Bioactive Compounds, Antioxidant Activity, and Sensory Analysis of Rice-Based Extruded Snacks-Like Fortified with Bean and Carob Fruit Flours
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Formulated Flours
2.2. Extrusion Process
2.3. Analysis of Bioactive Compounds
2.3.1. Soluble Sugars and α-Galactosides
2.3.2. Inositol Phosphates
2.3.3. Protease Inhibitors
2.3.4. Lectins
2.3.5. Phenolic Compounds
2.4. Sensory Evaluation
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of Bean and Whole Carob Flour Fortification on the Content of Some Bioactive Compounds of Rice-Based Unprocessed Formulations
3.2. Extrusion Cooking Impact on the Bioactive Compounds of Rice-Based Formulations
3.2.1. Soluble Sugars and α-Galactosides
3.2.2. Inositol Phosphates
3.2.3. Protease Inhibitors and Lectins
3.2.4. Phenolic Compounds and Antioxidant Activity
3.3. Sensory Evaluation of the Extrudates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gaesser, G.A.; Angadi, S.S. Gluten-free diet: Imprudent dietary advice for the general population? J. Acad. Nutr. Diet. 2012, 112, 1330–1333. [Google Scholar] [CrossRef] [PubMed]
- Dalbhagat, C.G.; Mahato, D.K.; Mishra, H.N. Effect of extrusion processing on physicochemical, functional and nutritional characteristics of rice and rice-based products: A review. Trends Food Sci. Technol. 2019, 85, 226–240. [Google Scholar] [CrossRef]
- Arribas, C.; Cabellos, B.; Cuadrado, C.; Guillamón, E.; Pedrosa, M. The effect of extrusion on the bioactive compounds and antioxidant capacity of novel gluten-free expanded products based on carob fruit, pea and rice blends. Innov. Food Sci. Emerg. Technol. 2019, 52, 100–107. [Google Scholar] [CrossRef]
- Muzquiz, M.; Varela, A.; Burbano, C.; Cuadrado, C.; Guillamon, E.; Pedrosa, M.M. Bioactive compounds in legumes: Pronutritive and antinutritive actions. Implications for nutrition and health. Phytochem. Rev. 2012, 11, 227–244. [Google Scholar] [CrossRef]
- Lajolo, F.M.; Genovese, M.I.; Pryme, I.F.; Dale, T.M. Beneficial (antiproliferative) effects of different substances. In Recent Advances of Research in Antinutritional Factors in Legume Seeds and Oilseeds; Muzquiz, M., Hill, G.D., Cuadrado, C., Pedrosa, M.M., Burbano, C., Eds.; EAAP Publication: Toledo, Spain, 2004; pp. 123–137. [Google Scholar]
- Singh, B.; Singh, J.P.; Shevkani, K.; Singh, N.; Haur, A. Bioactive constituents in pulses and their health benefits. J. Food Sci. Technol. 2017, 54, 858–870. [Google Scholar] [CrossRef] [PubMed]
- Goulas, V.; Stylos, E.; Chatziathanasiadou, M.V.; Mavromoustakos, T.; Tzakos, A.G. Functional Components of Carob Fruit: Linking the Chemical and Biological Space. Int. J. Mol. Sci. 2016, 17, 1875. [Google Scholar] [CrossRef]
- Nasar-Abbas, S.M.; Huma, Z.-E.; Vu, T.-H.; Khan, M.K.; Esbenshade, H.; Jayasena, V. Carob Kibble: A Bioactive-Rich Food Ingredient. Compr. Rev. Food Sci. Food Saf. 2016, 15, 63–72. [Google Scholar] [CrossRef]
- Bouvier, J.M.; Campanella, O.H. Extrusion Technology and Process Intensification. In Extrusion Processing Technology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 465–506. [Google Scholar]
- Arribas, C.; Cabellos, B.; Sanchez, C.; Cuadrado, C.; Guillamon, E.; Pedrosa, M.M. The impact of extrusion on the nutritional composition, dietary fiber and in vitro digestibility of gluten-free snacks based on rice, pea and carob flour blends. Food Funct. 2017, 8, 3654–3663. [Google Scholar] [CrossRef]
- Anton, A.A.; Gary Fulcher, R.; Arntfield, S.D. Physical and nutritional impact of fortification of corn starch-based extruded snacks with common bean (Phaseolus vulgaris L.) flour: Effects of bean addition and extrusion cooking. Food Chem. 2009, 113, 989–996. [Google Scholar] [CrossRef]
- Morales, P.; Berrios, J.; Varela, A.; Burbano, C.; Cuadrado, C.; Muzquiz, M.; Pedrosa, M.M. Novel fiber-rich lentil flours as snack-type functional foods: An extrusion cooking effect on bioactive compounds. Food Funct. 2015, 6, 3135–3143. [Google Scholar] [CrossRef]
- Berrios, J. Extrusion Cooking: Legume Pulses. In Encyclopedia of Agricultural, Food, and Biological Engineering, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 453–464. [Google Scholar]
- Carvalho, A.; de Andrade Mattietto, R.; Bassinello, P.; Nakamoto Koakuzu, S.; Rios, A.; Maciel, R.; Nunes Carvalho, R. Processing and characterization of extruded breakfast meal formulated with broken rice and bean flour. Food Sci. Technol. 2012, 32, 515–524. [Google Scholar] [CrossRef] [Green Version]
- Brennan, C.; Brennan, M.; Derbyshire, E.; Tiwari, B.K. Effects of extrusion on the polyphenols, vitamins and antioxidant activity of foods. Trends Food Sci. Technol. 2011, 22, 570–575. [Google Scholar] [CrossRef]
- Morales, P.; Cebadera-Miranda, L.; Cámara, R.M.; Reis, F.S.; Barros, L.; Berrios, J.; Ferreira, I.C.F.R.; Cámara, M. Lentil flour formulations to develop new snack-type products by extrusion processing: Phytochemicals and antioxidant capacity. J. Funct. Foods 2015, 19 Pt A, 537–544. [Google Scholar] [CrossRef]
- Ravindran, G.; Carr, A.; Hardacre, A. A comparative study of the effects of three galactomannans on the functionality of extruded pea–rice blends. Food Chem. 2011, 124, 1620–1626. [Google Scholar] [CrossRef]
- Pedrosa, M.M.; Cuadrado, C.; Burbano, C.; Allaf, K.; Haddad, J.; Gelencsér, E.; Takács, K.; Guillamón, E.; Muzquiz, M. Effect of instant controlled pressure drop on the oligosaccharides, inositol phosphates, trypsin inhibitors and lectins contents of different legumes. Food Chem. 2012, 131, 862–868. [Google Scholar] [CrossRef]
- Burbano, C.; Muzquiz, M.; Ayet, G.; Cuadrado, C.; Pedrosa, M.M. Evaluation of antinutritional factors of selected varieties of Phaseolus vulgaris. J. Sci. Food Agric. 1999, 79, 1468–1472. [Google Scholar] [CrossRef]
- Pedrosa, M.M.; Cuadrado, C.; Burbano, C.; Muzquiz, M.; Cabellos, B.; Olmedilla-Alonso, B.; Asensio-Vegas, C. Effects of industrial canning on the proximate composition, bioactive compounds contents and nutritional profile of two Spanish common dry beans (Phaseolus vulgaris L.). Food Chem. 2015, 166, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Welham, T.; Domoney, C. Temporal and spatial activity of a promoter from a pea enzyme inhibitor gene and its exploitation for seed quality improvement. Plant Sci. 2000, 159, 289–299. [Google Scholar] [CrossRef]
- Sathe, S.K.; Salunkhe, D.K. Studies on trypsin and chymotrypsin inhibitory activities, hemagglutinating activity, and sugars in the great northern beans (Phaseolus vulgaris L). J. Food Sci. 1981, 46, 626–629. [Google Scholar] [CrossRef]
- Dueñas, M.; Fernández, M.L.; Hernández, T.; Estrella, I.; Muñoz, R. Bioactive phenolic compounds of cowpeas (Vigna sinensis L.). Modifications by fermentation with natural microflora and with Lactobacillus plantarum ATCC 14917. J. Sci. Food Agric. 2005, 85, 297–304. [Google Scholar]
- Oomah, B.D.; Cardador-Martínez, A.; Loarca-Piña, G. Phenolics and antioxidative activities in common beans (Phaseolus vulgaris L.). J. Sci. Food Agric. 2005, 85, 935–942. [Google Scholar] [CrossRef]
- Alonso, R.; Aguirre, A.; Marzo, F. Effect of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chem. 2000, 68, 159–165. [Google Scholar] [CrossRef]
- Roy, F.; Boye, J.I.; Simpson, B.K. Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food Res. Int. 2010, 43, 432–442. [Google Scholar] [CrossRef]
- Delgado-Licon, E.; Ayala, A.L.; Rocha-Guzman, N.E.; Gallegos-Infante, J.A.; Atienzo-Lazos, M.; Drzewiecki, J.; Martinez-Sanchez, C.E.; Gorinstein, S. Influence of extrusion on the bioactive compounds and the antioxidant capacity of the bean/corn mixtures. Int. J. Food Sci. Nutr. 2009, 60, 522–532. [Google Scholar] [CrossRef] [PubMed]
- Berrios, J.; Pan, J. Evaluation of extruded black bean (Phaseolus vulgaris L.) processed under different screw speeds and particle sizes. In Proceedings of the Annual Meeting of the Institute of Food Technologist, New Orleans, LA, USA, 23–27 June 2001; p. 30. [Google Scholar]
- Varela, A.; Guillamón, E.; Cuadrado, C.; Marzo, F.; Burbano, C.; Muzquiz, M.; Pedrosa, M.M. Changes in nutritional active factors and protein in different legumes by extrusion/cooking. In Proceedings of the 6th European Conference on Grain Legumes, Lisboa, Portugal, 16–17 November 2007; p. 56. [Google Scholar]
- Pedrosa, M.; Cuadrado, C. The nutritional and Nutraceutical Values od Some ready-to-Eat Expanded Legume Products. In Legumes for Global Food Secutiry; Clemente, A., Jimenez-Lopez, J.C., Eds.; Nova Science, Inc.: New York, NY, USA, 2017; pp. 157–182. [Google Scholar]
- Tosh, S.M.; Yada, S. Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Res. Int. 2010, 43, 450–460. [Google Scholar] [CrossRef]
- Nikmaram, N.; Leong, S.Y.; Koubaa, M.; Zhu, Z.; Barba, F.J.; Greiner, R.; Oey, I.; Roohinejad, S. Effect of extrusion on the anti-nutritional factors of food products: An overview. Food Control 2017, 79, 62–73. [Google Scholar] [CrossRef]
- Lombardi-Boccia, G.; Lullo, G.D.; Carnovale, E. In-vitro iron dialysability from legumes: Influence of phytate and extrusion cooking. J. Sci. Food Agric. 1991, 55, 599–605. [Google Scholar] [CrossRef]
- El-Hady, E.A.; Habiba, R.A. Effect of soaking and extrusion conditions on antinutrients and protein digestibility of legume seeds. LWT Food Sci. Technol. 2003, 36, 285–293. [Google Scholar] [CrossRef]
- Aguilera, Y.; Dueñas, M.; Estrella, I.; Hernandez, T.; Benitez, V.; Esteban, R.M.; Martin-Cabrejas, M.A. Phenolic profile and antioxidant capacity of chickpeas (Cicer arietinum L.) as affected by a dehydration process. Plant Foods Hum. Nutr. 2011, 66, 187–195. [Google Scholar] [CrossRef]
Sample | Sucrose | Galactinol | Raffinose | Ciceritol | Stachyose | Total α-Galactosides |
---|---|---|---|---|---|---|
Bean | 30.00 ± 0.95 e,f,g | 2.29 ± 0.05 a,b | 5.92 ± 0.09 c | 0.34 ± 0.01 a | 26.85 ± 0.25 g | 32.77± 0.25 g |
Carob fruit | 150.46 ± 10.04 h | n.d. * | 5.84 ± 0.02 c | n.d. | n.d. | 5.84 ± 0.02 a |
Rice | 2.98 ± 0.15 a | n.d. | n.d. | n.d. | n.d. | n.d. |
NE-20.0 ** | 8.65 ± 0.15 a,b,A | 2.53 ± 0.10 a,b,c,A | 2.84 ± 0.13 a,A | 0.78 ± 0.04 b,A | 8.55 ± 0.40 a,A | 11.39 ± 0.55 b,A |
NE-20.5 | 16.85 ± 0.29 c,d,A | 2.97 ± 0.06 b,c,d,e,A | 3.08 ± 0.03 a,A | 0.90 ± 0.02 b,c,A | 7.59 ± 0.17 a,A | 10.67 ± 0.15 b,A |
NE-20.10 | 29.91 ± 0.96 g,h,A | 3.30 ± 0.07 c,d,e,A | 3.14 ± 0.04 a,A | 0.94 ± 0.03 b,c,d,A | 8.61 ± 0.40 a,A | 11.76 ± 0.45 b,A |
NE-40.0 | 12.44 ± 0.15 c,A | 3.58 ± 0.03 d,e,A | 3.87 ± 0.04 b,A | 1.14 ± 0.05 c,d,e,A | 11.82 ± 0.23 c,A | 15.69 ± 0.25 c,A |
NE-40.5 | 22.83 ± 0.73 d,e,f,A | 3.11 ± 0.13 b,c,d,e,A | 3.97 ± 0.08 b,A | 1.19 ± 0.05 d,e,A | 13.37 ± 0.40 d,A | 17.34 ± 0.49 d,A |
NE-40.10 | 30.06 ± 0.41 h,A | 1.87 ± 0.09 a,A | 3.89 ± 0.09 b,A | 1.25 ± 0.04 e,A | 12.37 ± 0.28 c,d,A | 16.26 ± 0.48 c,d,A |
Ex-20.0 | 10.27 ± 0.08 a,b,A | 2.84 ± 0.11 b,c,d,A | 9.46 ± 0.35 e,B | 5.44 ± 0.07 f,B | 10.30 ± 0.43 b,B | 19.76 ± 0.78 e,B |
Ex-20.5 | 22.10 ± 0.19 d,e,B | 10.27 ± 0.34 h,B | 7.60 ± 0.27 d,B | 5.64 ± 0.15 f,B | 11.51 ± 0.50 c,B | 19.10 ± 0.81 e,B |
Ex-20.10 | 34.62 ± 0.10 e,f,g,A | 9.71 ± 0.44 h,B | 8.12 ± 0.26 d,B | 5.42 ± 0.07 f,B | 13.36 ± 0.07 d,B | 21.48 ± 0.33 f,B |
Ex-40.0 | 17.84 ± 0.16 c,d,A | 3.81 ± 0.10 e,A | 12.21 ± 0.24 f,B | 8.92 ± 0.07 h,B | 20.91 ± 0.13 e,B | 33.13 ± 0.50 g,h,B |
Ex-40.5 | 31.64 ± 0.05 f,g,A | 5.31 ± 0.25 f,B | 12.16 ± 0.15 f,B | 8.93 ± 0.13 h,B | 22.14 ± 0.20 f,B | 34.30 ± 0.28 h,B |
Ex-40.10 | 41.60 ± 0.07 e,f,g,B | 7.31 ± 0.33 g,B | 12.05 ± 0.34 f,B | 8.41 ± 0.01 g,B | 20.98 ± 0.20 e,f,B | 33.03 ± 0.14 g,h,B |
Commercial extruded rice | 71.40 ± 1.31 g | n.d. | n.d. | n.d. | n.d. | n.d. |
p value | <0.0001 | <0.001 | <0.0001 | <0.001 | <0.0001 | <0.001 |
Sample | IP3 | IP4 | IP5 | IP6 | Total Inositol Phosphates |
---|---|---|---|---|---|
Bean | 0.26 ± 0.01 e | 0.42 ± 0.01 e | 1.39 ± 0.03 g | 10.12 ± 0.03 j | 12.20 ± 0.04 h |
Carob | n.d. * | 0.15 ± 0.01 b | 0.36 ± 0.04 b | 0.15 ± 0.01 a | 0.66 ± 0.03 a |
Rice | 0.10 ± 0.01 b,c | 0.03 ± 0.03 a | 0.22 ± 0.01 a | 1.53 ± 0.05 b | 1.88 ± 0.03 b |
NE-20.0 ** | 0.22 ± 0.01 d,e,A | 0.24 ± 0.01 c,A | 0.53 ± 0.02 c,A | 3.32 ± 0.11 e,f,A | 4.31 ± 0.12 f,g,A |
NE-20.5 | 0.22 ± 0.01 d,e | 0.25 ± 0.01 c,A | 0.53 ± 0.01 c,A | 3.28 ± 0.12 e,A | 4.27 ± 0.10 f,A |
NE-20.10 | 0.22 ± 0.01 d,e | 0.27 ± 0.01 c,A | 0.57 ± 0.01 c,A | 3.88 ± 0.01 h,i,A | 4.93 ± 0.02 h,A |
NE-40.0 | 0.22 ± 0.01 d,e,A | 0.27 ± 0.01 c,A | 0.71 ± 0.01 d,A | 4.08 ± 0.06 i,j,A | 5.28 ± 0.07 i,A |
NE-40.5 | 0.22 ± 0.01 d,e,A | 0.27 ± 0.01 c,A | 0.75 ± 0.01 d,A | 4.18 ± 0.09 h,A | 5.42 ± 0.10 i,A |
NE-40.10 | 0.22 ± 0.01 d,e,A | 0.24 ± 0.01 c,A | 0.90 ± 0.03 e,A | 4.54 ± 0.04 i,A | 5.90 ± 0.07 j,A |
Ex-20.0 | 0.05 ± 0.01a,b,B | 0.29 ± 0.01 c,A | 0.69 ± 0.02 d,B | 2.61 ± 0.03 c,B | 3.65 ± 0.09 d,B |
Ex-20.5 | n.d. | 0.29 ± 0.01 c,A | 0.71 ± 0.02 d,B | 2.98 ± 0.11 d,B | 3.98 ± 0.14 e,B |
Ex-20.10 | n.d. | 0.27 ± 0.01 c,A | 0.74 ± 0.01 d,B | 3.56 ± 0.12 f,g,B | 4.56 ± 0.16 g,B |
Ex-40.0 | 0.05 ± 0.01 a,b,B | 0.37 ± 0.02 d,e,B | 1.20 ± 0.05 e,B | 3.89 ± 0.03 g,h,B | 5.51 ± 0.08 i,A |
Ex-40.5 | 0.05 ± 0.01 a,b,B | 0.41 ± 0.01 e,B | 1.21 ± 0.06 e,f,B | 3.74 ± 0.06 g,h,B | 5.41 ± 0.06 i,A |
Ex-40.10 | 0.16 ± 0.01 c,d,A | 0.35 ± 0.01 d,B | 1.27 ± 0.02 f,B | 4.33 ± 0.14 h,i,A | 6.11 ± 0.15 j,A |
Commercial extruded rice | 0.12 ± 0.01 b,c | 0.30 ± 0.01 c | 0.75 ± 0.01 d | 1.01 ± 0.05 b | 2.25 ± 0.03 c |
p value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Sample | Trypsin Inhibitors | Chymotrypsin Inhibitors | Lectins |
---|---|---|---|
Bean | 23.21 ± 0.66 e | 7.74 ± 0.28 d | 0.297 ± 0.012 C |
Carob fruit | 0.30 ± 0.02 a | n.d. ** | n.d. |
Rice | 0.15 ± 0.01 a | n.d. | n.d. |
NE-20.0 *** | 4.10 ± 0.09 b,A | 1.97 ± 0.09 a,b,A | 0.035 ± 0.002 a |
NE-20.5 | 4.16 ± 0.06 b,A | 1.44 ± 0.08 a,A | 0.045 ± 0.002 a,b |
NE-20.10 | 5.53 ± 0.20 c,A | 1.66 ± 0.08 a,b,A | 0.052 ± 0.002 a,b |
NE-40.0 | 7.83 ± 0.11 d,B | 5.65 ± 0.17 c,B | 0.108 ± 0.005 a,b |
NE-40.5 | 7.73 ± 0.30 d,B | 5.93 ± 0.28 c,B | 0.103 ± 0.005 b |
NE-40.10 | 7.34 ± 0.29 d,B | 5.76 ± 0.25 c,B | 0.101 ± 0.005 a,b |
Ex-20.0 | n.d. | n.d. | n.d. |
Ex-20.5 | n.d. | n.d. | n.d. |
Ex-20.10 | n.d. | n.d. | n.d. |
Ex-40.0 | n.d. | n.d. | n.d. |
Ex-40.5 | n.d. | n.d. | n.d. |
Ex-40.10 | n.d. | n.d. | n.d. |
Commercial extruded rice | 0.09 ± 0.01 a | n.d. | n.d. |
p value | <0.0001 | <0.0001 | <0.0001 |
Sample | Anthocyanins | Flavonols | Tartaric Esters | Total Phenols | Antioxidant Activity (ORAC) |
---|---|---|---|---|---|
Bean | 36.96 ± 0.24 i | 0.08 ± 0.001 c | 0.21 ± 0.01 i | 2.88 ± 0.02 g | 24.33 ± 0.07 i |
Carob fruit | 18.00 ± 0.15 e | 0.75 ± 0.001 b,c | 0.72 ± 0.01 b,c | 20.73 ± 0.10 i | 69.89 ± 1.62 j |
Rice | 18.70 ± 0.83 f | 0.03 ± 0.001 b | 0.02 ± 0.001 a | 0.90 ± 0.03 a,b | 3.80 ± 0.30 a |
NE-20.0 ** | 10.32 ± 0.07 a | 0.02 ± 0.001 a | 0.06 ± 0.001 b,A | 0.71 ± 0.03 a,A | 8.35 ± 0.04 b |
NE-20.5 | 11.00 ± 0.03 a,b,A | 0.04 ± 0.001 a,b,c | 0.09 ± 0.001 c,d,A | 1.38 ± 0.03 c, A | 9,66 ± 0.45 c,d,e |
NE-20.10 | 12.42 ± 0.23 a,A | 0.07 ± 0.001 b,c | 0.11 ± 0.001 e,f,A | 2.26 ± 0.01 e,f,A | 10.22 ± 0.50 d,e |
NE-40.0 | 15.23 ± 0.24 c | 0.03 ± 0.001 a,b,A | 0.09 ± 0.001 c,d,A | 1.10 ± 0.03 b,A | 9.41 ± 0.45 b,c,d |
NE-40.5 | 15.45 ± 0.36 c,d,A | 0.06 ± 0.001 a,b,c | 0.11 ± 0.001 e,f,A | 1.80 ± 0.03 d,A | 11.57 ± 0.50 f,g,h |
NE-40.10 | 17.08 ± 0.36 e,A | 0.08 ± 0.001 c | 0.14 ± 0.001 g,h,A | 2.35 ± 0.02 e,f,A | 12,36 ± 0.58 h,A |
Ex-20.0 | 12.41 ± 052 b | 0.02 ± 0.001 a | 0.07 ± 0.001 b,B | 0.92 ± 0.03 b,B | 8.92 ± 0.38 b,c |
Ex-20.5 | 16.78 ± 0.31 d,e,B | 0.05 ± 0.001 a,b,c | 0.10± 0.001 d,e,B | 2.16 ± 0.01 e,B | 9.32 ± 0.42 b,c,d |
Ex-20.10 | 17.13 ± 0.13 e,B | 0.08 ± 0.001 b,c | 0.14 ± 0.001 g,B | 3.25 ± 0.06 h,B | 10.29 ± 0.30 d,e |
Ex-40.0 | 18.13 ± 0.32 e | 0.08 ± 0.001 c,B | 0.08 ± 0.001 b,c,B | 1.33 ± 0.04 c,B | 10.49 ± 0.49 d,e,f |
Ex-40.5 | 21.19 ± 0.09 f,B | 0.06 ± 0.001 a,b,c | 0.13 ± 0.001 f,g,B | 2.37 ± 0.11 f,B | 11.89 ± 0.48 g,h |
Ex-40.10 | 23.30 ± 0.65 g,B | 0.08 ± 0.001 c | 0.16 ± 0.001 h,B | 3.17 ± 0.01 h,B | 10.86 ± 0.50 e,f,g,B |
Commercial extruded rice | 15.59 ± 0.25 e,f | 0.06 ± 0.001 a,b,c | 0.14 ± 0.001 g | 1.96 ± 0.10 e | 8.81 ± 0.18 b,c |
p value | <0.0001 | <0.001 | <0.0001 | <0.0001 | <0.0001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arribas, C.; Cabellos, B.; Cuadrado, C.; Guillamón, E.; M. Pedrosa, M. Bioactive Compounds, Antioxidant Activity, and Sensory Analysis of Rice-Based Extruded Snacks-Like Fortified with Bean and Carob Fruit Flours. Foods 2019, 8, 381. https://doi.org/10.3390/foods8090381
Arribas C, Cabellos B, Cuadrado C, Guillamón E, M. Pedrosa M. Bioactive Compounds, Antioxidant Activity, and Sensory Analysis of Rice-Based Extruded Snacks-Like Fortified with Bean and Carob Fruit Flours. Foods. 2019; 8(9):381. https://doi.org/10.3390/foods8090381
Chicago/Turabian StyleArribas, Claudia, Blanca Cabellos, Carmen Cuadrado, Eva Guillamón, and Mercedes M. Pedrosa. 2019. "Bioactive Compounds, Antioxidant Activity, and Sensory Analysis of Rice-Based Extruded Snacks-Like Fortified with Bean and Carob Fruit Flours" Foods 8, no. 9: 381. https://doi.org/10.3390/foods8090381
APA StyleArribas, C., Cabellos, B., Cuadrado, C., Guillamón, E., & M. Pedrosa, M. (2019). Bioactive Compounds, Antioxidant Activity, and Sensory Analysis of Rice-Based Extruded Snacks-Like Fortified with Bean and Carob Fruit Flours. Foods, 8(9), 381. https://doi.org/10.3390/foods8090381