Targeted Metabolomic and Transcript Level Analysis Reveals Quality Characteristic of Chinese Wild Grapes (Vitis davidii Foex)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grape Samples
2.2. Chemicals and Standards
2.3. Analysis of Spine Grape Physicochemical Parameters
2.4. HPLC Analysis of Spine Grape Soluble Sugars and Organic Acids Profiles
2.5. HPLC–DAD Analysis of Spine Grape Anthocyanin Profiles
2.6. GC–MS Analysis of Spine Grape Glycosidically Bound Volatiles
2.7. Gene Expression Analysis by qRT-PCR
2.8. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Parameters of Spine Grapes
3.2. Soluble Sugars, Organic Acids Profiles, and Related Gene Expressions
3.3. Anthocyanin Profiles and Related Gene Expressions
3.4. Glycosidically Bound Volatiles and Related Gene Expressions
3.5. Multivariate Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Meng, J.F.; Xu, T.F.; Qin, M.Y.; Zhuang, X.F.; Fang, Y.L.; Zhang, Z.W. Phenolic characterization of young wines made from spine grape (Vitis davidii foex) grown in Chongyi county (China). Food Res. Int. 2012, 49, 664–671. [Google Scholar] [CrossRef]
- Kong, Q.S. Chinese Ampelography; Chinese Press of Agricultural Science and Technology: Beijing, China, 2004. [Google Scholar]
- Wang, J.; Zhou, G.S. Climatic suitability for the distribution of V. heyneana and V. davidii in China. Chin. J. Appl. Ecol. 2020, 31, 97–103. [Google Scholar]
- Liang, N.N.; Pan, Q.H.; He, F.; Wang, J.; Reeves, M.J.; Duan, C.Q. Phenolic profiles of Vitis davidii and Vitis quinquangularis species native to China. J. Agric. Food Chem. 2013, 61, 6016–6027. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhang, J.Q.; Luo, D.; Wang, J.; Ren, Y.; Li, Z. Antioxidant activity of methanol extract and its fractions from spine grape (Vitis davidii Foex.) peel. Food Sci. 2017, 38, 87–93. [Google Scholar]
- Meng, J.F.; Fang, Y.L.; Qin, M.Y.; Zhuang, X.F.; Zhang, Z.W. Varietal differences among the phenolic profiles and antioxidant properties of four cultivars of spine grape (Vitis davidii foex) in Chongyi county (China). Food Chem. 2012, 134, 2049–2056. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.-F.; Xu, T.-F.; Song, C.; Li, X.-L.; Yue, T.-X.; Qin, M.-Y.; Fang, Y.; Zhang, Z.-W.; Xi, Z.-M. Characteristic free aromatic components of nine clones of spine grape (Vitis davidii foex) from Zhongfang county (China). Food Res. Int. 2013, 54, 1795–1800. [Google Scholar] [CrossRef]
- Ju, Y.L.; Yue, X.F.; Cao, X.Y.; Wei, X.F.; Fang, Y.L. First study on the fatty acids and their derived volatile profiles from six Chinese wild spine grape clones (Vitis davidii Foex). Sci. Hortic. 2021, 275, 109709. [Google Scholar] [CrossRef]
- Ju, Y.L.; Liu, M.; Tu, T.Y.; Zhao, X.F.; Yue, X.F.; Zhang, J.X.; Fang, Y.; Meng, J.F. Effect of regulated deficit irrigation on fatty acids and their derived volatiles in ‘Cabernet Sauvignon’ grapes and wines of Ningxia, China. Food Chem. 2018, 245, 667–675. [Google Scholar] [CrossRef]
- Pollon, M.; Torchio, F.; Giacosa, S.; Segade, S.R.; Rolle, L. Use of density sorting for the selection of aromatic grape berries with different volatile profile. Food Chem. 2019, 276, 562–571. [Google Scholar] [CrossRef]
- Yue, X.; Ma, X.; Tang, Y.; Wang, Y.; Wu, B.; Jiao, X.; Zhang, Z.; Ju, Y. Effect of cluster zone leaf removal on monoterpene profiles of Sauvignon Blanc grapes and wines. Food Res. Int. 2020, 131, 109028. [Google Scholar] [CrossRef]
- Parpinello, G.P.; Versari, A.; Chinnici, F.; Galassi, S. Relationship among sensory descriptors, consumer preference and colour parameters of Italian Novello red wines. Food Res. Int. 2009, 42, 1389–1395. [Google Scholar] [CrossRef]
- Yue, X.F.; Ju, Y.L.; Tang, Z.Z.; Zhao, Y.M.; Jiao, X.L.; Zhang, Z.W. Effects of the severity and timing of basal leaf removal on the amino acids profiles of Sauvignon Blanc grapes and wines. J. Integr. Agric. 2019, 9, 2052–2062. [Google Scholar] [CrossRef]
- Wang, D.; Duan, C.Q.; Shi, Y.; Zhu, B.Q.; Javed, H.U.; Wang, J. Free and glycosidically bound volatile compounds in sun-dried raisins made from different fragrance intensities grape varieties using a validated HS-SPME with GC-MS method. Food Chem. 2017, 228, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Godshaw, J.; Hjelmeland, A.K.; Zweigenbaum, J.; Ebeler, S.E. Changes in glycosylation patterns of monoterpenes during grape berry maturation in six cultivars of Vitis vinifera. Food Chem. 2019, 297, 124921. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Li, J.M.; Zhang, Y.L.; Wei, D.M. Wine Analysis; China Agricultural Press: Beijing, China, 2011. [Google Scholar]
- Ju, Y.; Yang, B.-H.; He, S.; Tu, T.-Y.; Min, Z.; Fang, Y.; Sun, X. Anthocyanin accumulation and biosynthesis are modulated by regulated deficit irrigation in Cabernet Sauvignon (Vitis Vinifera L.) grapes and wines. Plant Physiol. Biochem. 2019, 135, 469–479. [Google Scholar] [CrossRef]
- Ju, Y.; Liu, M.; Zhao, H.; Meng, J.-F.; Fang, Y. Effect of exogenous abscisic acid and methyl jasmonate on anthocyanin composition, fatty acids, and volatile compounds of Cabernet Sauvignon (Vitis vinifera L.) grape berries. Molecules 2016, 21, 1354. [Google Scholar] [CrossRef] [Green Version]
- Bindon, K.A.; Kassara, S.; Cynkar, W.U.; Robinson, E.M.C.; Scrimgeour, N.; Smith, P.A. Comparison of extraction protocols to determine differences in wine-extractable tannin and anthocyanin in Vitis vinifera L. cv. Shiraz and Cabernet Sauvignon grapes. J. Agric. Food Chem. 2014, 62, 4558–4570. [Google Scholar] [CrossRef]
- Martín-Gómez, J.; Varo, M.Á.; Mérida, J.; Serratosa, M.P. Influence of drying processes on anthocyanin profiles, total phenolic compounds and antioxidant activities of blueberry (Vaccinium corymbosum). LWT-Food Sci. Technol. 2020, 120, 108931. [Google Scholar]
- Wen, Y.-Q.; He, F.; Zhu, B.-Q.; Lan, Y.-B.; Pan, Q.-H.; Li, C.-Y.; Reeves, M.J.; Wang, J. Free and glycosidically bound aroma compounds in cherry (Prunus avium L.). Food Chem. 2014, 152, 29–36. [Google Scholar] [CrossRef]
- Ju, Y.L.; Yue, X.F.; Min, Z.; Wang, X.H.; Fang, Y.L.; Zhang, J.X. VvNAC17, a novel stress-responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic Arabidopsis. Plant Physiol. Biochem. 2020, 146, 98–111. [Google Scholar] [CrossRef]
- Chong, J.; Yamamoto, M.; Xia, J. MetaboAnalystR 2.0: From Raw Spectra to Biological Insights. Metabolites 2019, 9, 57. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Yao, H.; Zhang, J.; Li, Y.; Ju, Y.; Zhao, X.; Sun, X.; Fang, Y. Effect of regulated deficit irrigation on the content of soluble sugars, organic acids and endogenous hormones in Cabernet Sauvignon in the Ningxia region of China. Food Chem. 2020, 312, 126020. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; He, S.; Liu, Y.; Liu, B.; Ju, Y.; Kang, D.; Sun, X.; Fang, Y. Transcriptomics integrated with metabolomics reveals the effect of regulated deficit irrigation on anthocyanin biosynthesis in Cabernet Sauvignon grape berries. Food Chem. 2020, 314, 126170. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Ju, Y.; Ruan, X.; Zhao, X.; Yue, X.; Zhuang, X.; Qin, M.; Fang, Y. Color, anthocyanin, and antioxidant characteristics of young wines produced from spine grapes (Vitis davidii Foex) in china. Food Nutr. Res. 2017, 61, 1339552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiraishi, M.; Shinomiya, R.; Chijiwa, H. Preliminary genetic analysis of sucrose accumulation in berries of table grapes. Sci. Hortic. 2012, 137, 107–113. [Google Scholar] [CrossRef]
- Soulis, T.P.; Avgerinos, A.S. Changes in the glucose: Fructose ratio during the growth period of the razaki grape. J. Sci. Food Agric. 2010, 35, 527–530. [Google Scholar] [CrossRef]
- Lamikanra, O.; Lamikanra, I.D.; Inyang, S. Leong. Distribution and effect of grape maturity on organic acid content of Red Muscadine grapes. J. Agric. Food Chem. 1995, 43, 3026–3028. [Google Scholar] [CrossRef]
- Ivanova-Petropulos, V.; Petrueva, D.; Mitrev, S. Rapid and simple method for determination of target organic acids in wine using hplc-dad analysis. Food Anal. Methods 2020, 13, 1078–1087. [Google Scholar] [CrossRef]
- Xia, H.G.H.; Zhang, D.P. Intercelluar symplastic connection and isolation of the unloading zone in flesh of the developing grape berry. Acta Bot. Sin. 2000, 42, 898–904. [Google Scholar]
- Deluc, L.G.; Grimplet, J.; Wheatley, M.D.; Tillett, R.L.; Quilici, D.R.; Osborne, C.; Schooley, D.A.; Schlauch, K.; Cushman, J.C.; Cramer, G.R. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genom. 2007, 8, 429. [Google Scholar] [CrossRef] [Green Version]
- Lecourieux, F.; Vignault, C.; Delrot, S.; Lecourieux, D. A sugar-inducible protein kinase, VvSK1, regulates hexose transport and sugar accumulation in grapevine cells. Plant Physiol. 2010, 152, 1096–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, M.A.; Davies, C.; Dry, I.B. Isolation, functional characterization, and expression analysis of grapevine (Vitis vinifera L.) hexose transporters: Differential roles in sink and source tissues. J. Exp. Bot. 2007, 58, 1985–1997. [Google Scholar] [CrossRef] [PubMed]
- Davies, C.; Boss, P.K.; Robinson, S.P. Treatment of grape berries, a nonclimacteric fruit with a synthetic auxin, retards ripening and alters the expression of developmentally regulated genes. Plant Physiol. 1997, 115, 1155–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazza, G.; Fukumoto, L.; Delaquis, P.; Girard, B.; Ewert, B. Anthocyanins, phenolics, and color of cabernet franc, merlot, and pinot noir wines from british columbia. J. Agric. Food Chem. 1999, 47, 4009–4017. [Google Scholar] [CrossRef]
- Revilla, E.; Garcia-Beneytez, E.; Cabello, F.; Martin-Ortega, G.; Ryan, J.M. Value of high-performance liquid chromatographic analysis of anthocyanins in the differentiation of red grape cultivars and red wines made from them. J. Chromatogr. A 2001, 915, 53–60. [Google Scholar] [CrossRef]
- Núñez, V.; Monagas, M.; Gomez-Cordovés, M.C.; Bartolomé, B. Vitis vinifera L. cv. Graciano grapes characterized by its anthocyanin profile. Postharvest Biol. Technol. 2004, 31, 69–79. [Google Scholar] [CrossRef]
- Kobayashi, S.; Gotoyamamoto, N.; Hirochika, H. Retrotransposon-induced mutations in grape skin color. Science 2004, 304, 982–982. [Google Scholar] [CrossRef]
- D’Onofrio, C.; Matarese, F.; Cuzzola, A. Effect of methyl jasmonate on the aroma of Sangiovese grapes and wines. Food Chem. 2018, 242, 352–361. [Google Scholar] [CrossRef]
- Ren, J.-N.; Tai, Y.-N.; Dong, M.; Shao, J.-H.; Yang, S.-Z.; Pan, S.; Fan, G. Characterisation of free and bound volatile compounds from six different varieties of citrus fruits. Food Chem. 2015, 185, 25–32. [Google Scholar] [CrossRef]
- Caputi, L.; Lim, E.K.; Bowles, D.J. Discovery of new biocatalysts for the glycosylation of terpenoid scaffolds. Chem. A Eur. J. 2008, 14, 6656–6662. [Google Scholar] [CrossRef]
- Li, X.Y.; Wen, Y.Q.; Meng, N.; Qian, X.; Pan, Q.H. Monoterpenyl glycosyltransferases differentially contribute to production of monoterpenyl glycosides in two aromatic Vitis vinifera varieties. Front. Plant Sci. 2017, 8, 1226–1239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Chai, F.; Zhang, H.; Li, S.; Liang, Z.; Fan, P. Effects of sunlight exclusion on the profiles of monoterpene biosynthesis and accumulation in grape exocarp and mesocarp. Food Chem. 2017, 237, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.Q.; Zhong, G.Y.; Gao, Y.; Lan, Y.B.; Duan, C.Q.; Pan, Q.H. Using the combined analysis of transcripts and metabolites to propose key genes for differential terpene accumulation across two regions. BMC Plant Biol. 2015, 15, 240. [Google Scholar] [CrossRef] [Green Version]
- Castellarin, S.D.; Di Gaspero, G.; Marconi, R.; Nonis, A.; Peterlunger, E.; Paillard, S.; Adam-Blondon, A.-F.; Testolin, R. Colour variation in red grapevines (Vitis vinifera L.): Genomic organisation, expression of flavonoid 3′-hydroxylase, flavonoid 3′,5′-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. BMC Genom. 2006, 7, 12. [Google Scholar] [CrossRef] [PubMed]
Cultivars | Fructose | Glucose | Tartaric Acid | Malic Acid | Citric Acid |
---|---|---|---|---|---|
G2 | 64.31 ± 2.04 c | 71.03 ± 3.41 ab | 1.21 ± 0.08 bc | 3.13 ± 0.22 bc | 0.11 ± 0.02 a |
XZZ | 80.73 ± 4.18 a | 75.89 ± 8.51 a | 1.43 ± 0.02 a | 4.22 ± 0.20 a | 0.06 ± 0.01 b |
G4 | 65.42 ± 0.61 c | 63.40 ± 0.02 c | 1.42 ± 0.08 a | 3.35 ± 0.27 b | - |
BY | 68.33 ± 1.81 b | 63.59 ± 1.98 c | 1.33 ± 0.00 b | 3.17 ± 0.12 bc | - |
Anthocyanins | G2 | XZZ | G4 | BY |
---|---|---|---|---|
Delphinidin-3-glucoside | 21.20 ± 7.64 c | 122.91 ± 0.97 a | 88.42 ± 3.19 b | nd |
Cyanidin-3-glucoside | 2764.26 ± 2.13 c | 4232.11 ± 7.79 a | 3935.36 ± 0.29 b | nd |
Petunidin-3-glucoside | 8.22 ± 11.63 b | 19.08 ± 0.36 b | 35.84 ± 0.17 a | nd |
Peonidin-3-glucoside | 114.69 ± 1.90 c | 211.47 ± 1.43 b | 242.04 ± 6.99 a | nd |
Malvidin-3-glucoside | 144.05 ± 0.57 c | 151.29 ± 1.11 b | 159.65 ± 0.04 a | nd |
Peonidin-3-acetly-glucoside | 31.38 ± 20.81 a | 28.48 ± 0.32 a | 29.21 ± 0.02 a | nd |
Malvidin-3-acetly-glucoside | 2807.84 ± 13.63 c | 5571.95 ± 2.90 a | 3015.96 ± 1.36 b | nd |
Peonidin-3-coumayl-glucoside | 15.17 ± 0.07 a | 10.12 ± 0.12 c | 14.57 ± 0.01 b | nd |
Malvidin-3-coumayl-glucoside | 156.44 ± 1.56 c | 435.45 ± 0.04 a | 226.41 ± 0.01 b | nd |
Volatiles | G2 | XZZ | G4 | BY |
---|---|---|---|---|
3-methyl-1-Butanol | - | - | 2.16 ± 0.10 b | - |
3-methyl-3-Buten-1-ol | - | - | 3.34 ± 0.28 a | 0.63 ± 0.06 b |
1-Octen-3-ol | 1.60 ± 0.01 b | 1.12 ± 0.56 b | 2.61 ± 0.75 a | 1.25 ± 0.12 b |
1-Heptanol | 1.35 ± 0.01 b | 1.26 ± 0.09 b | 2.46 ± 0.23 a | 1.31 ± 0.04 b |
Geraniol | - | - | 0.24 ± 0.04 b | 0.91 ± 0.13 b |
Linalool | 1.32 ± 0.01 b | 1.20 ± 0.02 b | 1.21 ± 0.03 b | 2.51 ± 0.01 a |
α-terpineol | 1.01 ± 0.02 b | 1.21 ± 0.01 b | 1.32 ± 0.04 b | 3.21 ± 0.04 a |
Citronellol | 2.31 ± 0.01 c | 2.51 ± 0.01 c | 3.01 ± 0.01 b | 4.31 ± 0.01 a |
Isogeraniol | 1.31 ± 0.01 b | 0.92 ± 0.01 b | 2.14 ± 0.01 a | 2.35 ± 0.01 a |
Terpinolene | 2.31 ± 0.11 c | 3.21 ± 0.01 b | 3.65 ± 0.20 ab | 4.31 ± 0.22 a |
Benzyl alcohol | 4.92 ± 0.01 c | 4.20 ± 1.43 c | 7.17 ± 1.16 c | 11.82 ± 1.50 b |
Phenylethyl alcohol | 0.49 ± 0.01 b | 0.66 ± 0.26 b | 1.32 ± 0.20 b | 0.69 ± 0.02 b |
1-Hexanol | 5.36 ± 0.08 a | 1.46 ± 0.61 d | 4.14 ± 0.26 b | 3.08 ± 0.38 c |
2-Ethyl-1-hexanol | - | - | 4.27 ± 0.45 c | 5.92 ± 1.09 a |
(Z)-3-Hexen-1-ol | 0.43 ± 0.09 bc | 0.17 ± 0.02 bc | 1.15 ± 0.14 a | 0.62 ± 0.54 ab |
Total alcohols and monoterpene | 22.41 | 17.92 | 40.19 | 42.92 |
1-Undecanol | 7.45 ± 0.10 a | 1.05 ± 0.25 d | 5.70 ± 1.21 b | - |
Nonanal | 2.22 ± 0.17 b | 0.51 ± 0.18 c | - | - |
2-ethyl-2-Hexenal | 4.12 ± 1.12 d | - | 5.25 ± 0.36 c | 2.15 ± 1.22 e |
Total aldehyde | 13.79 | 1.56 | 10.95 | 2.15 |
Hexadecanoic acid, ethyl ester | - | 1.26 ± 0.09 b | - | 1.20 ± 0.20 b |
Methyl salicylate | 9.54 ± 0.59 a | - | 3.44 ± 0.15 c | 10.00 ± 2.41 a |
Dibutyl phthalate | 2.15 ± 0.09 a | 1.62 ± 0.38 c | 2.65 ± 0.23 a | 2.16 ± 0.25 a |
Decanoic acid, octyl ester | - | 0.54 ± 0.31 bc | 0.88 ± 0.06 bc | 1.78 ± 0.62 a |
Total ester | 11.69 | 3.42 | 6.97 | 15.14 |
3-Octanone | 2.28 ± 0.26 bc | 1.61 ± 0.93 c | 3.35 ± 1.20 ab | - |
2-Octanone | - | 10.19 ± 2.49 a | 7.12 ± 1.98 a | - |
Total ketone | 2.28 | 11.8 | 10.47 | - |
Mequinol | - | - | - | 8.17 ± 0.98 b |
Eugenol | 1.85 ± 0.01 b | 1.85 ± 0.59 b | 4.65 ± 0.84 a | 2.67 ± 0.47 b |
Total phenolic acid | 1.85 | 1.85 | 4.65 | 10.84 |
Total GBVs | 52.02 | 36.55 | 73.95 | 71.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, Y.-l.; Yue, X.-f.; Cao, X.-y.; Fang, Y.-l. Targeted Metabolomic and Transcript Level Analysis Reveals Quality Characteristic of Chinese Wild Grapes (Vitis davidii Foex). Foods 2020, 9, 1387. https://doi.org/10.3390/foods9101387
Ju Y-l, Yue X-f, Cao X-y, Fang Y-l. Targeted Metabolomic and Transcript Level Analysis Reveals Quality Characteristic of Chinese Wild Grapes (Vitis davidii Foex). Foods. 2020; 9(10):1387. https://doi.org/10.3390/foods9101387
Chicago/Turabian StyleJu, Yan-lun, Xiao-feng Yue, Xue-ying Cao, and Yu-lin Fang. 2020. "Targeted Metabolomic and Transcript Level Analysis Reveals Quality Characteristic of Chinese Wild Grapes (Vitis davidii Foex)" Foods 9, no. 10: 1387. https://doi.org/10.3390/foods9101387
APA StyleJu, Y. -l., Yue, X. -f., Cao, X. -y., & Fang, Y. -l. (2020). Targeted Metabolomic and Transcript Level Analysis Reveals Quality Characteristic of Chinese Wild Grapes (Vitis davidii Foex). Foods, 9(10), 1387. https://doi.org/10.3390/foods9101387