Cocoa (Theobroma cacao L.) Seed Proteins’ Anti-Obesity Potential through Lipase Inhibition Using In Silico, In Vitro and In Vivo Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Molecular Docking of Proteins and Peptides from Theobroma cocoa L.
2.3. Prediction of Adsorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) by Computational Analysis
2.4. Protein Extraction from Theobroma cacao L.
2.5. Simulated Gastrointestinal Digestion of Cocoa Proteins (CP)
2.6. Pancreatic Lipase (PL) Inhibition
2.7. Animals and Diet
2.8. Determination of Lipid Content in Feces
2.9. Statistical Analysis
3. Results
3.1. ADMET Prediction and Molecular Docking
3.2. Inhibition of Pancreatic Lipase (PL) by Cocoa Protein (CP) Hydrolysate
3.3. Effect of CP in High-Fat Diet-Induced Obese Rats
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rani, V.; Deep, G.; Singh, R.K.; Palle, K.; Yadav, U.C. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 2016, 148, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.-D.; Ge, G.-B.; Weng, Z.-M.; Dai, Z.-R.; Leng, Y.-H.; Ding, L.-L.; Jin, L.-L.; Yu, Y.; Cao, Y.-F.; Hou, J. Natural constituents from Cortex Mori Radicis as new pancreatic lipase inhibitors. Bioorgan. Chem. 2018, 80, 577–584. [Google Scholar] [CrossRef]
- Wan-Loy, C.; Phang, S.M. Marine Algae as a Potential Source for Anti-Obesity Agents. Mar. Drugs 2016, 14, 222. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.P.; Mhatre, S.V.; Bhagit, A.A. Pancreatic Lipase Inhibitor from Food Plant: Potential Molecule for Development of Safe Anti-obesity Drug. MGM J. Med. Sci. 2016, 3, 34–41. [Google Scholar] [CrossRef]
- Iwaniak, A.; Darewicz, M.; Minkiewicz, P. Peptides Derived from Foods as Supportive Diet Components in the Prevention of Metabolic Syndrome. Compr. Rev. Food Sci. Food Saf. 2018, 17, 63–81. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.; Agyei, D.; Udenigwe, C.C. Structural Basis of Bioactivity of Food Peptides in Promoting Metabolic Health. In Advances in Food and Nutrition Research; Elsevier Inc.: Cambridge, MA, USA, 2018; Volume 84, pp. 145–181. [Google Scholar] [CrossRef]
- Roy, D.M.; Schneeman, B.O. Effect of Soy Protein, Casein and Trypsin Inhibitor on Cholesterol, Bile Acids and Pancreatic Enzymes in Mice. J. Nutr. 1981, 111, 878–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siow, H.-L.; Choi, S.-B.; Gan, C.-Y. Structure-activity studies of protease activating, lipase inhibiting, bile acid binding and cholesterol-lowering effects of pre-screened cumin seed bioactive peptides. J. Funct. Foods 2016, 27, 600–611. [Google Scholar] [CrossRef]
- Kim, Y.; Yoon, S.; Lee, S.B.; Han, H.W.; Oh, H.; Lee, W.J.; Lee, S.-M. Fermentation of Soy Milk via Lactobacillus plantarum Improves Dysregulated Lipid Metabolism in Rats on a High Cholesterol Diet. PLoS ONE 2014, 9, e88231. [Google Scholar] [CrossRef]
- Jakubczyk, A.; Karaś, M.; Złotek, U.; Szymanowska, U. Identification of potential inhibitory peptides of enzymes involved in the metabolic syndrome obtained by simulated gastrointestinal digestion of fermented bean (Phaseolus vulgaris L.) seeds. Food Res. Int. 2017, 100, 489–496. [Google Scholar] [CrossRef]
- Ngoh, Y.-Y.; Choi, S.B.; Gan, C.-Y. The potential roles of Pinto bean (Phaseolus vulgaris cv. Pinto) bioactive peptides in regulating physiological functions: Protease activating, lipase inhibiting and bile acid binding activities. J. Funct. Foods 2017, 33, 67–75. [Google Scholar] [CrossRef]
- Awosika, T.O.; Aluko, R.E. Inhibition of the in vitro activities of α-amylase, α-glucosidase and pancreatic lipase by yellow field pea (Pisum sativum L.) protein hydrolysates. Int. J. Food Sci. Technol. 2019, 54, 2021–2034. [Google Scholar] [CrossRef] [Green Version]
- Jakubczyk, A.; Szymanowska, U.; Karaś, M.; Złotek, U.; Kowalczyk, D. Potential anti-inflammatory and lipase inhibitory peptides generated by in vitro gastrointestinal hydrolysis of heat treated millet grains. CyTA J. Food 2019, 17, 324–333. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.C.-L.; Harris, J.L.; Khanna, K.K.; Hong, J.-H. A Comprehensive Review on Current Advances in Peptide Drug Development and Design. Int. J. Mol. Sci. 2019, 20, 2383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motamayor, J.C.; Risterucci, A.M.; Lopez, P.A.; Ortiz, C.F.; Moreno, A.; Lanaud, C. Cacao domestication I: The origin of the cacao cultivated by the Mayas. Heredity 2002, 89, 380–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preza, A.M.; Jaramillo-Flores, M.E.; Puebla, A.M.; Mateos-Diaz, J.C.; Rodolfo, H.-G.; Lugo, E. Antitumor activity against murine lymphoma L5178Y model of proteins from cacao (Theobroma cacao L.) seeds in relation with in vitro antioxidant activity. BMC Complement. Altern. Med. 2010, 10, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tovar-Pérez, E.G.; Guerrero-Becerra, L.; Cervantes, E.L. Antioxidant activity of hydrolysates and peptide fractions of glutelin from cocoa (Theobroma cacao L.) seed. CyTA J. Food 2017, 15, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Coronado-Cáceres, L.J.; Rabadán-Chávez, G.; Quevedo-Corona, L.; Hernández-Ledesma, B.; Garcia, A.M.; Mojica, L.; Cervantes, E.L. Anti-obesity effect of cocoa proteins (Theobroma cacao L.) variety “Criollo” and the expression of genes related to the dysfunction of white adipose tissue in high-fat diet-induced obese rats. J. Funct. Foods 2019, 62, 103519. [Google Scholar] [CrossRef]
- Andruszkiewicz, P.J.; D’Souza, R.N.; Altun, I.; Corno, M.; Kuhnert, N. Thermally-induced formation of taste-active 2,5-diketopiperazines from short-chain peptide precursors in cocoa. Food Res. Int. 2019, 121, 217–228. [Google Scholar] [CrossRef]
- Pan, D.; Cao, J.; Guo, H.; Zhao, B. Studies on purification and the molecular mechanism of a novel ACE inhibitory peptide from whey protein hydrolysate. Food Chem. 2012, 130, 121–126. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Voigt, J.; Biehl, B.; Wazir, S.K.S. The major seed proteins of Theobroma cacao L. Food Chem. 1993, 47, 145–151. [Google Scholar] [CrossRef]
- Mojica, L.; Chen, K.; De Mejia, E.G. Impact of Commercial Precooking of Common Bean (Phaseolus vulgaris) on the Generation of Peptides, After Pepsin-Pancreatin Hydrolysis, Capable to Inhibit Dipeptidyl Peptidase-IV. J. Food Sci. 2015, 80, H188–H198. [Google Scholar] [CrossRef] [PubMed]
- Cabra, V.; Arreguin-Espinosa, R.; Vazquez-Duhalt, R.; Farrés, A. Effect of Alkaline Deamidation on the Structure, Surface Hydrophobicity, and Emulsifying Properties of the Z19 α-Zein. J. Agric. Food Chem. 2007, 55, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Mateos-Diaz, E.; Rodríguez, J.A.; de los Ángeles Camacho-Ruiz, M.A.; Mateos-Diaz, J.C. High-Throughput Screening Method for Lipases/Esterases. In Lipases and Phospholipases; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2012; Volume 861, pp. 89–100. ISBN 978-1-61779-599-2. [Google Scholar]
- Rabadán-Chávez, G.M.; Garcia, A.M.; Castro, N.P.; Cardoso, G.E.; Quevedo-Corona, L.; Reyes-Maldonado, E.; Jaramillo-Flores, M.E. Modulating the expression of genes associated with hepatic lipid metabolism, lipoperoxidation and inflammation by cocoa, cocoa extract and cocoa flavanols related to hepatic steatosis induced by a hypercaloric diet. Food Res. Int. 2016, 89, 937–945. [Google Scholar] [CrossRef]
- Rabadán-Chávez, G.M.; Reyes-Maldonado, E.; Quevedo-Corona, L.; Paniagua-Castro, N.; Escalona-Cardoso, G.; Jaramillo-Flores, M.E. The prothrombotic state associated with obesity-induced hypertension is reduced by cocoa and its main flavanols. Food Funct. 2016, 7, 4880–4888. [Google Scholar] [CrossRef] [PubMed]
- Rabadan-Chávez, G.; Quevedo-Corona, L.; Garcia, A.M.; Reyes-Maldonado, E.; Jaramillo-Flores, M.E. Cocoa powder, cocoa extract and epicatechin attenuate hypercaloric diet-induced obesity through enhanced β-oxidation and energy expenditure in white adipose tissue. J. Funct. Foods 2016, 20, 54–67. [Google Scholar] [CrossRef]
- Kraus, D.; Yang, Q.; Kahn, B.B. Lipid Extraction from Mouse Feces. Bio-Protocol 2016, 5, e1375. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Yu, Z.; Zhao, W.; Ding, L.; Zheng, F.; Li, J.; Liu, J. Identification and molecular mechanism of angiotensin-converting enzyme inhibitory peptides from Larimichthys crocea titin. Food Sci. Hum. Wellness 2020. [Google Scholar] [CrossRef]
- Zhao, W.; Xue, S.; Yu, Z.; Ding, L.; Li, J.; Liu, J. Novel ACE inhibitors derived from soybean proteins using in silico and in vitro studies. J. Food Biochem. 2019, 43, e12975. [Google Scholar] [CrossRef]
- Mendoza-Sánchez, M.; Pérez-Ramírez, I.F.; Wall-Medrano, A.; Martinez-Gonzalez, A.I.; Gallegos-Corona, M.A.; Reynoso-Camacho, R. Chemically induced common bean (Phaseolus vulgaris L.) sprouts ameliorate dyslipidemia by lipid intestinal absorption inhibition. J. Funct. Foods 2019, 52, 54–62. [Google Scholar] [CrossRef]
- Frazer, A.C.; Sammons, H.G. The formation of mono- and di-glycerides during the hydrolysis of triglyceride by pancreatic lipase. Biochem. J. 1945, 39, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, H.; Akazome, Y.; Shoji, T.; Yamaguchi, A.; Yasue, M.; Kanda, T.; Ohtake, Y. Oligomeric Procyanidins in Apple Polyphenol Are Main Active Components for Inhibition of Pancreatic Lipase and Triglyceride Absorption. J. Agric. Food Chem. 2007, 55, 4604–4609. [Google Scholar] [CrossRef] [PubMed]
- Veeramachaneni, G.K.; Raj, K.K.; Chalasani, L.M.; Annamraju, S.K.; Js, B.; Talluri, V.R. Shape based virtual screening and molecular docking towards designing novel pancreatic lipase inhibitors. Bioinformation 2015, 11, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Stefanucci, A.; Luisi, G.; Dall’Acqua, S.; Macedonio, G.; Dimmito, M.P.; Novellino, E.; Mollica, A. Discovery of arginine-containing tripeptides as a new class of pancreatic lipase inhibitors. Futur. Med. Chem. 2019, 11, 5–19. [Google Scholar] [CrossRef]
- Agyei, D.; Tsopmo, A.; Udenigwe, C.C. Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Anal. Bioanal. Chem. 2018, 410, 3463–3472. [Google Scholar] [CrossRef] [PubMed]
- Udenigwe, C.C. Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends Food Sci. Technol. 2014, 36, 137–143. [Google Scholar] [CrossRef]
- Jakubczyk, A.; Karaś, M.; Stanikowski, P.; Rutkowska, B.; Dziedzic, M.; Zielińska, E.; Szychowski, K.A.; Binduga, U.E.; Rybczyńska, K.; Baraniak, B. Characterisation of Biologically Active Hydrolysates and Peptide Fractions of Vacuum Packaging String Bean (Phaseolus vulgaris L.). Foods 2020, 9, 842. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Cui, Y.; Zhang, R.; Zhang, X. Purification and identification of anti-obesity peptides derived from Spirulina platensis. J. Funct. Foods 2018, 47, 350–360. [Google Scholar] [CrossRef]
- Ngoh, Y.-Y.; Gan, C.-Y. Enzyme-assisted extraction and identification of antioxidative and α-amylase inhibitory peptides from Pinto beans (Phaseolus vulgaris cv. Pinto). Food Chem. 2016, 190, 331–337. [Google Scholar] [CrossRef]
- Hosomi, R.; Otsuka, R.; Arai, H.; Kanda, S.; Nishiyama, T.; Yoshida, M.; Fukunaga, K. Porcine hemoglobin promotes lipid excretion to feces more strongly than globin protein in rats. Food Sci. Biotechnol. 2016, 25, 107–112. [Google Scholar] [CrossRef]
- Ochiai, M.; Misaki, K.; Takeuchi, T.; Narumi, R.; Azuma, Y.; Matsuo, T. Egg White Hydrolysate Can Be a Low-Allergenic Food Material to Suppress Ectopic Fat Accumulation in Rats Fed an Equicaloric Diet. J. Nutr. Sci. Vitaminol. 2017, 63, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Howard, A.; Udenigwe, C.C. Mechanisms and prospects of foodprotein hydrolysates and peptide-induced hypolipidaemia. Food Funct. 2013, 4, 40–51. [Google Scholar] [CrossRef]
TD.05230 Standard Diet (STD) | TD.88137 Hypercaloric High-Fat Diet (HF) | |
---|---|---|
Energy (kcal/g) | 3.1 | 4.5 |
Composition of macronutrients (% by weight) | ||
Protein | 17.3 | 17.3 |
Carbohydrate | 63.5 | 48.5 |
Fat | 5.2 | 21.2 |
Composition of macronutrients (% kcal) | ||
Protein | 18.7 | 15.2 |
Carbohydrate | 68.7 | 42.7 |
Fat | 12.6 | 42.0 |
Ingredients (g/kg) | ||
Casein | 195 | 195 |
DL-Methionine | 3 | 3 |
Sucrose | 341 | 341.46 |
Corn Starch | 211.9 | 150 |
Maltodextrin | 100 | - |
Anhydrous Milkfat | 37.2 | 210 |
Cholesterol | 12.8 | 1.5 |
Cellulose | 50 | 50 |
Mineral Mix | 35 | 35 |
Calcium Carbonate | 4 | 4 |
Vitamin Mix | 10 | 10 |
Ethoxyquin | 0.01 | 0.04 |
Molecule | BBB | HIA | CP2 | Hepatotoxicity | Ames Mutagenesis | Carcinogenicity | Acute Oral Toxicity | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R | P | R | P | R | P | R | P | R | P | R | P | kg/mol | |
Orlistat | + | 0.592 | + | 0.973 | - | 0.561 | + | 0.9 | - | 0.8 | - | 0.829 | 1.355 |
NVQR | + | 0.969 | + | 0.631 | - | 0.893 | - | 0.5 | - | 0.7 | - | 0.757 | 1.862 |
AQMACPHL | + | 0.777 | + | 0.658 | - | 0.866 | - | 0.525 | - | 0.8 | - | 0.714 | 3.249 |
VAPAGHAVT | - | 0.240 | + | 0.649 | - | 0.867 | + | 0.6 | - | 0.7 | - | 0.771 | 2.609 |
PHHCDAEAI | + | 0.926 | + | 0.632 | - | 0.866 | + | 0.6 | - | 0.8 | - | 0.729 | 2.35 |
HSDDDGQIR | + | 0.955 | + | 0.702 | - | 0.863 | - | 0.6 | - | 0.7 | - | 0.757 | 2.032 |
TATAVV | + | 0.979 | + | 0.815 | - | 0.976 | - | 0.9 | - | 0.9 | - | 0.859 | 1.318 |
LQR | + | 0.972 | + | 0.631 | - | 0.889 | + | 0.525 | - | 0.7 | - | 0.757 | 2.035 |
GTIT | + | 0.777 | + | 0.658 | - | 0.866 | - | 0.525 | - | 0.8 | - | 0.714 | 3.249 |
APLSPGDV | - | 0.237 | - | 0.547 | - | 0.863 | + | 0.625 | - | 0.8 | - | 0.743 | 2.386 |
Pancreatic Lipase (PDB: ID 1LPB) | |||||||
---|---|---|---|---|---|---|---|
Parent Protein | Digestive Enzyme | Peptide Sequence | Affinity (kcal/mol) | Mass (Da) | Hydrophobicity (kcal/mol) | Net Charge (pH 7.0) | Isoelectric Point |
Vicilin | Trypsin | EEQR | −6.5 | 560.25 | 17.74 | −1 | 4.08 |
GGER | −6.3 | 417.19 | 15.64 | 0 | 6.85 | ||
Pepsin | TIAV | −6 | 402.24 | 7.07 | 0 | 5.52 | |
AGRP | −5.9 | 399.22 | 11.50 | 1 | 11.18 | ||
VTDG | −5.8 | 390.17 | 12.48 | −1 | 3.13 | ||
Trypsin | NTQR | −5.8 | 517.26 | 11.58 | 1 | 10.6 | |
EQCQR | −5.7 | 662.27 | 14.86 | 0 | 6.16 | ||
Pepsin | VTDG | −5.8 | 390.17 | 12.48 | −1 | 3.13 | |
NQGAI | −5.6 | 501.25 | 10.05 | 0 | 5.36 | ||
Albumin | Pepsin | QTGVQ | −6.2 | 531.26 | 10.38 | 0 | 5.35 |
VSTDVNIE | −6.1 | 875.42 | 14.69 | −2 | 2.87 | ||
Trypsin | HSDDDGQIR | −5.9 | 1041.44 | 24.22 | −2 | 4.20 | |
Pepsin | SDNE | −5.7 | 463.15 | 16.48 | −2 | 2.87 | |
CSTSTV | −5.5 | 596.24 | 8.84 | 0 | 5.25 | ||
Orlistat | - | - | −4.3 | - | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coronado-Cáceres, L.J.; Rabadán-Chávez, G.; Mojica, L.; Hernández-Ledesma, B.; Quevedo-Corona, L.; Lugo Cervantes, E. Cocoa (Theobroma cacao L.) Seed Proteins’ Anti-Obesity Potential through Lipase Inhibition Using In Silico, In Vitro and In Vivo Models. Foods 2020, 9, 1359. https://doi.org/10.3390/foods9101359
Coronado-Cáceres LJ, Rabadán-Chávez G, Mojica L, Hernández-Ledesma B, Quevedo-Corona L, Lugo Cervantes E. Cocoa (Theobroma cacao L.) Seed Proteins’ Anti-Obesity Potential through Lipase Inhibition Using In Silico, In Vitro and In Vivo Models. Foods. 2020; 9(10):1359. https://doi.org/10.3390/foods9101359
Chicago/Turabian StyleCoronado-Cáceres, Luis Jorge, Griselda Rabadán-Chávez, Luis Mojica, Blanca Hernández-Ledesma, Lucía Quevedo-Corona, and Eugenia Lugo Cervantes. 2020. "Cocoa (Theobroma cacao L.) Seed Proteins’ Anti-Obesity Potential through Lipase Inhibition Using In Silico, In Vitro and In Vivo Models" Foods 9, no. 10: 1359. https://doi.org/10.3390/foods9101359
APA StyleCoronado-Cáceres, L. J., Rabadán-Chávez, G., Mojica, L., Hernández-Ledesma, B., Quevedo-Corona, L., & Lugo Cervantes, E. (2020). Cocoa (Theobroma cacao L.) Seed Proteins’ Anti-Obesity Potential through Lipase Inhibition Using In Silico, In Vitro and In Vivo Models. Foods, 9(10), 1359. https://doi.org/10.3390/foods9101359