Inclusion of Healthy Oils for Improving the Nutritional Characteristics of Dry-Fermented Deer Sausage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Prosella Gel and Fatty Acid Characterization of Fat Sources
2.2. Manufacture of Dry-Fermented Sausages
2.3. Physicochemical, Lipid Oxidation, and Composition Analysis
2.4. Fatty Acids Analysis
2.5. Volatile Compounds Analysis
2.6. Sensory Analysis of Deer Sausages
2.7. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition, Color, and Texture Parameters of Deer Sausages
3.2. Fatty Acids Composition of Deer Sausages
3.3. Volatile Compounds of Deer Sausages
3.4. Sensory Analysis of Deer Sausages
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- García-Ruiz, A.; Mariscal, C.; González-Vinas, M.A.; Soriano, A. Influence of hunting-season stage and ripening conditions on microbiological, physicochemical and sensory characteristics of venison (Cervus Elaphus) chorizo sausages. Ital. J. Food Sci. 2010, 22, 386–394. [Google Scholar]
- Serrano, M.P.; Maggiolino, A.; Pateiro, M.; Landete-Castillejos, T.; Domínguez, R.; García, A.; Franco, D.; Gallego, L.; De Palo, P.; Lorenzo, J.M. Carcass Characteristics and Meat Quality of Deer. In More than Beef, Pork and Chicken—The Production, Processing, and Quality Traits of Other Sources of Meat for Human Diet; Lorenzo, J.M., Munekata, P.E.S., Barba, F., Toldrá, F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 227–268. ISBN 978-3-030-05483-0. [Google Scholar]
- Ministerio de Agricultura. Anuarios de Estadística Forestal. Available online: https://www.mapa.gob.es/es/desarrollo-rural/estadisticas/forestal_anuarios_todos.aspx (accessed on 18 April 2020).
- Utrilla, M.C.; Soriano, A.; García Ruiz, A. Determination of the optimal fat amount in dry-ripened venison sausage. Ital. J. Food Sci. 2015, 27, 409–415. [Google Scholar]
- Serrano, M.P.; Maggiolino, A.; Lorenzo, J.M.; De Palo, P.; García, A.; Landete-Castillejos, T.; Gambín, P.; Cappelli, J.; Domínguez, R.; Pérez-Barbería, F.J.; et al. Meat quality of farmed red deer fed a balanced diet: Effects of supplementation with copper bolus on different muscles. Animal 2019, 13, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Maggiolino, A.; Pateiro, M.; Serrano, M.P.; Landete-Castillejos, T.; Domínguez, R.; García, A.; Gallego, L.; De Palo, P.; Lorenzo, J.M. Carcass and meat quality characteristics from Iberian wild red deer (Cervus elaphus) hunted at different ages. J. Sci. Food Agric. 2019, 99, 1938–1945. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Maggiolino, A.; Gallego, L.; Pateiro, M.; Serrano, M.P.; Domínguez, R.; García, A.; Landete-Castillejos, T.; De Palo, P. Effect of age on nutritional properties of Iberian wild red deer meat. J. Sci. Food Agric. 2019, 99, 1561–1567. [Google Scholar] [CrossRef] [PubMed]
- Serrano, M.P.; De Palo, P.; Maggiolino, A.; Pateiro, M.; Gallego, L.; Dominguez, R.; García, A.; Landete-Castillejos, T.; Lorenzo, J.M. Seasonal variations of carcass characteristics, meat quality and nutrition value in Iberian wild red deer. Span. J. Agric. Res. 2020, in press. [Google Scholar] [CrossRef]
- Vargas-Ramella, M.; Pateiro, M.; Barba, F.J.; Franco, D.; Campagnol, P.C.B.; Munekata, P.E.S.; Tomasevic, I.; Domínguez, R.; Lorenzo, J.M. Microencapsulation of healthier oils to enhance the physicochemical and nutritional properties of deer pâté. LWT 2020, 125, 109223. [Google Scholar] [CrossRef]
- Vargas-Ramella, M.; Munekata, P.E.S.; Pateiro, M.; Franco, D.; Campagnol, P.C.B.; Tomasevic, I.; Domínguez, R.; Lorenzo, J.M. Physicochemical composition and nutritional properties of deer burger enhanced with healthier oils. Foods 2020, 9, 571. [Google Scholar] [CrossRef]
- Vargas-Ramella, M.; Domínguez, R.; Pateiro, M.; Franco, D.; Barba, F.J.; Lorenzo, J.M. Chemical and physico-chemical changes during the dry-cured processing of deer loin. Int. J. Food Sci. Technol. 2020, 55, 1025–1031. [Google Scholar] [CrossRef]
- Soriano, A.; Cruz, B.; Gómez, L.; Mariscal, C.; García Ruiz, A. Proteolysis, physicochemical characteristics and free fatty acid composition of dry sausages made with deer (Cervus elaphus) or wild boar (Sus scrofa) meat: A preliminary study. Food Chem. 2006, 96, 173–184. [Google Scholar] [CrossRef]
- Soriano, A.; Mariscal, C.; Utrilla, M.C.; García-Ruiz, A. Free fatty acids and lipid oxidation in venison chorizo sausages made at different stages of the hunting season and under different ripening conditions. Ital. J. Food Sci. 2010, 22, 274–283. [Google Scholar]
- Utrilla, M.C.; García Ruiz, A.; Soriano, A. Effect of partial replacement of pork meat with an olive oil organogel on the physicochemical and sensory quality of dry-ripened venison sausages. Meat Sci. 2014, 97, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Utrilla, M.C.; García Ruiz, A.; Soriano, A. Effect of partial replacement of pork meat with olive oil on the sensory quality of dry-ripened venison sausage. Ital. J. Food Sci. 2015, 27, 443–449. [Google Scholar]
- WHO. The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 28 September 2020).
- Belc, N.; Smeu, I.; Macri, A.; Vallauri, D.; Flynn, K. Reformulating foods to meet current scientific knowledge about salt, sugar and fats. Trends Food Sci. Technol. 2019, 84, 25–28. [Google Scholar] [CrossRef]
- WHO. Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation, 1st ed.; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- WHO. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 28 September 2020).
- Fernández-Diez, A.; Caro, I.; Castro, A.; Salvá, B.K.; Ramos, D.D.; Mateo, J. Partial fat replacement by boiled quinoa on the quality characteristics of a dry-cured sausage. J. Food Sci. 2016, 81, C1891–C1898. [Google Scholar] [CrossRef]
- Domínguez, R.; Gullón, P.; Pateiro, M.; Munekata, P.E.S.; Zhang, W.; Lorenzo, J.M. Tomato as potential source of natural additives for meat industry. A review. Antioxidants 2020, 9, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonseca, S.; Gómez, M.; Domínguez, R.; Lorenzo, J.M. Physicochemical and sensory properties of Celta dry-ripened “salchichón” as affected by fat content. Grasas y Aceites 2015, 66, e059. [Google Scholar]
- Gómez, M.; Lorenzo, J.M. Effect of fat level on physicochemical, volatile compounds and sensory characteristics of dry-ripened “chorizo” from Celta pig breed. Meat Sci. 2013, 95, 658–666. [Google Scholar] [CrossRef]
- Liaros, N.G.; Katsanidis, E.; Bloukas, J.G. Effect of the ripening time under vacuum and packaging film permeability on processing and quality characteristics of low-fat fermented sausages. Meat Sci. 2009, 83, 589–598. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Montes, R.; Purriños, L.; Franco, D. Effect of pork fat addition on the volatile compounds of foal dry-cured sausage. Meat Sci. 2012, 91, 506–512. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Temperán, S.; Bermúdez, R.; Cobas, N.; Purriños, L. Changes in physico-chemical, microbiological, textural and sensory attributes during ripening of dry-cured foal salchichón. Meat Sci. 2012, 90, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Agregán, R.; Lorenzo, J.M. Role of commercial starter cultures on microbiological, physicochemical characteristics, volatile compounds and sensory properties of dry-cured foal sausage. Asian Pac. J. Trop. Dis. 2016, 6, 396–403. [Google Scholar] [CrossRef]
- Domínguez, R.; Purriños, L.; Pérez-Santaescolástica, C.; Pateiro, M.; Barba, F.J.; Tomasevic, I.; Campagnol, P.C.B.; Lorenzo, J.M. Characterization of volatile compounds of dry-cured meat products using HS-SPME-GC/MS technique. Food Anal. Methods 2019, 12, 1263–1284. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [Green Version]
- Campagnol, P.C.B.; dos Santos, B.A.; Wagner, R.; Terra, N.N.; Rodrigues Pollonio, M.A. Amorphous cellulose gel as a fat substitute in fermented sausages. Meat Sci. 2012, 90, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Bis-Souza, C.V.; Pateiro, M.; Domínguez, R.; Lorenzo, J.M.; Penna, A.L.B.; da Silva Barretto, A.C. Volatile profile of fermented sausages with commercial probiotic strains and fructooligosaccharides. J. Food Sci. Technol. 2019, 56, 5465–5473. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Capillas, C.; Triki, M.; Herrero, A.M.; Rodriguez-Salas, L.; Jiménez-Colmenero, F. Konjac gel as pork backfat replacer in dry fermented sausages: Processing and quality characteristics. Meat Sci. 2012, 92, 144–150. [Google Scholar] [CrossRef]
- Santos, B.A.; Campagnol, P.C.B.; Pacheco, M.T.B.; Pollonio, M.A.R. Fructooligosaccharides as a fat replacer in fermented cooked sausages. Int. J. Food Sci. Technol. 2012, 47, 1183–1192. [Google Scholar] [CrossRef]
- Bis-Souza, C.V.; Pateiro, M.; Domínguez, R.; Penna, A.L.B.; Lorenzo, J.M.; Silva Barretto, A.C. Impact of fructooligosaccharides and probiotic strains on the quality parameters of low-fat Spanish Salchichón. Meat Sci. 2020, 159, 107936. [Google Scholar] [CrossRef]
- Pintado, T.; Herrero, A.M.; Jiménez-Colmenero, F.; Pasqualin Cavalheiro, C.; Ruiz-Capillas, C. Chia and oat emulsion gels as new animal fat replacers and healthy bioactive sources in fresh sausage formulation. Meat Sci. 2018, 135, 6–13. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.S.; Pateiro, M.; Campagnol, P.C.B.; Domínguez, R. Healthy Spanish salchichón enriched with encapsulated n − 3 long chain fatty acids in konjac glucomannan matrix. Food Res. Int. 2016, 89, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Agregán, R.; Gonçalves, A.; Lorenzo, J.M. Effect of fat replacement by olive oil on the physico-chemical properties, fatty acids, cholesterol and tocopherol content of pâté. Grasas y Aceites 2016, 67, e133. [Google Scholar]
- de Carvalho, F.A.L.; Munekata, P.E.S.; Pateiro, M.; Campagnol, P.C.B.; Domínguez, R.; Trindade, M.A.; Lorenzo, J.M. Effect of replacing backfat with vegetable oils during the shelf-life of cooked lamb sausages. LWT 2020, 122, 109052. [Google Scholar] [CrossRef]
- Barros, J.C.; Munekata, P.E.S.; de Carvalho, F.A.L.; Pateiro, M.; Barba, F.J.; Domínguez, R.; Trindade, M.A.; Lorenzo, J.M. Use of tiger nut (Cyperus esculentus L.) oil emulsion as animal fat replacement in beef burgers. Foods 2020, 9, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heck, R.T.; Vendruscolo, R.G.; de Araújo Etchepare, M.; Cichoski, A.J.; de Menezes, C.R.; Barin, J.S.; Lorenzo, J.M.; Wagner, R.; Campagnol, P.C.B. Is it possible to produce a low-fat burger with a healthy n-6/n-3 PUFA ratio without affecting the technological and sensory properties? Meat Sci. 2017, 130, 16–25. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Agregán, R.; Lorenzo, J.M. Effect of the partial replacement of pork backfat by microencapsulated fish oil or mixed fish and olive oil on the quality of frankfurter type sausage. J. Food Sci. Technol. 2017, 54, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, R.; Pateiro, M.; Munekata, P.E.S.; Campagnol, P.C.B.; Lorenzo, J.M. Influence of partial pork backfat replacement by fish oil on nutritional and technological properties of liver pâté. Eur. J. Lipid Sci. Technol. 2017, 119, 1600178. [Google Scholar] [CrossRef]
- Zamuz, S.; Purriños, L.; Tomasevic, I.; Domínguez, R.; Brnčić, M.; Barba, F.J.; Lorenzo, J.M. Consumer acceptance and quality parameters of the commercial olive oils manufactured with cultivars grown in Galicia (NW Spain). Foods 2020, 9, 427. [Google Scholar] [CrossRef] [Green Version]
- de Souza Paglarini, C.; de Figueiredo Furtado, G.; Honório, A.R.; Mokarzel, L.; da Silva Vidal, V.A.; Ribeiro, A.P.B.; Cunha, R.L.; Pollonio, M.A.R. Functional emulsion gels as pork back fat replacers in Bologna sausage. Food Struct. 2019, 20, 100105. [Google Scholar] [CrossRef]
- Paglarini, C.d.S.; Furtado, G.d.F.; Biachi, J.P.; Vidal, V.A.S.; Martini, S.; Forte, M.B.S.; Cunha, R.L.; Pollonio, M.A.R. Functional emulsion gels with potential application in meat products. J. Food Eng. 2018, 222, 29–37. [Google Scholar] [CrossRef]
- de Souza Paglarini, C.; Vidal, V.A.S.; Ribeiro, W.; Badan Ribeiro, A.P.; Bernardinelli, O.D.; Herrero, A.M.; Ruiz-Capillas, C.; Sabadini, E.; Rodrigues Pollonio, M.A. Using inulin-based emulsion gels as fat substitute in salt reduced Bologna sausage. J. Sci. Food Agric. 2020. [Google Scholar] [CrossRef]
- Vieira, A.S.P.; De Souza, X.R.; Rodrigues, E.C.; Sousa, D.C. Replacement of animal fat by canola oil in chicken meatball. Rev. Bras. Cienc. Avic. 2019, 21, 21. [Google Scholar] [CrossRef]
- Baek, K.H.; Utama, D.T.; Lee, S.K.S.G.; An, B.K.; Lee, S.K.S.G. Effects of replacing pork back fat with canola and flaxseed oils on physicochemical properties of emulsion sausages from spent layer meat. AsianAustralas. J. Anim. Sci. 2016, 29, 865–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heck, R.T.; Saldaña, E.; Lorenzo, J.M.; Correa, L.P.; Fagundes, M.B.; Cichoski, A.J.; de Menezes, C.R.; Wagner, R.; Campagnol, P.C.B. Hydrogelled emulsion from chia and linseed oils: A promising strategy to produce low-fat burgers with a healthier lipid profile. Meat Sci. 2019, 156, 174–182. [Google Scholar] [CrossRef]
- Jiménez-Colmenero, F.; Triki, M.; Herrero, A.M.; Rodríguez-Salas, L.; Ruiz-Capillas, C. Healthy oil combination stabilized in a konjac matrix as pork fat replacement in low-fat, PUFA-enriched, dry fermented sausages. LWT - Food Sci. Technol. 2013, 51, 158–163. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, R.; Munekata, P.E.S.; Pateiro, M.; López-Fernández, O.; Lorenzo, J.M. Immobilization of oils using hydrogels as strategy to replace animal fats and improve the healthiness of meat products. Curr. Opin. Food Sci. 2020, in press. [Google Scholar]
- Triki, M.; Herrero, A.M.; Rodríguez-Salas, L.; Jiménez-Colmenero, F.; Ruiz-Capillas, C. Chilled storage characteristics of low-fat, n-3 PUFA-enriched dry fermented sausage reformulated with a healthy oil combination stabilized in a konjac matrix. Food Control 2013, 31, 158–165. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Domínguez, R.; Franco, D.; Bermúdez, R.; Trindade, M.A.; Lorenzo, J.M. Effect of natural antioxidants in Spanish salchichón elaborated with encapsulated n-3 long chain fatty acids in konjac glucomannan matrix. Meat Sci. 2017, 124, 54–60. [Google Scholar] [CrossRef]
- Yıldız-Turp, G.; Serdaroğlu, M.; Yildiz-Turp, G.; Serdaroǧlu, M. Effect of replacing beef fat with hazelnut oil on quality characteristics of sucuk – A Turkish fermented sausage. Meat Sci. 2008, 78, 447–454. [Google Scholar] [CrossRef]
- Alejandre, M.; Poyato, C.; Ansorena, D.; Astiasarán, I. Linseed oil gelled emulsion: A successful fat replacer in dry fermented sausages. Meat Sci. 2016, 121, 107–113. [Google Scholar] [CrossRef]
- Franco, D.; Martins, A.J.; López-Pedrouso, M.; Cerqueira, M.A.; Purriños, L.; Pastrana, L.M.; Vicente, A.A.; Zapata, C.; Lorenzo, J.M. Evaluation of linseed oil oleogels to partially replace pork backfat in fermented sausages. J. Sci. Food Agric. 2020, 100, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Tarladgis, B.G.; Watts, B.M.; Younathan, M.T.; Dugan, L. A distillation method for the quantitative determination of malonaldehyde in rancid foods. J. Am. Oil Chem. Soc. 1960, 37, 44–48. [Google Scholar] [CrossRef]
- International Organization for Standarization. Sensory Analysis—Methodology—Method of Investigating Sensitivity of Taste: ISO 3972; International Organization for Standarization: Geneva, Switzerland, 1991. [Google Scholar]
- International Organization for Standarization. Sensory Analysis—Methodology—Texture Profile: ISO 11036; International Organization for Standarization: Geneva, Switzerland, 1994. [Google Scholar]
- International Organization for Standarization. Sensory Analysis—Methodology—Initiation and Training of Assessors in the Detection and Recognition of Odours: ISO 5496; International Organization for Standarization: Geneva, Switzerland, 2006. [Google Scholar]
- Macfie, H.J.; Bratchell, N.; Greenhoff, K.; Vallis, L.V. Designs to balance the effect of order of presentation and first-order carry-over effects in hall tests. J. Sens. Stud. 1989, 4, 129–148. [Google Scholar] [CrossRef]
- Pintado, T.; Cofrades, S. Quality characteristics of healthy dry fermented sausages formulated with a mixture of olive and chia oil structured in oleogel or emulsion gel as animal fat replacer. Foods 2020, 9, 830. [Google Scholar] [CrossRef] [PubMed]
- Alves, L.A.A.S.; Lorenzo, J.M.; Gonçalves, C.A.A.; Santos, B.A.; Heck, R.T.; Cichoski, A.J.; Campagnol, P.C.B. Production of healthier bologna type sausages using pork skin and green banana flour as a fat replacers. Meat Sci. 2016, 121, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Marventano, S.; Kolacz, P.; Castellano, S.; Galvano, F.; Buscemi, S.; Mistretta, A.; Grosso, G. A review of recent evidence in human studies of n-3 and n-6 PUFA intake on cardiovascular disease, cancer, and depressive disorders: Does the ratio really matter? Int. J. Food Sci. Nutr. 2015, 66, 611–622. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Evolutionary aspects of the dietary Omega-6:Omega-3 fatty acid ratio: Medical implications. World Rev. Nutr. Diet. 2009, 100, 1–21. [Google Scholar] [PubMed] [Green Version]
- Lorenzo, J.M.; Gómez, M.; Purriños, L.; Fonseca, S. Effect of commercial starter cultures on volatile compound profile and sensory characteristics of dry-cured foal sausage. J. Sci. Food Agric. 2016, 96, 1194–1201. [Google Scholar] [CrossRef] [PubMed]
- Montanari, C.; Gatto, V.; Torriani, S.; Barbieri, F.; Bargossi, E.; Lanciotti, R.; Grazia, L.; Magnani, R.; Tabanelli, G.; Gardini, F. Effects of the diameter on physico-chemical, microbiological and volatile profile in dry fermented sausages produced with two different starter cultures. Food Biosci. 2018, 22, 9–18. [Google Scholar] [CrossRef]
- Marušić, N.; Vidaček, S.; Janči, T.; Petrak, T.; Medić, H. Determination of volatile compounds and quality parameters of traditional Istrian dry-cured ham. Meat Sci. 2014, 96, 1409–1416. [Google Scholar] [CrossRef]
- Petričević, S.; Marušić Radovčić, N.; Lukić, K.; Listeš, E.; Medić, H. Differentiation of dry-cured hams from different processing methods by means of volatile compounds, physico-chemical and sensory analysis. Meat Sci. 2018, 137, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.J.; Córdoba, J.J.; Casado, E.M.; Córdoba, M.G.; Rodríguez, M. Effect of selected strains of Debaryomyces hansenii on the volatile compound production of dry fermented sausage “salchichón”. Meat Sci. 2010, 85, 256–264. [Google Scholar] [CrossRef]
- Narváez-Rivas, M.; Gallardo, E.; León-Camacho, M. Analysis of volatile compounds from Iberian hams: A review. Grasas y Aceites 2012, 63, 432–454. [Google Scholar]
- Lorenzo, J.M.; Carballo, J. Changes in physico-chemical properties and volatile compounds throughout the manufacturing process of dry-cured foal loin. Meat Sci. 2015, 99, 44–51. [Google Scholar] [CrossRef] [PubMed]
Fat Source | ||||
---|---|---|---|---|
Pork Backfat | Olive Oil | Canola Oil | Soy Oil | |
C14:0 | 1.19 ± 0.002 | 0.03 ± 0.003 | 0.06 ± 0.005 | 0.08 ± 0.002 |
C16:0 | 23.03 ± 0.16 | 11.73 ± 0.04 | 4.96 ± 0.07 | 10.50 ± 0.02 |
C16:1n-7 | 1.89 ± 0.07 | 0.84 ± 0.11 | 0.18 ± 0.01 | 0.09 ± 0.003 |
C17:0 | 0.23 ± 0.001 | 0.08 ± 0.000 | 0.05 ± 0.006 | 0.09 ± 0.001 |
C17:1n-7 | 0.19 ± 0.007 | 0.12 ± 0.003 | 0.06 ± 0.002 | 0.05 ± 0.001 |
C18:0 | 12.74 ± 0.22 | 3.40 ± 0.02 | 2.01 ± 0.05 | 3.31 ± 0.008 |
C18:1n-9 | 41.18 ± 0.04 | 72.16 ± 0.06 | 54.65 ± 0.002 | 24.99 ± 0.006 |
C18:1n-7 | 2.67 ± 0.005 | 2.21 ± 0.04 | 2.68 ± 0.11 | 1.55 ± 0.02 |
C18:2n-6 | 13.68 ± 0.23 | 7.70 ± 0.022 | 27.44 ± 0.05 | 52.10 ± 0.05 |
C20:0 | 0.24 ± 0.000 | 0.41 ± 0.004 | 0.48 ± 0.001 | 0.33 ± 0.001 |
C18:3n-6 | 0.04 ± 0.000 | 0.03 ± 0.001 | 0.33 ± 0.001 | 0.26 ± 0.001 |
C20:1n-9 | 0.87 ± 0.03 | 0.24 ± 0.003 | 0.97 ± 0.02 | 0.22 ± 0.001 |
C18:3n-3 | 0.66 ± 0.01 | 0.61 ± 0.000 | 5.30 ± 0.01 | 5.70 ± 0.02 |
C20:2n-6 | 0.64 ± 0.02 | n.d. | 0.05 ± 0.001 | 0.04 ± 0.002 |
C22:0 | 0.01 ± 0.001 | 0.14 ± 0.001 | 0.39 ± 0.000 | 0.47 ± 0.002 |
C20:3n-3 | 0.11 ± 0.004 | 0.24 ± 0.000 | n.d. | n.d. |
C20:4n-6 | 0.23 ± 0.04 | n.d. | n.d. | n.d. |
C24:0 | n.d. | 0.06 ± 0.002 | 0.15 ± 0.001 | 0.17 ± 0.003 |
SFA | 37.61 ± 0.38 | 15.85 ± 0.07 | 8.14 ± 0.13 | 14.99 ± 0.03 |
MUFA | 45.93 ± 0.05 | 75.33 ± 0.09 | 57.74 ± 0.10 | 26.69 ± 0.03 |
PUFA | 15.59 ± 0.29 | 8.58 ± 0.02 | 33.15 ± 0.05 | 58.10 ± 0.06 |
n-6 | 14.75 ± 0.29 | 7.73 ± 0.02 | 27.84 ± 0.06 | 52.40 ± 0.05 |
n-3 | 0.77 ± 0.005 | 0.85 ± 0.001 | 5.30 ± 0.001 | 5.70 ± 0.02 |
Fat Source | Sig. | ||||
---|---|---|---|---|---|
CON | OLI | CAN | SOY | ||
Composition (g/100 g) | |||||
Moisture | 39.79 ± 0.72 c | 29.68 ± 0.41 b | 29.90 ± 0.43 b | 27.69 ± 0.38 a | *** |
Fat (dry matter) | 37.62 ± 0.52 b | 32.53 ± 0.56 a | 32.30 ± 0.35 a | 32.54 ± 0.42 a | *** |
Protein (dry matter) | 47.39 ± 0.44 a | 49.60 ± 0.32 b | 49.53 ± 0.32 b | 49.43 ± 0.29 b | *** |
Ashes (dry matter) | 7.24 ± 0.07 a | 8.77 ± 0.21 b | 8.63 ± 0.06 b | 8.59 ± 0.06 b | *** |
pH | 4.84 ± 0.02 a | 5.04 ± 0.01 b | 5.04 ± 0.03 b | 5.12 ± 0.02 c | *** |
Color Parameters | |||||
L* | 40.81 ± 0.63 c | 30.77 ± 0.40 a | 30.97 ± 0.46 a | 33.01 ± 0.59 b | *** |
a* | 5.99 ± 0.19 b | 6.02 ± 0.27 b | 6.07 ± 0.32 b | 5.08 ± 0.20 a | * |
b* | 8.49 ± 0.25 b | 5.17 ± 0.31 a | 4.81 ± 0.23 a | 5.03 ± 0.26 a | *** |
Texture Parameters | |||||
Hardness (N) | 61.98 ± 3.10 a | 279.47 ± 6.91 b | 271.56 ± 6.37 b | 316.18 ± 6.57 c | *** |
Springiness (mm) | 0.45 ± 0.01 a | 0.54 ± 0.005 b,c | 0.54 ± 0.01 c | 0.52 ± 0.005 b | *** |
Cohesiveness | 0.29 ± 0.01 a | 0.34 ± 0.005 b | 0.34 ± 0.003 b | 0.35 ± 0.003 b | *** |
Gumminess (N) | 18.36 ± 1.05 a | 96.07 ± 3.23 b | 92.83 ± 2.38 b | 109.54 ± 2.25 c | *** |
Chewiness (N·mm) | 8.40 ± 0.62 a | 51.44 ± 1.81 b | 50.24 ± 1.37 b | 56.49 ± 1.35 c | *** |
Fat Source | Sig. | ||||
---|---|---|---|---|---|
CON | OLI | CAN | SOY | ||
C14:0 | 1.32 ± 0.01 d | 1.02 ± 0.01 b | 1.00 ± 0.01 a | 1.08 ± 0.01 c | *** |
C15:0 | 0.09 ± 0.002 b | 0.08 ± 0.001 a | 0.08 ± 0.001 a | 0.10 ± 0.002 b | *** |
C16:0 | 22.68 ± 0.05 d | 19.10 ± 0.08 c | 17.28 ± 0.06 a | 18.67 ± 0.07 b | *** |
C16:1n-7 | 2.12 ± 0.01 d | 1.75 ± 0.01 c | 1.65 ± 0.01 b | 1.62 ± 0.01 a | *** |
C17:0 | 0.41 ± 0.002 c | 0.33 ± 0.002 a | 0.34 ± 0.002 a | 0.36 ± 0.003 b | *** |
C17:1n-7 | 0.30 ± 0.003 c | 0.25 ± 0.002 a | 0.26 ± 0.001 b | 0.26 ± 0.002 b | *** |
C18:0 | 12.12 ± 0.05 d | 9.79 ± 0.05 b | 8.92 ± 0.04 a | 10.02 ± 0.05 c | *** |
9t-C18:1 | 0.29 ± 0.01 c | 0.26 ± 0.01 b | 0.22 ± 0.01 a | 0.26 ± 0.01 b | *** |
C18:1n-9 | 39.69 ± 0.07 b | 48.14 ± 0.12 d | 46.89 ± 0.13 c | 35.40 ± 0.12 a | *** |
C18:1n-7 | 2.58 ± 0.02 b | 2.41 ± 0.02 a | 2.74 ± 0.01 c | 2.36 ± 0.03 a | *** |
C18:2n-6 | 14.29 ± 0.09 b | 12.90 ± 0.09 a | 14.90 ± 0.11 c | 24.11 ± 0.19 d | *** |
C20:0 | 0.22 ± 0.001 a | 0.27 ± 0.001 b | 0.31 ± 0.002 d | 0.29 ± 0.001 c | *** |
C18:3n-6 | 0.05 ± 0.001 a | 0.06 ± 0.001 a | 0.14 ± 0.002 c | 0.13 ± 0.001 b | *** |
C20:1n-9 | 0.93 ± 0.003 c | 0.73 ± 0.003 a | 1.02 ± 0.003 d | 0.77 ± 0.003 b | *** |
C18:3n-3 | 0.67 ± 0.01 a | 0.87 ± 0.01 b | 2.20 ± 0.04 c | 2.43 ± 0.03 d | *** |
C20:2n-6 | 0.62 ± 0.004 d | 0.45 ± 0.003 c | 0.40 ± 0.004 b | 0.36 ± 0.002 a | *** |
C22:0 | 0.06 ± 0.001 a | 0.09 ± 0.001 b | 0.15 ± 0.001 c | 0.21 ± 0.002 d | *** |
C20:3n-6 | 0.13 ± 0.002 c | 0.12 ± 0.002 b | 0.11 ± 0.002 a | 0.11 ± 0.001 a | *** |
C20:3n-3 | 0.09 ± 0.001 c | 0.07 ± 0.001 b | 0.06 ± 0.001 a | 0.06 ± 0.001 a | *** |
C20:4n-6 | 0.58 ± 0.01 a | 0.63 ± 0.02 b | 0.61 ± 0.01 a,b | 0.63 ± 0.01 b | * |
C20:5n-3 | 0.09 ± 0.004 | 0.09 ± 0.004 | 0.09 ± 0.01 | 0.10 ± 0.004 | ns |
C22:5n-6 | 0.12 ± 0.002 b | 0.10 ± 0.002 a | 0.09 ± 0.002 a | 0.09 ± 0.001 a | *** |
C22:5n-3 | 0.18 ± 0.004 a | 0.20 ± 0.01 b | 0.20 ± 0.005 b | 0.20 ± 0.003 b | ** |
C22:6n-3 | 0.04 ± 0.001 a,b | 0.04 ± 0.001 a,b | 0.04 ± 0.001 a | 0.04 ± 0.000 b | * |
SFA | 37.08 ± 0.09 c | 30.81 ± 0.14 b | 28.23 ± 0.10 a | 30.91 ± 0.12 b | *** |
MUFA | 45.68 ± 0.08 b | 53.34 ± 0.11 d | 52.65 ± 0.13 c | 40.49 ± 0.14 a | *** |
PUFA | 16.94 ± 0.12 b | 15.58 ± 0.13 a | 18.91 ± 0.17 c | 28.34 ± 0.22 d | *** |
n-6 | 15.79 ± 0.11 b | 14.24 ± 0.11 a | 16.26 ± 0.13 c | 25.43 ± 0.19 d | *** |
n-3 | 1.08 ± 0.01 a | 1.27 ± 0.02 b | 2.58 ± 0.04 c | 2.83 ± 0.03 d | *** |
n-6/n-3 | 14.66 ± 0.07 d | 11.20 ± 0.08 c | 6.31 ± 0.05 a | 9.00 ± 0.04 b | *** |
Compound Information | Fat Source | Sig. | |||||
---|---|---|---|---|---|---|---|
Name | LRI | m/z | Control | Olive Oil | Canola Oil | Soy Oil | |
Glycidol | 468 | 44 | 28.76 ± 1.33 a | 70.80 ± 3.51 c | 60.79 ± 2.83 b | 65.44 ± 1.67 b,c | *** |
1-Propanol | 546 | 59 | 9.19 ± 1.10 d | 5.29 ± 0.50 b | 7.25 ± 0.34 c | 3.21 ± 0.16 a | *** |
2-Butanol, (R)- | 583 | 45 | 5.13 ± 0.47 | 4.48 ± 0.43 | 5.54 ± 0.41 | 5.25 ± 0.35 | ns |
1-Butanol | 696 | 56 | 6.59 ± 0.49 b | 4.66 ± 0.37 a | 5.26 ± 0.54 a | 4.05 ± 0.25 a | *** |
(R)-(-)-2-Pentanol | 744 | 45 | 3.04 ± 0.18 b | 1.56 ± 0.11 a | 1.38 ± 0.08 a | 7.04 ± 0.37 c | *** |
1-Pentanol | 851 | 70 | 18.45 ± 1.26 c | 9.67 ± 0.36 a | 13.75 ± 1.05 b | 14.67 ± 0.73 b | *** |
2,3-Butanediol | 922 | 45 | 119.2 ± 9.13 a | 412.7 ± 16.80 c | 327.6 ± 16.69 b | 489.4 ± 24.39 d | *** |
1-Hexanol | 971 | 56 | 32.61 ± 2.01 c | 14.80 ± 0.72 a | 23.00 ± 2.30 b | 21.07 ± 0.93 b | *** |
1-Octen-3-ol | 1080 | 57 | 35.24 ± 1.83 b | 26.94 ± 0.91 a | 36.76 ± 1.14 b,c | 39.84 ± 1.18 c | *** |
1-Octanol | 1165 | 84 | 7.11 ± 0.34 a | 12.44 ± 1.34 b | 11.61 ± 0.36 b | 10.92 ± 0.86 b | *** |
Linalool | 1185 | 71 | 26.64 ± 0.92 a | 44.08 ± 2.32 b | 49.90 ± 1.73 c | 43.37 ± 2.35 b | *** |
Total Alcohols | 292.0 ± 11.09 a | 607.4 ± 15.72 c | 542.8 ± 17.04 b | 704.2 ± 22.78 d | *** | ||
Propanal | 496 | 58 | 45.25 ± 3.23 b | 87.61 ± 3.25 c | 10.88 ± 1.24 a | 6.94 ± 0.40 a | *** |
Propanal, 2-methyl- | 529 | 72 | 10.01 ± 0.72 a | 32.23 ± 1.10 c | 29.77 ± 1.37 b,c | 27.70 ± 0.74 b | *** |
Butanal, 3-methyl- | 640 | 58 | 46.75 ± 1.96 a | 163.04 ± 3.68 c | 149.72 ± 7.49 c | 135.07 ± 4.91 b | *** |
Butanal, 2-methyl- | 654 | 57 | 23.55 ± 1.20 a | 83.42 ± 2.64 c | 74.17 ± 2.90 b | 69.61 ± 3.39 b | *** |
Pentanal | 717 | 58 | 35.68 ± 3.17 b | 26.32 ± 1.06 a | 34.51 ± 1.33 b | 44.89 ± 2.26 c | *** |
2-Butenal, 2-methyl- | 801 | 84 | 3.08 ± 0.19 a | 4.83 ± 0.26 b | 7.11 ± 0.45 c | 4.39 ± 0.28 b | *** |
Hexanal | 872 | 56 | 249.3 ± 27.99 b | 83.76 ± 4.08 a | 209.8 ± 18.21 b | 209.9 ± 13.97 b | *** |
Methylal | 903 | 45 | 192.2 ± 13.73 | 157.1 ± 9.73 | 183.9 ± 7.64 | 174.9 ± 6.28 | ns |
Heptanal | 993 | 70 | 13.85 ± 1.53 c | 7.82 ± 0.39 a | 11.69 ± 0.86 b,c | 9.96 ± 0.66 a,b | *** |
Hexanal, 5-methyl- | 993 | 55 | 9.11 ± 1.44 c | 3.83 ± 0.19 a | 6.28 ± 0.40 b | 4.66 ± 0.26 a,b | *** |
Methional | 1022 | 48 | 13.31 ± 0.87 a | 32.75 ± 0.97 b | 35.97 ± 1.26 c | 31.29 ± 0.59 b | *** |
Benzaldehyde | 1072 | 106 | 99.77 ± 7.53 a | 125.2 ± 2.69 b | 152.8 ± 12.04 c | 111.6 ± 4.72 a,b | *** |
Benzeneacetaldehyde | 1155 | 91 | 57.85 ± 3.38 a | 58.51 ± 3.43 a | 89.15 ± 3.89 b | 85.82 ± 5.59 b | *** |
2-Octenal, (E)- | 1160 | 55 | 12.98 ± 3.53 | 11.17 ± 0.41 | 13.49 ± 1.06 | 11.11 ± 0.62 | ns |
Nonanal | 1187 | 98 | 7.94 ± 0.61 c | 5.84 ± 0.24 a | 7.45 ± 0.49 b,c | 6.32 ± 0.28 a,b | ** |
3-Isopropylbenzaldehyde | 1321 | 148 | 2.95 ± 0.20 a | 3.55 ± 0.15 b | 3.66 ± 0.18 b | 3.37 ± 0.20 a,b | * |
Total Aldehydes | 823.5 ± 27.86 a | 887.0 ± 19.57 a,b | 1020 ± 26.97 c | 937.6 ± 23.93 b | *** | ||
Carbon disulfide | 504 | 76 | 18.95 ± 2.78 b | 19.23 ± 2.08 b | 12.76 ± 0.88 a | 13.19 ± 1.31 a | * |
Furan, 2-pentyl- | 1065 | 81 | 14.09 ± 0.92 a,b | 11.85 ± 0.64 a | 15.77 ± 1.07 b | 15.79 ± 0.55 b | ** |
1,3-Benzenediol, monobenzoate | 1072 | 77 | 39.70 ± 1.48 a | 56.20 ± 1.71 b | 67.41 ± 2.62 c | 54.23 ± 1.83 b | *** |
Hexane, 2,4,4-trimethyl- | 1110 | 57 | 51.81 ± 3.49 b | 24.91 ± 2.33 a | 25.13 ± 1.62 a | 31.42 ± 2.90 a | *** |
Total Others | 124.5 ± 4.06 | 112.2 ± 2.93 | 121.0 ± 3.65 | 114.6 ± 4.35 | ns | ||
2,3-Butanedione | 563 | 86 | 14.39 ± 1.09 a,b | 17.62 ± 1.09 c | 11.79 ± 0.45 a | 16.51 ± 0.96 b,c | *** |
2-Butanone | 569 | 72 | 32.67 ± 2.16 a | 58.90 ± 2.54 c | 60.79 ± 1.61 c | 45.88 ± 1.52 b | *** |
3-Pentanone | 722 | 57 | 18.34 ± 1.30 b | 10.49 ± 1.46 a | 16.93 ± 1.03 b | 16.74 ± 0.95 b | *** |
Acetoin | 785 | 45 | 76.61 ± 3.67 a | 151.9 ± 6.34 c | 132.3 ± 4.82 b | 138.8 ± 3.58 b,c | *** |
2-Heptanone | 985 | 58 | 3.58 ± 0.94 b | 1.27 ± 0.05 a | 1.90 ± 0.17 a | 6.31 ± 0.25 c | *** |
Butyrolactone | 1072 | 86 | 17.11 ± 0.57 a | 36.26 ± 1.01 b | 41.24 ± 1.51 c | 37.04 ± 1.06 b | *** |
Total Ketones | 162.7 ± 4.96 a | 276.4 ± 9.39 b | 265.0 ± 6.57 b | 261.2 ± 5.47 b | *** | ||
Acetic acid | 676 | 60 | 1513 ± 40.31 a | 2088 ± 69.46 b | 2013 ± 44.52 b | 1964 ± 58.87 b | *** |
Butanoic acid | 932 | 60 | 341.6 ± 13.55 a | 578.7 ± 25.65 c | 683.7 ± 23.27 d | 513.7 ± 14.79 b | *** |
Butanoic acid, 3-methyl- | 986 | 60 | 18.87 ± 1.02 a | 34.33 ± 1.72 b | 37.57 ± 1.33 b | 36.75 ± 1.46 b | *** |
Pentanoic acid | 1029 | 60 | 13.40 ± 1.15 a | 17.94 ± 0.52 b | 22.04 ± 0.70 c | 20.46 ± 0.97 c | *** |
Hexanoic acid | 1117 | 60 | 55.30 ± 2.41 a | 65.52 ± 2.51 b | 68.80 ± 2.49 b,c | 74.99 ± 3.03 c | *** |
Total Acids | 1943 ± 46.64 a | 2785 ± 85.03 b,c | 2825 ± 55.68 c | 2610 ± 71.52 b | *** | ||
Propanoic acid, ethyl ester | 728 | 57 | 28.23 ± 1.93 a | 36.39 ± 1.83 b | 52.58 ± 2.42 c | 26.61 ± 1.05 a | *** |
n-Propyl acetate | 736 | 61 | 2.96 ± 0.17 a | 3.96 ± 0.31 b | 5.72 ± 0.26 c | 2.37 ± 0.07 a | *** |
Propanoic acid, 2-methyl-, ethyl ester | 800 | 71 | 4.74 ± 0.31 a | 6.60 ± 0.35 b | 7.01 ± 0.39 b | 4.81 ± 0.18 a | *** |
Butanoic acid, ethyl ester | 860 | 88 | 126.8 ± 7.95 a | 178.3 ± 8.66 c | 198.8 ± 9.69 c | 155.2 ± 4.68 b | *** |
Butanoic acid, 3-methyl-, ethyl ester | 925 | 88 | 12.87 ± 0.54 a | 20.66 ± 1.18 b | 21.67 ± 1.21 b | 20.41 ± 0.62 b | *** |
Pentanoic acid, ethyl ester | 978 | 88 | 10.15 ± 0.93 a | 11.67 ± 0.96 a | 15.01 ± 1.73 b | 11.40 ± 0.62 a | * |
Octanoic acid, ethyl ester | 1250 | 88 | 17.66 ± 0.81 a | 19.99 ± 0.72 b | 22.12 ± 0.75 b | 20.09 ± 0.72 b | ** |
Decanoic acid, ethyl ester | 1397 | 88 | 7.17 ± 0.34 d | 4.92 ± 0.17 b | 5.63 ± 0.18 c | 3.82 ± 0.16 a | *** |
Total Esters | 210.6 ± 9.73 a | 282.5 ± 11.66 c | 328.5 ± 11.68 d | 244.8 ± 6.75 b | *** | ||
Benzene, 1,3-dimethyl- | 939 | 91 | 5.13 ± 0.19 a | 5.51 ± 0.09 a,b | 5.34 ± 0.16 a,b | 5.67 ± 0.09 b | * |
α-Thujene | 990 | 92 | 380.1 ± 14.23 a | 622.9 ± 30.47 b | 596.3 ± 31.77 b | 579.3 ± 26.52 b | *** |
1R-α-Pinene | 998 | 93 | 1208 ± 53.60 a | 1745 ± 58.31 b | 1728 ± 72.11 b | 1688 ± 74.63 b | *** |
Camphene | 1018 | 93 | 42.92 ± 3.36 a | 57.17 ± 3.08 b | 53.59 ± 2.65 b | 49.58 ± 2.28 a,b | ** |
(+)-Camphene | 1018 | 121 | 41.92 ± 3.27 a | 54.49 ± 2.88 b | 51.71 ± 2.42 b | 47.52 ± 2.51 a,b | * |
β-Thujene | 1046 | 136 | 398.5 ± 17.13 a | 658.7 ± 28.11 b | 634.3 ± 29.62 b | 605.2 ± 29.37 b | *** |
Pseudolimonene | 1048 | 121 | 192.0 ± 10.53 a | 233.9 ± 11.56 b | 241.9 ± 13.38 b | 229.7 ± 14.21 b | * |
β-Myrcene | 1058 | 93 | 380.4 ± 20.94 a | 692.0 ± 23.94 b | 725.1 ± 28.23 b | 692.2 ± 31.09 b | *** |
α-Phellandrene | 1075 | 93 | 471.7 ± 27.49 a | 980.3 ± 34.30 b | 1025 ± 57.47 b | 934.0 ± 41.24 b | *** |
3-Carene | 1078 | 121 | 373.6 ± 23.83 a | 685.0 ± 30.62 b | 661.0 ± 31.60 b | 712.9 ± 36.69 b | *** |
α-Terpinene | 1087 | 121 | 236.4 ± 20.23 a | 416.7 ± 17.56 b | 465.2 ± 15.54 c | 397.7 ± 14.10 b | *** |
D-Limonene | 1098 | 79 | 460.9 ± 8.99 a | 707.0 ± 18.02 b | 770.7 ± 27.49 c | 682.5 ± 22.11 b | *** |
o-Cymene | 1102 | 119 | 2074 ± 78.00 a | 2702 ± 103.42 c | 2657 ± 85.9 b,c | 2426 ± 95.25 b | *** |
β-Phellandrene | 1103 | 93 | 940.3 ± 57.34 a | 1418 ± 56.98 b | 1592 ± 58.51 c | 1484 ± 53.9 b,c | *** |
Eucalyptol | 1109 | 154 | 12.35 ± 0.33 a | 14.70 ± 0.20 b | 16.13 ± 0.35 c | 14.56 ± 0.25 b | *** |
β-Ocimene | 1114 | 91 | 5.76 ± 0.50 a | 9.41 ± 0.86 b | 12.11 ± 0.53 c | 10.42 ± 0.47 b,c | *** |
δ-Terpinene | 1125 | 77 | 147.0 ± 9.96 a | 228.4 ± 11.26 b | 233.5 ± 14.97 b | 229.8 ± 7.73 b | *** |
(+)-4-Carene | 1152 | 121 | 137.1 ± 9.85 a | 237.7 ± 12.49 b | 261.5 ± 16.38 b | 246.0 ± 9.91 b | *** |
Benzyl alcohol | 1162 | 79 | 66.16 ± 2.94 a | 78.58 ± 2.00 b | 102.1 ± 3.00 d | 90.14 ± 3.31 c | *** |
m-Cymenene | 1167 | 117 | 98.41 ± 5.89 a | 124.1 ± 7.87 b | 117.5 ± 7.13 b | 97.66 ± 4.68 a | ** |
trans-4-Thujanol | 1196 | 71 | 16.67 ± 0.60 a | 27.56 ± 0.84 b | 32.04 ± 1.14 c | 27.23 ± 1.02 b | *** |
p-Cresol | 1223 | 107 | 7.64 ± 0.39 a | 11.17 ± 0.39 b | 11.71 ± 0.58 b | 11.78 ± 0.49 b | *** |
Phenylethyl Alcohol | 1226 | 91 | 31.21 ± 1.19 a | 37.32 ± 2.55 b,c | 39.09 ± 1.35 c | 32.83 ± 1.39 a,b | ** |
α-Phellandren-8-ol | 1251 | 91 | 31.67 ± 1.40 a | 38.76 ± 0.98 b,c | 41.97 ± 0.95 c | 37.12 ± 1.35 b | *** |
Terpinen-4-ol | 1254 | 71 | 187.4 ± 6.69 a | 253.4 ± 7.80 b | 291.8 ± 6.59 c | 250.2 ± 9.24 b | *** |
α-Terpineol | 1271 | 121 | 9.73 ± 0.35 a | 15.19 ± 0.43 b | 16.90 ± 0.42 c | 14.54 ± 0.61 b | *** |
Safrole | 1340 | 162 | 430.0 ± 14.41 a | 679.0 ± 16.97 c | 712.3 ± 13.91 c | 624.4 ± 23.68 b | *** |
δ-Elemene | 1357 | 121 | 25.12 ± 0.90 a | 57.76 ± 2.18 b,c | 62.67 ± 2.92 c | 54.74 ± 3.48 b | *** |
α-Cubebene | 1365 | 161 | 9.03 ± 0.55 a | 14.77 ± 0.50 b | 17.54 ± 0.65 c | 15.52 ± 0.83 b | *** |
Copaene | 1388 | 161 | 93.26 ± 5.16 a | 147.7 ± 5.24 b | 174.6 ± 5.65 c | 155.7 ± 7.62 b | *** |
Methyleugenol | 1422 | 178 | 12.88 ± 0.42 a | 23.53 ± 0.60 c | 25.74 ± 1.01 d | 21.35 ± 0.82 b | *** |
Caryophyllene | 1430 | 133 | 258.8 ± 9.19 a | 451.8 ± 16.22 b | 481.3 ± 20.21 b | 455.6 ± 21.50 b | *** |
Myristicin | 1493 | 192 | 31.03 ± 0.99 a | 51.40 ± 1.23 b | 56.88 ± 1.07 c | 49.53 ± 1.69 b | *** |
Elemicin | 1502 | 208 | 3.94 ± 0.13 a | 7.17 ± 0.14 c | 6.87 ± 0.13 c | 5.92 ± 0.17 b | *** |
Total Terpenoids and Benzene-Derive Compounds | 8821 ± 303.2 a | 13,490 ± 334.8 b | 13,923 ± 407.1 b | 12,981 ± 388.7 b | *** | ||
TOTAL COMPOUNDS | 12,378 ± 324.4 a | 18,441 ± 373.7 b,c | 19,027 ± 446.6 c | 17,854 ± 369.8 b | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Ramella, M.; Munekata, P.E.S.; Gagaoua, M.; Franco, D.; Campagnol, P.C.B.; Pateiro, M.; Barretto, A.C.d.S.; Domínguez, R.; Lorenzo, J.M. Inclusion of Healthy Oils for Improving the Nutritional Characteristics of Dry-Fermented Deer Sausage. Foods 2020, 9, 1487. https://doi.org/10.3390/foods9101487
Vargas-Ramella M, Munekata PES, Gagaoua M, Franco D, Campagnol PCB, Pateiro M, Barretto ACdS, Domínguez R, Lorenzo JM. Inclusion of Healthy Oils for Improving the Nutritional Characteristics of Dry-Fermented Deer Sausage. Foods. 2020; 9(10):1487. https://doi.org/10.3390/foods9101487
Chicago/Turabian StyleVargas-Ramella, Márcio, Paulo E. S. Munekata, Mohammed Gagaoua, Daniel Franco, Paulo C. B. Campagnol, Mirian Pateiro, Andrea Carla da Silva Barretto, Rubén Domínguez, and José M. Lorenzo. 2020. "Inclusion of Healthy Oils for Improving the Nutritional Characteristics of Dry-Fermented Deer Sausage" Foods 9, no. 10: 1487. https://doi.org/10.3390/foods9101487
APA StyleVargas-Ramella, M., Munekata, P. E. S., Gagaoua, M., Franco, D., Campagnol, P. C. B., Pateiro, M., Barretto, A. C. d. S., Domínguez, R., & Lorenzo, J. M. (2020). Inclusion of Healthy Oils for Improving the Nutritional Characteristics of Dry-Fermented Deer Sausage. Foods, 9(10), 1487. https://doi.org/10.3390/foods9101487