, L. The determining role of bolus rheology in triggering a swallowing. Food Hydrocoll. 2011, 25, 325–332. [Google Scholar] [CrossRef]
- Cichero, J. Introducing solid foods using baby-led weaning vs. spoon-feeding: A focus on oral development, nutrient intake and quality of research to bring balance to the debate. Nutr. Bull. 2016, 41, 72–77. [Google Scholar] [CrossRef]
- Rudolph, C.D.; Link, D.T. Feeding disorders in infants and children. Pediatr. Clin. N. Am. 2002, 49, 97–112. [Google Scholar] [CrossRef]
- Morris, S.E.; Klein, M.D.; Klein, D. Pre-Feeding Skills: A Comprehensive Resource for Mealtime Development; Academic Press: New York, NY, USA, 2001. [Google Scholar]
- Koç, H.; Çakir, E.; Vinyard, C.; Essick, G.; Daubert, C.; Drake, M.; Osborne, J.; Foegeding, E. Adaptation of oral processing to the fracture properties of soft solids. J. Texture Stud. 2014, 45, 47–61. [Google Scholar] [CrossRef]
- Kohyama, K.; Mioche, L.; Bourdio, P. Influence of age and dental status on chewing behaviour studied by EMG recordings during consumption of various food samples. Gerodontology 2003, 20, 15–23. [Google Scholar] [CrossRef]
- Gilbert, R.J.; Napadow, V.J.; Gaige, T.A.; Wedeen, V.J. Anatomical basis of lingual hydrostatic deformation. J. Exp. Biol. 2007, 210 Pt 23, 4069–4082. [Google Scholar] [CrossRef] [Green Version]
- Fontijn-Tekamp, F.A.; van der Bilt, A.; Abbink, J.H.; Bosman, F. Swallowing threshold and masticatory performance in dentate adults. Physiol. Behav. 2004, 83, 431–436. [Google Scholar] [CrossRef]
- Ketel, E.C.; Aguayo-Mendoza, M.G.; de Wijk, R.A.; de Graaf, C.; Piqueras-Fiszman, B.; Stieger, M. Age, gender, ethnicity and eating capability influence oral processing behaviour of liquid, semi-solid and solid foods differently. Food Res. Int. 2019, 119, 143–151. [Google Scholar] [CrossRef]
- He, Q.; Hort, J.; Wolf, B. Predicting sensory perceptions of thickened solutions based on rheological analysis. Food Hydrocoll. 2016, 61, 221e232. [Google Scholar] [CrossRef]
- Cakir, E.; Koc, H.; Vinyard, C.J.; Essick, G.; Daubert, C.R.; Drake, M.; Foegeding, E.A. Evaluation of texture changes due to compositional differences using oral processing. J. Texture Stud. 2012, 43, 257–267. [Google Scholar] [CrossRef]
- Campoy, C.; Campos, D.; Cerdó, T.; Diéguez, E.; García-Santos, J.A. Complementary Feeding in Developed Countries: The 3 Ws (When, What, and Why?). Ann. Nutr. Metab. 2018, 73 (Suppl. S1), 27–36. [Google Scholar] [CrossRef] [PubMed]
- Gisel, E.G. Effect of food texture on the development of chewing of children between six months and two years of age. Dev. Med. Child Neurol. 1991, 33, 69–79. [Google Scholar] [CrossRef] [PubMed]
- De Wijk, R.; Terpstra, M.; Janssen, A.; Prinz, J. Perceived creaminess of semi-solid foods. Trends Food Sci. Technol. 2006, 17, 412–422. [Google Scholar] [CrossRef]
- Delaney, A.L.; Arvedson, J.C. Development of swallowing and feeding: Prenatal through first year of life. Dev. Disabil. Res. Rev. 2008, 14, 105–117. [Google Scholar] [CrossRef]
- Marconati, M.; Engmann, J.; Burbidge, A.; Mathieu, V.; Souchon, I.; Ramaioli, M. A review of the approaches to predict the ease of swallowing and post-swallow residues. Trends Food Sci. Technol. 2019, 86, 281–297. [Google Scholar] [CrossRef]
- Van der Bilt, A.; Abbink, J. The influence of food consistency on chewing rate and muscular work. Arch. Oral Biol. 2017, 83, 105–110. [Google Scholar] [CrossRef]
- Prakash, S.; Ma, Q.; Bhandari, B. Rheological behaviour of selected commercially available baby formulas in simulated human digestive system. Food Res. Int. 2014, 64, 889–895. [Google Scholar] [CrossRef] [Green Version]
- Scholten, E. Composite foods: From structure to sensory perception. Food Funct. 2017, 8, 481–497. [Google Scholar] [CrossRef]
- Nout, M.J.R.; Ngoddy, P.O. Technological aspects of preparing affordable fermented complementary foods. Food Control 1997, 8, 279–287. [Google Scholar] [CrossRef]
- Muoki, N. Nutritional, Rheological and Sensory Properties of Extruded Cassava-Soy Complementary Porridges. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2013. [Google Scholar]
- Nasirpour, A.; Scher, J.; Desobry, S. Baby Foods: Formulations and Interactions (A Review). Crit. Rev. Food Sci. Nutr. 2006, 46, 665–681. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.H.; Logemann, J.A.; Burghardt, W.R.; Carrell, T.D.; Zecker, S.G. Oral sensory discrimination of fluid viscosity. Dysphagia 1997, 12, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Laguna, L.; Chen, J. The eating capability: Constituents and assessments. Food Qual. Prefer. 2016, 48, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Witt, T.; Stokes, J.R. Physics of food structure breakdown and bolus formation during oral processing of hard and soft solids. Curr. Opin. Food Sci. 2015, 3, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Shama, F.; Sherman, P. Identification of Stimuli controlling the Sensory evaluation of Viscosity II: Oral Methods. J. Texture Stud. 1973, 4. [Google Scholar] [CrossRef]
- Hayakawa, F.; Kazami, Y.; Nishinari, K.; Ioku, K.; Akuzawa, S.; Yamano, Y.; Baba, Y.; Kohyama, K. Classification of J apanese Texture Terms. J. Texture Stud. 2013, 44, 140–159. [Google Scholar] [CrossRef]
- Cai, H.; Li, Y.; Chen, J. Rheology and tribology study of the sensory perception of oral care products. Biotribology 2017, 10, 17–25. [Google Scholar] [CrossRef]
- McLaren, S.; Dickerson, J. Measurement of eating disability in an acute stroke population. Clin. Eff. Nurs. 2000, 4, 109–120. [Google Scholar] [CrossRef]
- Tamine, K.; Ono, T.; Hori, K.; Kondoh, J.; Hamanaka, S.; Maeda, Y. Age-related changes in tongue pressure during swallowing. J. Dent. Res. 2010, 89, 1097–1101. [Google Scholar] [CrossRef]
Porridge Indigenous/Local | Flour (g) | Water (g) | Solids (%) # | Description and Source |
Maize | 40 | 960 | 4 | Super maize meal (commercially processed) from the local supermarket (Pretoria, RSA) |
80 | 920.0 | 8 | ||
100 | 900 | 10 | ||
Sorghum | 40 | 960 | 4 | Super mabela flour (commercially processed) from local supermarket (Pretoria, RSA) |
80 | 920 | 8 | ||
100 | 900 | 10 | ||
Bambara | 100 | 900 | 10 | Dry Seeds, cream cultivar, Mbare Produce market (Harare, Zimbabwe) |
Cowpea | 100 | 900 | 10 | Commercial seeds, Agrinawa cultivar Agricol (Pty) Ltd. (Pretoria, RSA) |
Cassava | 40 | 960 | 4 | High-quality cassava (84.4% starch), Thai Farm International (Ogun, Nigeria) |
60 | 940 | 6 | ||
100 | 900 | 10 | ||
OFSP (Orange-fleshed sweet potato) | 100 | 900 | 10 | Dried with electric dryer (60 °C, 6–8 h), Exilite 499 cc (Tzaneen, Limpopo, RSA) |
160 | 840 | 16 | ||
Commercial Porridges (Code) | Age (Months) | Flour:Liquid (g:mL) | Solids (%) | Description/Manufacturers Instructions Guide ** |
A1-Reference | 6 to 24 | 50:150 | 25.0 | Enzyme-hydrolyzed cereal (maize 62%), add water |
A2 | 6 to 24 | 50:150 | 25.0 | Enzyme-hydrolyzed cereal (rice 63%), add water |
A3 | 6 to 24 | 50:150 | 25.0 | Enzyme-hydrolyzed cereal (wheat 61%), add water |
C2 | 6 to 24 | 50:140 | 26.3 | Oat flakes 32%, add water |
F1 | 6 to 8 | 45:150 | 23.1 | Enzyme-hydrolyzed cereal (wheat 51%), add water |
9 to 12 | 67:200 | 25.1 | ||
13 to 36 | 80:250 | 24.2 | ||
F2 | 6 to 8 | 35:150 | 18.9 | Enzyme-hydrolyzed cereal (rice 51%), add water |
9 to 12 | 60:200 | 23.1 | ||
13 to 36 | 75:250 | 23.1 | ||
F3 | 9 to 12 | 67:200 | 25.1 | Enzyme-hydrolyzed cereal (wheat, rice, corn, rye, barley 54%), add water |
13 to 36 | 80:250 | 24.2 | ||
F4 | 9 to 12 | 67:200 | 25.1 | Enzyme-hydrolyzed cereal (wheat, rice, corn, rye, barley 43%), add water |
13 to 36 | 80:250 | 24.2 | ||
B1 | 6 to 24 | 50:160 | 35.1 | Enzyme-hydrolyzed cereal (maize), add water |
B2 | 6 to 24 | 50:160 | 35.1 | Enzyme-hydrolyzed cereal (wheat), add water |
C1 | 6 to 24 | 20:170 | 24.8 | Whole oat flour 70%, banana flakes 30%, add milk |
D | 6 to 36 | 20:140 | 26.3 | Maize flour minimum 86%, add milk |
E1 | 6 to 12 | 25:200 | 26.7 | Maize meal flour, 3 min cook with milk *** Cooking loss of 5% |
13 to 36 | 35:280 | 25.8 | ||
E2 | 6 to 12 | 25:125 | 30.0 | Sorghum flour (minimum 89%), add milk |
13 to 36 | 35:190 | 29.1 | ||
G | 13 to 36 | 20:80 | 32.8 | Wheat flour, maize flour, soy flour, add milk |
No. | TCATA Attribute | Definition |
---|---|---|
1 | Soft | Selected when little force is required to orally process and move around the mouth. |
2 | Smooth | Selected when the sample is perceived as smooth when squeezed between the palate and tongue [48]. |
3 | Creamy | Selected when the sample is perceived as creamy, with a silky smooth sensation in the mouth [48]. |
4 | Grainy | Selected when grainy particles are perceived in the mouth. |
5 | Too thick/Semi-solid | Viscosity perception of cooked maize meal pastes 15–20% solids in water. Similar to mashed potato [49]. |
6 | Thick | Viscosity perception of cooked maize meal paste (10–15% solids in water). Selected when the sample is perceived as thick (viscous) as opposed to thin like a fluid [48]. |
7 | Thin | Selected when the sample is perceived as thin andfluid-likeas opposed to thick (viscous). |
8 | Chewy | Selected when the sample requires a substantial number of chews before it is ready to swallow [50]. |
9 | Sticky | Selected when the sample sticks to the teeth and palate [48]. |
10 | Watery | Selected when the sample was perceived as thin and watery [49]. |
11 | Easy to swallow | Selected when the sample requires little effort (exertion/force) to swallow [51]. |
12 | Difficult to swallow | Selected when the sample requires a lot of effort (exertion/force) to swallow. |
13 | Slimy | Selected when the sample is perceived as slimy and slippery, a mildly sticky perception on the palate/tongue. |
14 | Pasty | Selected when the sample has the consistency of a (starch) paste, semi-solid with some stickiness. |
Porridge Type | Beginning (6 s) | Middle (16 s) | End (26 s) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Thick | Sticky | Too thick | Pasty | Slimy | Thick | Sticky | Too thick | Pasty | Slimy | Thick | Sticky | Pasty | Slimy | |
Bambara 10% | 0.05 a | 0.03 ab | 0.00 a | 0.03 ab | 0.25 b | 0.00 a | 0.00 a | 0.00 a | 0.05 ab | 0.20 b | 0.00 a | 0.00 a | 0.03 ab | 0.15 b |
Cowpea 10% | 0.08 a | 0.13 cd | 0.00 a | 0.05 abc | 0.35 bc | 0.05 ab | 0.08 ab | 0.03 a | 0.08 abc | 0.20 b | 0.03 ab | 0.05 a | 0.05 ab | 0.13 b |
Cassava 4% | 0.00 a | 0.10 bcd | 0.00 a | 0.03 ab | 0.40 bc | 0.00 a | 0.05 ab | 0.00 a | 0.00 a | 0.25 bc | 0.00 a | 0.05 a | 0.00 a | 0.13 b |
Cassava 6% | 0.08 a | 0.18 de | 0.00 a | 0.15 cd | 0.43 c | 0.05 ab | 0.05 ab | 0.00 a | 0.05 ab | 0.38 c | 0.00 a | 0.05 a | 0.03 ab | 0.18 bc |
Cassava 10% | 0.30 b | 0.25 e | 0.10 b | 0.20 d | 0.50 c | 0.33 f | 0.30 c | 0.13 b | 0.20 c | 0.55 d | 0.10 c | 0.25 b | 0.18 cd | 0.25 c |
Maize 4% | 0.00 a | 0.03 ab | 0.00 a | 0.00 a | 0.05 a | 0.00 a | 000 a | 0.00 a | 0.00 a | 003 a | 0.00 a | 0.00 a | 0.00 a | 0.00 a |
Maize 8% | 0.40 b | 0.05 abc | 0.05 ab | 0.03 ab | 0.08 a | 0.15 cd | 0.03 a | 0.05 a | 0.05 ab | 0.00 a | 0.03 ab | 0.00 a | 0.03 ab | 0.00 a |
Maize 10% | 0.33 b | 0.10 bcd | 0.25 d | 0.13 bcd | 0.08 a | 0.23 de | 0.13 b | 0.13 b | 0.20 c | 0.05 a | 0.05 b | 0.05 a | 0.13 bcd | 0.03 a |
Sorghum 4% | 0.05 a | 0.00 a | 0.00 a | 0.00 a | 0.05 a | 0.00 a | 0.00 a | 0.00 a | 005 ab | 0.05 a | 0.00 a | 0.00 a | 0.03 ab | 0.00 a |
Sorghum 8% | 0.30 b | 0.03 ab | 0.05 ab | 0.00 a | 0.03 a | 0.10 bc | 0.08 ab | 005 a | 0.08 abc | 0.03 a | 0.05 b | 0.03 a | 0.08 abc | 0.03 a |
Sorghum 10% | 0.40 b | 0.03 ab | 0.18 c | 0.15 cd | 0.00 a | 0.25 ef | 0.03 a | 0.05 a | 0.13 abc | 0.03 a | 0.03 ab | 0.00 a | 0.05 ab | 0.03 a |
OFSP 10% | 0.00 a | 0.00 a | 0.00 a | 0.08 abc | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.10 abc | 0.03 a | 0.03 ab | 0.00 a | 0.10 abcd | 0.03 a |
OFSP 16% | 0.10 a | 0.03 ab | 0.00 a | 0.05 abc | 0.03 a | 0.00 a | 0.08 ab | 0.00 a | 0.15 bc | 0.03 a | 0.00 a | 0.05 a | 0.20 d | 0.03 a |
A1 * | 0.00 a | 0.00 a | 0.00 a | 0.03 ab | 0.03 a | 0.00 a | 0.03 a | 0.00 a | 0.10 abc | 0.05 a | 0.00 a | 0.00 a | 0.10 abcd | 0.03 a |
Porridge-Sample | Oral-Method | Initial: 1–10 s | End: 21–30 s | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Thick | Too thick | Sticky | Slimy | Pasty | Thick | Too Thick | Slimy | Pasty | Swallow (+) | ||
Maize 4% | Normal | 0.00 a | 0.00 a | 0.02 ab | 0.04 a | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.64 bcdefghij |
Up-Down | 0.00 a | 0.00 a | 0.01 a | 0.06 abc | 0.00 a | 0.00 a | 0.00 a | 0.01 a | 0.00 a | 0.77 ij | |
Maize 8% | Normal | 0.23 def | 0.03 ab | 0.05 abc | 0.02 a | 0.00 a | 0.05 abc | 0.01 ab | 0.00 a | 0.00 a | 0.76 hij |
Up-Down | 0.37 g | 0.03 ab | 0.07 abcd | 0.05 ab | 0.05 abc | 0.01 bc | 0.03 ab | 0.00 a | 0.05 abc | 0.59 bcdefgh | |
Maize 10% | Normal | 0.26 defg | 0.11 cd | 0.07 abcd | 0.07 abc | 0.08 abcd | 0.04 abc | 0.02 ab | 0.00 a | 0.10 abcd | 0.62 bcdefghi |
Up-Down | 0.31 efg | 0.20 e | 0.10 bcd | 0.00 a | 0.13 bcde | 0.01 cd | 0.00 a | 0.10 abcd | 0.18 cde | 0.53 bcde | |
Sorghum 4% | Normal | 0.01 a | 0.00 a | 0.00 a | 0.02 a | 0.01 a | 0.00 a | 0.00 a | 0.02 ab | 0.05 abc | 0.65 cdefghij |
Up-Down | 0.02 a | 0.00 a | 0.00 a | 0.04 a | 0.01 a | 0.00 a | 0.00 a | 0.01 a | 0.00 a | 0.63 bcdefghij | |
Sorghum 8% | Normal | 0.20 cde | 0.04 abc | 0.04 abc | 0.00 a | 0.02 a | 0.00 a | 0.01 a | 0.00 a | 0.07 abc | 0.56 bcdefg |
Up-Down | 0.36 g | 0.04 abc | 0.04 abc | 0.04 a | 0.05 ab | 0.09 bcd | 0.03 ab | 0.05 abcd | 0.05 abc | 0.59 bcdefgh | |
Sorghum 10% | Normal | 0.28 defg | 0.08 bc | 0.02 ab | 0.00 a | 0.03 a | 0.04 abc | 0.01 a | 0.00 a | 0.00 a | 0.67 defghij |
Up-Down | 0.32 fg | 0.17 de | 0.03 abc | 0.01 a | 0.16 de | 0.06 abc | 0.02 ab | 0.05 abcd | 0.11 abcd | 0.63 bcdefghij | |
Bambara 10% | Normal | 0.02 a | 0.00 a | 0.01 a | 0.18 cd | 0.00 a | 0.00 a | 0.00 a | 0.15 bcde | 0.00 a | 0.75 hij |
Up-Down | 0.03 a | 0.00 a | 0.01 a | 0.18 cd | 0.05 ab | 0.00 a | 0.00 a | 0.15 bcde | 0.05 abc | 0.76 hij | |
Cowpea 10% | Normal | 0.07 ab | 0.00 a | 0.09 abcd | 0.24 de | 0.01 a | 0.00 a | 0.00 a | 0.11 abcde | 0.05 abc | 0.70 efghij |
Up-Down | 0.05 a | 0.00 a | 0.09 abcd | 0.28 def | 0.06 abc | 0.07 abcd | 0.00 a | 0.16 cde | 0.08 abc | 0.52 bcd | |
Cassava 4% | Normal | 0.00 a | 0.00 a | 0.08 abcd | 0.28 def | 0.02 a | 0.00 a | 0.00 a | 0.13 abcde | 0.00 a | 0.73 ghij |
Up-Down | 0.00 a | 0.00 a | 0.08 abcd | 0.35 ef | 0.05 ab | 0.00 a | 0.00 a | 0.18 de | 0.00 a | 0.55 bcdef | |
Cassava 6 % | Normal | 0.05 a | 0.00 a | 0.12 cde | 0.33 ef | 0.07 abcd | 0.00 a | 0.00 a | 0.19 de | 0.00 a | 0.67 cdefhij |
Up-Down | 0.06 a | 0.00 a | 0.16 def | 0.39 f | 0.14 cde | 0.01 ab | 0.00 a | 0.24 de | 0.08 abc | 0.60 bcdefhi | |
Cassava 10% | Normal | 0.19 bcd | 0.04 abc | 0.22 ef | 0.38 f | 0.08 abcd | 0.05 abc | 0.01 a | 0.24 ef | 0.09 abc | 0.70 efghij |
Up-Down | 0.27 defg | 0.17 de | 0.26 f | 0.35 ef | 0.20 e | 0.15 d | 0.03 ab | 0.35 f | 0.22 de | 0.26 a | |
OFSP 10% | Normal | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.06 abc | 0.00 a | 0.00 a | 0.03 abc | 0.13 bcde | 0.56 bcdefg |
Up-Down | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.08 abcd | 0.05 abc | 0.00 a | 0.00 a | 0.05 abc | 0.65 cdefghij | |
OFSP 16% | Normal | 0.03 a | 0.00 a | 0.02 ab | 0.00 a | 0.03 a | 0.00 a | 0.00 a | 0.00 a | 0.13 abcd | 0.47 b |
Up-Down | 0.10 abc | 0.00 a | 0.05 abc | 0.03 a | 0.08 abcd | 0.00 a | 0.00 a | 0.05 abcd | 0.25 e | 0.50 bc | |
A1 | Normal | 0.00 a | 0.00 a | 0.00 a | 0.02 a | 0.01 a | 0.00 a | 0.05 b | 0.00 a | 0.05 abc | 0.68 defghi |
Up-Down | 0.00 a | 0.00 a | 0.00 a | 0.04 a | 0.05 abc | 0.00 a | 0.00 a | 0.05 abcd | 0.15 cde | 0.72 fghi | |
A2 | Normal | 0.08 abc | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.04 abc | 0.05 abc | 0.62 bcdefghi |
Up-Down | 0.06 a | 0.00 a | 0.00 a | 0.00 a | 0.04 ab | 0.05 abc | 0.00 a | 0.01 a | 0.11 abcd | 0.53 bcde | |
A3 | Normal | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.01 a | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.80 j |
Up-Down | 0.01 a | 0.00 a | 0.00 a | 0.00 a | 0.04 ab | 0.00 a | 0.00 a | 0.00 a | 0.02 ab | 0.65 cdefghi |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makame, J.; Cronje, T.; Emmambux, N.M.; De Kock, H. Dynamic Oral Texture Properties of Selected Indigenous Complementary Porridges Used in African Communities. Foods 2019, 8, 221. https://doi.org/10.3390/foods8060221
Makame J, Cronje T, Emmambux NM, De Kock H. Dynamic Oral Texture Properties of Selected Indigenous Complementary Porridges Used in African Communities. Foods. 2019; 8(6):221. https://doi.org/10.3390/foods8060221
Chicago/Turabian StyleMakame, James, Tanita Cronje, Naushad M. Emmambux, and Henriette De Kock. 2019. "Dynamic Oral Texture Properties of Selected Indigenous Complementary Porridges Used in African Communities" Foods 8, no. 6: 221. https://doi.org/10.3390/foods8060221
APA StyleMakame, J., Cronje, T., Emmambux, N. M., & De Kock, H. (2019). Dynamic Oral Texture Properties of Selected Indigenous Complementary Porridges Used in African Communities. Foods, 8(6), 221. https://doi.org/10.3390/foods8060221