Effect of Date (Phoenix dactylifera L.) Pits on the Shelf Life of Beef Burgers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Date pit Preparation
2.2. Characterization of Date Pit
2.2.1. Proximate Composition
2.2.2. Physicochemical Analysis
2.2.3. Antioxidant Activity and Phytochemicals
2.2.4. Technological Properties
2.3. Manufacture of Beef Burger
2.4. Beef Burger Analysis
2.4.1. Proximate Composition
2.4.2. Physicochemical Analysis
2.4.3. Pigment Oxidation (Metmyoglobin Percentage)
2.4.4. Cooking Properties
2.4.5. Lipid Oxidation
2.4.6. Total Phenolics
2.4.7. Microbiological Analysis
2.4.8. Sensory Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Date Pit Powder (DPP)
3.2. Characteristics of Burgers with Date Pit Powder (DPP)
3.3. Color Deterioration and Pigment Oxidation of Burgers with DPP During Storage
3.4. Cooking Parameters of Burgers with DPP During Storage
3.5. Lipid Oxidation and Total Phenolic Content (TPC) of Burgers with DPP During Storage
3.6. Microbial Quality of Burgers with DPP during Storage
3.7. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carr, P.R.; Walter, V.; Brenner, H.; Hoffmeister, M. Meat subtypes and their association with colorectal cancer: Systematic review and meta-analysis. Int. J. Cancer 2016, 138, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, L.R. Meat and cancer. Meat Sci. 2010, 84, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Grunert, K.G. Future trends and consumer lifestyles with regard to meat consumption. Meat Sci. 2006, 74, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Asioli, D.; Aschemann-Witzel, J.; Caputo, V.; Vecchio, R.; Annunziata, A.; Næs, T.; Varela, P. Making sense of the “clean label” trends: A review of consumer food choice behavior and discussion of industry implications. Food Res. Int. 2017, 99, 58–71. [Google Scholar] [CrossRef]
- Karakaya, M.; Bayrak, E.; Ulusoy, K. Use of natural antioxidants in meat and meat products. J. Food Sci. Eng. 2011, 1, 1–10. [Google Scholar]
- Iammarino, M.; Di Taranto, A.; Muscarella, M. Investigation on the presence of sulphites in fresh meat preparations: Estimation of an allowable maximum limit. Meat Sci. 2012, 90, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Lamas, A.; Miranda, J.M.; Vázquez, B.; Cepeda, A.; Franco, C.M. An evaluation of alternatives to nitrites and sulfites to inhibit the growth of Salmonella enterica and Listeria monocytogenes in meat products. Foods 2016, 5, 74. [Google Scholar] [CrossRef]
- Amany, M.; Shaker, M.; Abeer, A. Antioxidant activities of date pits in a model meat system. Int. Food Res. J. 2012, 19, 223–227. [Google Scholar]
- Ahmad, S.R.; Gokulakrishnan, P.; Giriprasad, R.; Yatoo, M.A. Fruit-based natural antioxidants in meat and meat products: A review. Crit. Rev. Food Sci. 2015, 55, 1503–1513. [Google Scholar] [CrossRef]
- Islam, R.U.; Khan, M.A.; Islam, S.U. Plant derivatives as promising materials for processing and packaging of meat-based products–focus on antioxidant and antimicrobial effects. J. Food Process. Preserv. 2017, 41, e12862. [Google Scholar] [CrossRef]
- Kryževičūtė, N.; Jaime, I.; Diez, A.M.; Rovira, J.; Venskutonis, P.R. Effect of raspberry pomace extracts isolated by high pressure extraction on the quality and shelf-life of beef burgers. Int. J. Food Sci. Technol. 2017, 52, 1852–1861. [Google Scholar] [CrossRef]
- Karre, L.; Lopez, K.; Getty, K.J.K. Natural antioxidants in meat and poultry products. Meat Sci. 2013, 94, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.A.; Bosco, S.J.D.; Mir, S.A. Plant extracts as natural antioxidants in meat and meat products. Meat Sci. 2014, 98, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aziz, M.E.; Morsy, N.F.S. Keeping quality of frozen beef patties by marjoram and clove essential oils. J. Food Process. Preserv. 2015, 39, 956–965. [Google Scholar] [CrossRef]
- Martín-Sánchez, A.M.; Chaves-López, C.; Sendra, E.; Sayas, E.; Fernández-López, J.; Pérez-Alvarez, J.A. Lipolysis, proteolysis and sensory characteristics of a Spanish fermented dry-cured meat product (salchichón) with oregano essential oil used as surface mold inhibitor. Meat Sci. 2011, 89, 35–44. [Google Scholar] [CrossRef]
- Sharafati-Chaleshtori, R.; Rokni, N.; Rafieian-Kopaei, M.; Drees, F.; Salehi, E. Antioxidant and antibacterial activity of basil (Ocimum basilicum L.) essential oil in beef burger. J. Agric. Sci. Technol. 2015, 17, 817–826. [Google Scholar]
- Aleson-Carbonell, L.; Fernández-López, J.; Pérez-Álvarez, J.A.; Kuri, V. Characteristics of beef burger as influenced by various types of lemon albedo. Innov. Food Sci. Emerg. Technol. 2005, 6, 247–255. [Google Scholar] [CrossRef]
- Besbes, S.; Ghorbel, R.; Ben Salah, R.; Masmoudi, M.; Jedidi, F.; Attia, H.; Blecker, C. Date fiber concentrate: Chemical compositions, functional properties and effect on quality characteristics of beef burgers. J. Food Drug Anal. 2009, 18, 8–14. [Google Scholar]
- FAOSTAT. FAO statistical database. In Food and Agriculture Organization of the United Nations; FAOSTAT: Roma, Italy, 2013; Available online: http://www.fao.org/faostat/en/#data (accessed on 8 November 2017).
- Ghnimi, S.; Umer, S.; Karim, A.; Kamal-Eldin, A. Date fruit (Phoenix dactylifera L.): An underutilized food seeking industrial valorization. NFS J. 2017, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Baliga, M.S.; Baliga, B.R.V.; Kandathil, S.M.; Bhat, H.P.; Vayalil, P.K. A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Food Res. Int. 2011, 44, 1812–1822. [Google Scholar] [CrossRef]
- Sirisena, S.; Ng, K.; Ajlouni, S. The Emerging Australian Date Palm Industry: Date Fruit Nutritional and Bioactive Compounds and Valuable Processing By-Products. Compr. Rev. Food Sci. Food Saf. 2015, 14, 813–823. [Google Scholar] [CrossRef]
- Habib, H.M.; Ibrahim, W.H. Effect of date seeds on oxidative damage and antioxidant status in vivo. J. Sci. Food Agric. 2011, 91, 1674–1679. [Google Scholar] [CrossRef] [PubMed]
- Perveen, K.; Bokhari, N.A.; Soliman, D.A. Antibacterial activity of Phoenix dactylifera L. leaf and pit extracts against selected gram negative and gram positive pathogenic bacteria. J. Med. Plants Res. 2012, 6, 296–300. [Google Scholar] [CrossRef]
- Al-Farsi, M.A.; Lee, C.Y. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem. 2008, 108, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Habib, H.M.; Ibrahim, W.H. Nutritional quality evaluation of eighteen date pit varieties. Int. J. Food Sci. Nutr. 2009, 60, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Hamada, J.S.; Hashim, I.B.; Sharif, F.A. Preliminary analysis and potential uses of date pits in foods. Food Chem. 2002, 76, 135–137. [Google Scholar] [CrossRef]
- Associaton of Official Analytical Chemists AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Associaton of Official Analytical Chemists AOAC: Washington, DC, USA, 2007. [Google Scholar]
- American Meat Science Association. AMSA Meat Color Measurement Guidelines; AMSA: Champaign, IL, USA, 2012. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1998, 299, 152–178. [Google Scholar] [CrossRef]
- Martín-Sánchez, A.M.; Cherif, S.; Ben-Abda, J.; Barber-Vallés, X.; Pérez-Álvarez, J.Á.; Sayas-Barberá, E. Phytochemicals in date co-products and their antioxidant activity. Food Chem. 2014, 158, 513–520. [Google Scholar] [CrossRef]
- Bekhit, A.E.D.; Geesink, G.H.; Ilian, M.A.; Morton, J.D.; Bickerstaffe, R. The effects of natural antioxidants on oxidative processes and metmyoglobin reducing activity in beef patties. Food Chem. 2003, 81, 175–187. [Google Scholar] [CrossRef]
- American Meat Science Association. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat; AMSA: Champaign, IL, USA, 2015. [Google Scholar]
- International Organization for Standardization ISO 6658-1985. Sensory Analysis. Methodology. Flavour Profile Methods; ISO: Genéve, Switzerland, 1985. [Google Scholar]
- Al-Shahib, W.; Marshall, R.J. Fatty acid content of the seeds from 14 varieties of date palm (Phoenix dactylifera L.). Int. J. Food Sci. Technol. 2003, 38, 709–712. [Google Scholar] [CrossRef]
- Al Juhaimi, F.; Özcan, M.M.; Adiamo, O.Q.; Alsawmahi, O.N.; Ghafoor, K.; Babiker, E.E. Effect of date varieties on physico-chemical properties, fatty acid composition, tocopherol contents, and phenolic compounds of some date seed and oils. J. Food Process. Preserv. 2018, 42, e13584. [Google Scholar] [CrossRef]
- Fernández-López, J.; Fernández-Ginés, J.M.; Aleson-Carbonell, L.; Sendra, E.; Sayas-Barberá, E.; Pérez-Alvarez, J.A. Application of functional citrus by-products to meat products. Trends Food Sci. Technol. 2004, 15, 176–185. [Google Scholar] [CrossRef]
- Essa, R.Y.; Elsebaie, E. Effect of using date pits powder as a fat replacer and anti-oxidative agent on beef burger quality. J. Food Dairy Sci. Mansoura Univ. 2018, 9, 91–96. [Google Scholar] [CrossRef]
- Vázquez-Ovando, A.; Rosado-Rubio, G.; Chel-Guerrero, L.; Betancur-Ancona, D. Physicochemical properties of a fibrous fraction from chia (Salvia hispanica L.). LWT Food Sci. Technol. 2009, 42, 168–173. [Google Scholar] [CrossRef]
- Akasha, I.; Campbell, L.; Lonchamp, J.; Euston, S.R. The major proteins of the seed of the fruit of the date palm (Phoenix dactylifera L.): Characterisation and emulsifying properties. Food Chem. 2016, 197, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Yıldız-Turp, G.; Serdaroglu, M. Effects of using plum puree on some properties of low fat beef patties. Meat Sci. 2010, 86, 896–900. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Álvarez, J.A.; Sayas-Barberá, M.E.; Fernández-López, J.; Aranda-Catalá, V. Physicochemical characteristics of Spanish-type dry-cured sausage. Food Res. Int. 1999, 32, 599–607. [Google Scholar] [CrossRef]
- Sidhu, J.S. Date fruits production and processing. In Handbook of Fruits and Fruit Processing; Hui, Y.H., Ed.; Blackwell Publishing: Iowa, IA, USA, 2006; pp. 391–420. [Google Scholar]
- Ganhão, R.; Morcuende, D.; Estévez, M. Protein oxidation in emulsified cooked burger patties with added fruit extracts: Influence on colour and texture deterioration during chill storage. Meat Sci. 2010, 85, 402–409. [Google Scholar] [CrossRef]
- Bañon, S.; Díaz, P.; Rodríguez, M.; Garrido, M.D.; Price, A. Ascorbate, green tea and grape seed extracts increase the shelf life of low sulphite beef patties. Meat Sci. 2007, 77, 626–633. [Google Scholar] [CrossRef]
- Rodríguez-Carpena, J.G.; Morcuende, D.; Estévez, M. Avocado by-products as inhibitors of color deterioration and lipid and protein oxidation in raw porcine patties subjected to chilled storage. Meat Sci. 2011, 89, 166–173. [Google Scholar] [CrossRef]
- Sánchez-Zapata, E.; Muñoz, C.M.; Fuentes, E.; Fernández-López, J.; Sendra, E.; Sayas, E.; Navarro, C.; Pérez-Alvarez, J.A. Effect of tiger nut fibre on quality characteristics of pork burger. Meat Sci. 2010, 85, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.T.; Berry, B.W. Effects of inner pea fiber on fat retention and cooking yield in high fat ground beef. Food Res. Int. 2001, 34, 689–694. [Google Scholar] [CrossRef]
- Sayas-Barberá, E.; Quesada, J.; Sánchez-Zapata, E.; Viuda-Martos, M.; Fernández-López, F.; Pérez-Alvarez, J.A.; Sendra, E. Effect of the molecular weight and concentration of chitosan in pork model burgers. Meat Sci. 2011, 88, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-W.; Miller, D.K.; Lee, Y.J.; Kim, Y.H.B. Effects of soy hull pectin and insoluble fiber on physicochemical and oxidative characteristics of fresh and frozen/thawed beef patties. Meat Sci. 2016, 117, 63–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.H.; Huang, M.; Zhou, G.H.; Zou, Y.F.; Xu, X.L. Prooxidant effects of the combination of green tea extract and sodium nitrite for accelerating lipolysis and lipid oxidation in pepperoni during storage. J. Food Sci. 2011, 76, C694–C700. [Google Scholar] [CrossRef] [PubMed]
- Maqsood, S.; Benjakul, S. Preventive effect of tannic acid in combination with modified atmospheric packaging on the quality losses of the refrigerated ground beef. Food Control 2010, 21, 1282–1290. [Google Scholar] [CrossRef]
Chemical Composition (%) | Technological Properties | ||
Moisture | 4.72 ± 0.24 | WHC (g water/g DPP) | 1.59 ± 0.02 |
Protein | 4.77 ± 0.34 | OHC (g oil/g DPP) | 0.82 ± 0.12 |
Ash | 0.89 ± 0.18 | WAC (g water/g DPP) | 0.42 ± 0.15 |
Fat | 9.84 ± 0.02 | EA (mL/100 mL emulsion) | 50.7 ± 2.4 |
Total dietary fiber | 70.11 ± 1.85 | ES (%) | 100 |
Insoluble dietary fiber | 67.33 ± 2.01 | Phytochemicals and Antioxidant Activity | |
Soluble dietary fiber | 2.78 ± 2.01 | Total phenolic content (g GAE/100 g) | 9.17 ± 0.04 |
Physicochemical Properties | Tannins (g GAE/100 g) | 3.36 ± 0.10 | |
aw | 0.201 ± 0.003 | DPPH (mM TE/100 g) | 63.2 ± 9.6 |
L* | 61.55 ± 0.45 | FIC (µM EDTA/100 g) | 78.3 ± 10.8 |
a* | 9.72 ± 0.21 | Reducing power (mM TE/100 g) | 70.8 ± 0.9 |
b* | 18.07 ± 0.12 | TBARS (µM BHT/100 g) | 14.5 ± 0.2 |
Uncooked Burgers | Control | 1.5% DPP | 3% DPP | 6% DPP |
Moisture (%) | 73.8 ± 1.1 b | 72.7 ± 1.3 ab | 72.3 ± 0.5 ab | 70.3 ± 0.9 a |
Fat (%) | 4.8 ± 0.4 | 5.6 ± 0.4 | 5.0 ± 0.3 | 4.9 ± 0.1 |
Protein (%) | 19.6 ± 0.7 b | 18.7 ± 0.4 b | 18.6 ± 0.6 b | 17.0 ± 0.5 a |
Ash (%) | 2.3 ± 0.2 | 2.2 ± 0.8 | 2.4 ± 0.7 | 2.2 ± 0.1 |
Fibre (%) | 0.0 ± 0 a | 0.8 ± 0.1 b | 1.8 ± 0.1 c | 4.2 ± 0.2 d |
pH | 5.50 ± 0.01 | 5.53 ± 0.01 | 5.52 ± 0.01 | 5.51 ± 0.01 |
Cooked Burgers | Control | 1.5% DPP | 3% DPP | 6% DPP |
Moisture (%) | 66.0 ± 0.1 b | 67.3 ± 0.1 c | 65.8 ± 0.2 b | 63.1 ± 0.3 a |
Fat (%) | 4.9 ± 0.4 | 5.0 ± 0.4 | 5.3 ± 0.4 | 5.0 ± 0.1 |
Protein (%) | 25.7 ± 0.5 c | 23.7 ± 0.1 b | 23.0 ± 0.1 b | 22.3 ± 0.5 a |
Ash (%) | 2.5 ± 0.1 | 2.5 ± 0.3 | 2.4 ± 0.7 | 2.4 ± 0.5 |
Fibre (%) | 0.0 ± 0.0 a | 1.0 ± 0.1 b | 1.9 ± 0.1 c | 5.5 ± 0.1 d |
pH | 5.90 ± 0.01 | 5.93 ± 0.02 | 5.94 ± 0.01 | 5.92 ± 0.01 |
Uncooked Burgers | Day | Control | 1.5% DPP | 3% DPP | 6% DPP |
L* | 0 | B 53.3 ± 2.5 b | C 50.2 ± 2.1 a | B 52.1 ± 1.3 ab | B 53.8 ± 1.9 b |
3 | A 41.6 ± 1.2 a | AB 43.4 ± 2.8 ab | A 44.2 ± 3.3 ab | A 45.5 ± 1.5 b | |
6 | A 44.2 ± 3.3 b | A 41.2 ± 1.6 a | A 43.9 ± 1.6 ab | A 43.1 ± 1.2 ab | |
10 | A 43.9 ± 1.1 | B 44.9 ± 6.3 | A 43.9 ± 1.0 | A 45.9 ± 4.4 | |
a* | 0 | B 14.00 ± 3.25 b | B 14.46 ± 1.31 b | B 14.09 ± 0.82 b | B 12.65 ± 1.07 a |
3 | A 7.26 ± 0.80 a | B 9.17 ± 1.24 b | A 9.88 ± 1.76 b | A 10.19 ± 0.64 b | |
6 | A 5.01 ± 0.84 a | B 10.95 ± 0.94 b | A 9.94 ± 0.86 b | A 10.43 ± 0.49 b | |
10 | A 3.97 ± 0.36 a | A 5.11 ± 0.79 a | A 8.67 ± 0.60 b | A 9.84 ± 1.97 b | |
b* | 0 | B 15.7 ± 2.8 | C 13.7 ± 0.9 | B 13.7 ± 0.6 | B 13.6 ± 1.2 |
3 | A 8.8 ± 0.7 a | B 10.5±1.0 b | A 10.3 ± 2.1 ab | A 11.3 ± 0.9 b | |
6 | A 8.9 ± 2.0 a | B 11.7 ± 0.9 bc | A 10.3 ± 0.9 ab | AB 12.4 ± 1.5 c | |
10 | A 8.3 ± 0.7 a | A 7.9 ± 1.2 a | A 9.8 ± 0.7 b | AB 12.6 ± 1.2 c | |
MMb | 0 | A 51.02 ± 2.69 b | A 16.03 ± 1.74 a | A 12.93 ± 1.69 a | A 9.77 ± 0.04 a |
3 | B 67.14 ± 1.08 b | A 22.05 ± 2.28 a | B 20.20 ± 2.79 b | B 17.26 ± 1.34 b | |
6 | B 73.24 ± 4.79 b | A 21.59 ± 0.99 a | B 18.11 ± 0.17 b | B 16.95 ± 0.70 b | |
10 | B 71.82 ± 0.67 b | B 62.50 ± 1.23 b | B 24.58 ± 3.32 b | B 19.87 ± 0.86 b | |
Cooked burgers | Day | Control | 1.5%DPP | 3%DPP | 6%DPP |
L* | 0 | D 64.6 ± 0.2 c | C 62.9 ± 0.5 b | C 61.7 ± 0.4 a | C 61.3 ± 0.5 a |
3 | B 55.1 ± 0.4 c | A 51.6 ± 0.2 a | A 52.2 ± 0.2 a | B 52.2 ± 0.9 ab | |
6 | A 53.9 ± 0.6 c | B 52.9 ± 0.4 ab | B 53.0 ± 0.3 b | B 52.3 ± 0.4 a | |
10 | C 56.1 ± 0.3 d | B 52.6 ± 0.4 c | A 52.1 ± 0.4 b | A 51.1 ± 0.5 a | |
a* | 0 | 4.26 ± 0.10 a | 3.63 ± 0.16 a | 4.04 ± 0.10 a | 5.13 ± 0.13 b |
3 | 3.90 ± 0.09 b | 2.90 ± 0.06 a | 3.48 ± 0.04 b | 4.38 ± 0.12 c | |
6 | 3.85 ± 0.14 a | 3.22 ± 0.09 a | 3.33 ± 0.06 a | 4.38 ± 0.12 b | |
10 | 3.64 ± 0.07 a | 3.52 ± 0.10 a | 3.53 ± 0.09 a | 4.48 ± 0.22 b | |
b* | 0 | C 12.7 ± 0.2 | B 12.6 ± 0.3 | D 12.6 ± 0.3 | C 12.9 ± 0.3 |
3 | AB 12.1 ± 0.3 c | A 10.3 ± 0.3 a | C 11.3 ± 2.1 b | B 11.2 ± 0.3 b | |
6 | B 12.2 ± 0.3 c | A 10.4 ± 0.2 b | A 9.8 ± 0.1 a | A 10.2 ± 0.1 b | |
10 | A 11.8 ± 0.2 b | A 10.5 ± 0.4 a | B 10.6 ± 0.2 a | B 10.9 ± 0.4 a | |
MMb | 0 | 36.20 ± 1.83 | 35.54 ± 3.31 | 38.74 ± 1.20 | 38.64 ± 1.39 |
3 | 38.84 ± 1.11 | 35.82 ± 2.84 | 40.03 ± 2.33 | 38.53 ± 0.63 | |
6 | 35.02 ± 0.33 | 36.92 ± 1.77 | 43.67 ± 0.30 | 45.65 ± 0.52 | |
10 | 37.33 ± 1.75 | 36.26 ± 1.60 | 38.67 ± 0.55 | 40.13 ± 0.50 |
Day | Control | 1.5% DPP | 3% DPP | 6% DPP | |
---|---|---|---|---|---|
Cooking yield (%) | 0 | A 69.9 ± 0.8 a | A 69.6 ± 0.9 a | A 76.7 ± 1.5 b | A 75.7 ± 1.6 b |
3 | B 76.4 ± 1.4 a | B 80.1 ± 1.6 b | AB 80.1 ± 2.5 b | AB 79.7 ± 1.7 b | |
6 | BC 78.8 ± 0.6 a | B 80.0 ± 1.8 ab | B 82.9 ± 1.5 b | BC 83.4 ± 1.4 b | |
10 | C 80.1 ± 1.2 a | B 79.7 ± 1.3 a | B 84.8 ± 1.6 bc | C 86.6 ± 1.9 c | |
Fat retention (%) | 0 | B 72.3 ± 0.8 b | A 63.0 ± 0.8 a | A 80.1 ± 1.6 d | A 75.7 ± 1.6 c |
3 | A 69.1 ± 1.3 a | C 79.3 ± 2.6 b | B 86.3 ± 2.7 c | B 87.7 ± 1.8 c | |
6 | C 77.9 ± 0.6 b | B 74.4 ± 1.3 a | B C 89.8 ± 1.7 d | B 85.3 ± 1.4 c | |
10 | D 83.1 ± 1.3 b | BC 77.2 ± 1.2 a | C 93.9 ± 2.9 c | B 83.8 ± 4.5 b | |
Moisture retention (%) | 0 | A 62.5 ± 0.7 a | A 64.5 ± 0.8 a | A 69.8 ± 1.4 b | A 68.0 ± 1.0 b |
3 | B 71.1 ± 1.3 | B 73.4 ± 2.4 | AB 72.9 ± 2.3 | AB 71.9 ± 1.5 | |
6 | B 72.2 ± 0.5 a | B 74.2 ± 1.9 b | BC 75.8 ± 1.4 b | B 75.2 ± 1.5 b | |
10 | C 75.8 ± 1.2 b | B 72.3 ± 1.1 a | C 78.8 ± 1.8 c | B 77.2 ± 2.2 bc | |
Diameter reduction (%) | 0 | B 21.5 ± 0.5 c | 12.5 ± 1.6 a | 18.4 ± 2.7 bc | B 16.7 ± 2.4 b |
3 | B 21.7 ± 0.5 b | 17.2 ± 2.1 a | 16.9 ± 2.2 a | B 16.9 ± 2.5 a | |
6 | A 17.1 ± 1.3 b | 16.2 ± 1.7 ab | 13.6 ± 2.9 a | AB 13.1 ± 2.3 a | |
10 | A 17.4 ± 1.3 b | 13.6 ± 2.1 ab | 13.3 ± 2.0 ab | A 10.8 ± 0.4 a |
Day | Control | 1.5% DPP | 3% DPP | 6% DPP | |
---|---|---|---|---|---|
Visual color | 0 | A 2.44 ± 0.95 a | A 2.51 ± 0.60 a | A 2.79 ± 0.81 a | B 3.16 ± 0.94 a |
3 | B 3.52 ± 0.35 c | A 2.33 ± 0.40 a | A 2.66 ± 0.58 a | B 3.02 ± 0.67 ab | |
6 | C 4.35 ± 0.41 c | A 2.16 ± 0.53 a | A 2.41 ± 0.44 a | B 2.90 ± 0.41 b | |
10 | C 4.16 ± 0.80 d | B 3.41 ± 0.4 c | A 2.78 ± 0.97 b | A 2.33 ± 0.43 a | |
Off-odors | 0 | A 1.75 ± 0.54 a | A 1.44 ± 0.62 a | A 1.66 ± 0.98 a | A 1.44 ± 0.57 a |
3 | B 2.45 ± 0.41 b | A 1.73 ± 0.81 a | A 1.41 ± 0.64 a | B 1.75± 0.88 a | |
6 | B 2.70 ± 0.44 b | A 1.41 ± 0.56 a | A 1.41 ± 0.56 a | A 1.48 ± 0.55 a | |
10 | C 3.61 ± 0.48 c | B 2.92 ± 0.34 b | B 2.23 ± 0.16 a | B 1.78 ± 0.35 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayas-Barberá, E.; Martín-Sánchez, A.M.; Cherif, S.; Ben-Abda, J.; Pérez-Álvarez, J.Á. Effect of Date (Phoenix dactylifera L.) Pits on the Shelf Life of Beef Burgers. Foods 2020, 9, 102. https://doi.org/10.3390/foods9010102
Sayas-Barberá E, Martín-Sánchez AM, Cherif S, Ben-Abda J, Pérez-Álvarez JÁ. Effect of Date (Phoenix dactylifera L.) Pits on the Shelf Life of Beef Burgers. Foods. 2020; 9(1):102. https://doi.org/10.3390/foods9010102
Chicago/Turabian StyleSayas-Barberá, Estrella, Ana María Martín-Sánchez, Sarra Cherif, Jamel Ben-Abda, and José Ángel Pérez-Álvarez. 2020. "Effect of Date (Phoenix dactylifera L.) Pits on the Shelf Life of Beef Burgers" Foods 9, no. 1: 102. https://doi.org/10.3390/foods9010102
APA StyleSayas-Barberá, E., Martín-Sánchez, A. M., Cherif, S., Ben-Abda, J., & Pérez-Álvarez, J. Á. (2020). Effect of Date (Phoenix dactylifera L.) Pits on the Shelf Life of Beef Burgers. Foods, 9(1), 102. https://doi.org/10.3390/foods9010102