Optimisation of Sequential Microwave-Assisted Extraction of Essential Oil and Pigment from Lemon Peels Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Microwave-Assisted Extraction (MAE)
2.3. Characterisation of MAE Extracts
2.3.1. Extraction Yield
2.3.2. Colour Intensity
2.4. Purification of LP
2.5. Characterisation of LEO and LP
2.5.1. GC-FID Analysis of LEO
2.5.2. UPLC-DAD-MS Analysis of LP
2.5.3. Antimicrobial Performance of LEO and LP
2.6. Statistical Analysis
3. Results
3.1. MAE Optimisation
3.2. Identification of Major Phenolic Compounds Present in LEO
3.3. Purification and Characterisation of LP
3.3.1. LP Purification with Amberlite Adsorption Resins
3.3.2. Characterisation of Purified LP Fraction
3.4. Antimicrobial Performance of Lemon Extracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Baião, D.; Defreitas, C.; Gomes, L.; Silva, D.; Correa, A.C.N.T.F.; Pereira, P.; Delaguila, E.; Paschoalin, V.M.F. Polyphenols from root, Tubercles and grains cropped in brazil: Chemical and nutritional characterization and their effects on human health and diseases. Nutrients 2017, 9, 1044. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, A.; Hara, Y.; Kawano, T. Dewatering and Extraction of Hydrophilic Solutes and Essential Oils from Cryo-preserved Lemon Peels Using Liquefied Dimethyl Ether. Solvent Extr. Res. Dev. Jpn. 2017, 24, 37–45. [Google Scholar] [CrossRef]
- Dao, T.P.; Tran, T.H.; Nguyen, P.T.N.; Tran, T.K.N.; Ngo, T.C.Q.; Nhan, L.T.H.; Anh, T.T.; Toan, T.Q.; Quan, P.M.; Linh, H.T.K. Optimization of microwave assisted hydrodistillation of essential oil from lemon (Citrus aurantifolia) leaves: Response surface methodology studies. In IOP Conference Series: Materials Science and Engineering; IOP Publishing Ltd.: Bristol, UK, 2020; Volume 736. [Google Scholar]
- Dao, T.P.; Nguyen, D.C.; Nguyen, D.T.; Tran, T.H.; Nguyen, P.T.N.; Le, N.T.H.; Le, X.T.; Nguyen, D.H.; Vo, D.V.N.; Bach, L.G. Extraction process of essential oil from plectranthus amboinicus using microwave-assisted hydrodistillation and evaluation of it’s antibacterial activity. Asian J. Chem. 2019, 31, 977–981. [Google Scholar] [CrossRef]
- Golmakani, M.-T.; Farahmand, M.; Ghassemi, A.; Eskandari, M.H.; Niakousari, M. Enrichment of citral isomers in different microwave-assisted extraction of essential oil from fresh and dried lemon verbena (Aloysia citridora) leaves. J. Food Process. Preserv. 2017, 41, e13215. [Google Scholar] [CrossRef]
- AL-Jabri, N.N.; Hossain, M.A. Chemical composition and antimicrobial potency of locally grown lemon essential oil against selected bacterial strains. J. King Saud Univ. Sci. 2018, 30, 14–20. [Google Scholar] [CrossRef]
- Ben Hsouna, A.; Ben Halima, N.; Smaoui, S.; Hamdi, N. Citrus lemon essential oil: Chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Lipids Health Dis. 2017, 16, 146. [Google Scholar] [CrossRef]
- Miyake, Y.; Hiramitsu, M. Isolation and extraction of antimicrobial substances against oral bacteria from lemon peel. J. Food Sci. Technol. 2011, 48, 635–639. [Google Scholar] [CrossRef]
- Klimek-szczykutowicz, M.; Szopa, A.; Ekiert, H. Citrus limon (Lemon) phenomenon—A review of the chemistry, pharmacological properties, applications in the modern pharmaceutical, food, and cosmetics industries, and biotechnological studies. Plants 2020, 9, 119. [Google Scholar] [CrossRef]
- Putnik, P.; Bursać Kovačević, D.; Režek Jambrak, A.; Barba, F.J.; Cravotto, G.; Binello, A.; Lorenzo, J.M.; Shpigelman, A. Innovative “green” and novel strategies for the extraction of bioactive added value compounds from citruswastes—A review. Molecules 2017, 22, 680. [Google Scholar] [CrossRef]
- Mahato, N.; Sinha, M.; Sharma, K.; Koteswararao, R.; Cho, M.H. Modern Extraction and Purification Techniques for Obtaining High Purity Food-Grade Bioactive Compounds and Value-Added Co-Products from Citrus Wastes. Foods 2019, 8, 523. [Google Scholar] [CrossRef]
- Kato, M. Mechanism of β-cryptoxanthin accumulation in citrus fruits. Acta Hortic. 2016, 1135, 1–10. [Google Scholar] [CrossRef]
- Multari, S.; Licciardello, C.; Caruso, M.; Martens, S. Monitoring the changes in phenolic compounds and carotenoids occurring during fruit development in the tissues of four citrus fruits. Food Res. Int. 2020, 134, 109228. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ding, Y.; Forrest, B.; Oh, J.; Boussert, S.M.; Hamann, M.T. Lemon yellow #15 a new highly stable, water soluble food colorant from the peel of Citrus limon. Food Chem. 2019, 270, 251–256. [Google Scholar]
- Scarano, P.; Naviglio, D.; Prigioniero, A.; Tartaglia, M.; Postiglione, A.; Sciarrillo, R.; Guarino, C. Sustainability: Obtaining Natural Dyes from Waste Matrices Using the Prickly Pear Peels of Opuntia ficus-indica (L.) Miller. Agronomy 2020, 10, 528. [Google Scholar] [CrossRef]
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential oils: Extraction techniques, pharmaceutical and therapeutic potential—A review. Curr. Drug Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef]
- Bustamante, J.; van Stempvoort, S.; García-Gallarreta, M.; Houghton, J.A.; Briers, H.K.; Budarin, V.L.; Matharu, A.S.; Clark, J.H. Microwave assisted hydro-distillation of essential oils from wet citrus peel waste. J. Clean. Prod. 2016, 137, 598–605. [Google Scholar] [CrossRef]
- Hien Tran, T.; Duc Lam, T.; Tien Nguyen, V.; Phat Dao, T.; Hong Nhan, L.T.; Quoc Toan, T.; Vo, D.-V.N.; Anh Vy, T.; Bui, L.M. Response Surface Methodology for Optimization Studies of Microwave-assisted hydrodistillation of essential oil from Vietnamese Citrus aurantifolia (Lemon fruit). In IOP Conference Series: Materials Science and Engineering; IOP Publishing Ltd.: Bristol, UK, 2019; Volume 542. [Google Scholar]
- Golmakani, M.T.; Moayyedi, M. Comparison of microwave-assisted hydrodistillation and solvent-less microwave extraction of essential oil from dry and fresh Citruslimon (Eureka variety) peel. J. Essent. Oil Res. 2016, 28, 272–282. [Google Scholar] [CrossRef]
- Kusuma, H.S.; Putra, A.F.P.; Mahfud, M. Comparison of Two Isolation Methods for Essential Oils from Orange Peel (Citrus auranticum L.) as a Growth Promoter for Fish: Microwave Steam Distillation and Conventional Steam Distillation. J. Aquac. Res. Dev. 2016, 7, 409. [Google Scholar]
- Wang, H.W.; Liu, Y.Q.; Wei, S.L.; Yan, Z.J.; Lu, K. Comparison of microwave-assisted and conventional hydrodistillation in the extraction of essential oils from mango (Mangifera indica L.) flowers. Molecules 2010, 15, 7715–7723. [Google Scholar] [CrossRef]
- Adadi, P.; Barakova, N.V.; Krivoshapkina, E.F. Selected Methods of Extracting Carotenoids, Characterization, and Health Concerns: A Review. J. Agric. Food Chem. 2018, 66, 5925–5947. [Google Scholar] [CrossRef]
- Kaderides, K.; Papaoikonomou, L.; Serafim, M.; Goula, A.M. Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chem. Eng. Process. Process Intensif. 2019, 137, 1–11. [Google Scholar] [CrossRef]
- Csiktusnádi Kiss, G.A.; Forgács, E.; Cserháti, T.; Mota, T.; Morais, H.; Ramos, A. Optimisation of the microwave-assisted extraction of pigments from paprika (Capsicum annuum L.) powders. J. Chromatogr. A 2000, 889, 41–49. [Google Scholar] [CrossRef]
- Kaderides, K.; Goula, A.M.; Adamopoulos, K.G. A process for turning pomegranate peels into a valuable food ingredient using ultrasound-assisted extraction and encapsulation. Innov. Food Sci. Emerg. Technol. 2015, 31, 204–215. [Google Scholar] [CrossRef]
- Zheng, X.; Xu, X.; Liu, C.; Sun, Y.; Lin, Z.; Liu, H. Extraction characteristics and optimal parameters of anthocyanin from blueberry powder under microwave-assisted extraction conditions. Sep. Purif. Technol. 2013, 104, 17–25. [Google Scholar] [CrossRef]
- Huma, Z.; Jayasena, V.; Nasar-Abbas, S.M.; Imran, M.; Khan, M.K. Process optimization of polyphenol extraction from carob (Ceratonia siliqua) kibbles using microwave-assisted technique. J. Food Process. Preserv. 2018, 42, e13450. [Google Scholar] [CrossRef]
- Quiles-Carrillo, L.; Mellinas, C.; Garrigos, M.C.; Balart, R.; Torres-Giner, S. Optimization of Microwave-Assisted Extraction of Phenolic Compounds with Antioxidant Activity from Carob Pods. Food Anal. Methods 2019, 12, 2480–2490. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, X.; Tian, H.; Yang, L. An improved method to obtain essential oil, flavonols and proanthocyanidins from fresh Cinnamomum japonicum Sieb. leaves using solvent-free microwave-assisted distillation followed by homogenate extraction. Arab. J. Chem. 2020, 13, 2041–2052. [Google Scholar] [CrossRef]
- Mahreni; Reningtyas, R.; Priambudi, R.A.; Sugiarti, F.I. Extract of Centella asiatica leaves as a biomordant in cotton dyed with natural dye Bixa orellana. In IOP Conference Series: Materials Science and Engineering; IOP Publishing Ltd.: Bristol, UK, 2019; Volume 2085. [Google Scholar]
- Valadez-Carmona, L.; Ortiz-Moreno, A.; Ceballos-Reyes, G.; Mendiola, J.A.; Ibáñez, E. Valorization of cacao pod husk through supercritical fluid extraction of phenolic compounds. J. Supercrit. Fluids 2018, 131, 99–105. [Google Scholar] [CrossRef]
- Attard, T.M.; Watterson, B.; Budarin, V.L.; Clark, J.H.; Hunt, A.J. Microwave assisted extraction as an important technology for valorising orange waste. New J. Chem. 2014, 38, 2278–2283. [Google Scholar] [CrossRef]
- Li, Y.; Fabiano-Tixier, A.S.; Abert-Vian, M.; Chemat, F. Microwave-assisted extraction of antioxidants and food colors. In Microwave-assisted Extraction for Bioactive Compounds. Food Engineering Series; Chemat, F., Craviotto, G., Eds.; Springer: Boston, MA, USA, 2013; pp. 103–125. [Google Scholar]
- Nasser AL-Jabri, N.; Hossain, M.A. Comparative chemical composition and antimicrobial activity study of essential oils from two imported lemon fruits samples against pathogenic bacteria. BeniSuef Univ. J. Basic Appl. Sci. 2014, 3, 247–253. [Google Scholar] [CrossRef]
- Tadtong, S.; Kamkaen, N.; Watthanachaiyingcharoen, R.; Ruangrungsi, N. Chemical Components of Four Essential Oils in Aromatherapy Recipe. Nat. Prod. Commun. 2015, 10. [Google Scholar] [CrossRef]
- Dao, T.P.; Tran, T.H.; Nhan Nguyen, P.T.N.N.; Kim Ngan, T.T.; Cam Quyen, N.T.; Anh, T.T.; Quan, P.M.; Thu Huong, T.T.; Nguyen, N.H. Chemical Composition and Evaluation of Antibacterial Activities of Essential Oil from Lemon (Citrus aurantifolia L.) Leaves Growing Tien Giang Province, Vietnam. Asian J. Chem. 2019, 31, 2284–2286. [Google Scholar] [CrossRef]
- Shakir, I.K.; Salih, S.J. Extraction of Essential Oils from Citrus By-Products Using Microwave Steam Distillation. Iraqi J. Chem. Pet. Eng. 2015, 16, 11–22. [Google Scholar]
- Yazgan, H.; Ozogul, Y.; Kuley, E. Antimicrobial influence of nanoemulsified lemon essential oil and pure lemon essential oil on food-borne pathogens and fish spoilage bacteria. Int. J. Food Microbiol. 2019, 306, 108266. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Kammerer, D.R.; Carle, R.; Stanley, R.A.; Saleh, Z.S. Pilot-scale resin adsorption as a means to recover and fractionate apple polyphenols. J. Agric. Food Chem. 2010, 58, 6787–6796. [Google Scholar] [CrossRef]
- Ferreira-Dias, S.; Monteiro, J.P.; Ribeiro, M.H.L. The use of different adsorbents for selective removal of compounds from olive residue oil miscella. Eur. Food Res. Technol. 2002, 214, 400–404. [Google Scholar] [CrossRef]
- Coutinho, M.R.; Quadri, M.B.; Moreira, R.F.P.M.; Quadri, M.G.N. Partial purification of anthocyanins from Brassica oleracea (red cabbage). Sep. Sci. Technol. 2004, 39, 3769–3782. [Google Scholar] [CrossRef]
- Sandhu, A.K.; Gu, L. Adsorption/desorption characteristics and separation of anthocyanins from muscadine (Vitis rotundifolia) juice pomace by use of macroporous adsorbent resins. J. Agric. Food Chem. 2013, 61, 1441–1448. [Google Scholar] [CrossRef]
- Wang, J.; An Wu, F.; Zhao, H.; Liu, L.; Sheng Wu, Q. Isolation of flavonoids from mulberry (Morus alba L.) leaves with macroporous resins. Afr. J. Biotechnol. 2008, 7, 2147–2155. [Google Scholar]
- Ledesma-Escobar, C.A.; Priego-Capote, F.; Luque de Castro, M.D. Comparative Study of the Effect of Sample Pretreatment and Extraction on the Determination of Flavonoids from Lemon (Citrus limon). PLoS ONE 2016, 11, e0148056. [Google Scholar] [CrossRef] [PubMed]
- Di Donato, P.; Taurisano, V.; Tommonaro, G.; Pasquale, V.; Jiménez, J.M.S.; de Pascual-Teresa, S.; Poli, A.; Nicolaus, B. Biological Properties of Polyphenols Extracts from Agro Industry’s Wastes. Waste Biomass Valorization 2018, 9, 1567–1578. [Google Scholar] [CrossRef]
- Micó-Vicent, B.; Viqueira, V.; Ramos, M.; Luzi, F.; Dominici, F.; Torre, L.; Jiménez, A.; Puglia, D.; Garrigós, M.C. Effect of Lemon Waste Natural Dye and Essential Oil Loaded into Laminar Nanoclays on Thermomechanical and Color Properties of Polyester Based Bionanocomposites. Polymers 2020, 12, 1451. [Google Scholar] [CrossRef] [PubMed]
- Seow, Y.X.; Yeo, C.R.; Chung, H.L.; Yuk, H.-G. Plant Essential Oils as Active Antimicrobial Agents. Crit. Rev. Food Sci. Nutr. 2014, 54, 625–644. [Google Scholar] [CrossRef] [PubMed]
- Thielmann, J.; Muranyi, P.; Kazman, P. Screening essential oils for their antimicrobial activities against the foodborne pathogenic bacteria Escherichia coli and Staphylococcus aureus. Heliyon 2019, 5, e01860. [Google Scholar] [CrossRef]
- Man, A.; Santacroce, L.; Jacob, R.; Mare, A.; Man, L. Antimicrobial activity of six essential oils against a group of human pathogens: A comparative study. Pathogens 2019, 8, 15. [Google Scholar] [CrossRef]
- Caputo, L.; Quintieri, L.; Cavalluzzi, M.M.; Lentini, G.; Habtemariam, S. Antimicrobial and antibiofilm activities of citrus water-extracts obtained by microwave-assisted and conventional methods. Biomedicines 2018, 6, 70. [Google Scholar] [CrossRef]
Conditions | Water-to-Waste Ratio (mL/g) | |||
---|---|---|---|---|
0.3 (No Agitation) | 1 (Magnetic Stirring) | |||
1st Step (Heating) | 2nd Step (Extraction) | 1st Step (Heating) | 2nd Step (Extraction) | |
Irradiation power (W/g) | 1.2 | 0.7 | 2.4 | 1.2 |
Extraction time (min) | 5 | 10 | 5 | 10 |
Yield (wt.%) | 2.03 ± 0.21 a | 1.91 ± 0.15 a |
Factors | −1 | 0 | +1 |
---|---|---|---|
Ethanol concentration (%, v/v) | 20 | 50 | 80 |
Temperature (°C) | 40 | 60 | 80 |
Extraction time (min) | 5 | 32.5 | 60 |
Resin | Matrix | Polarity | Surface Area (m2/g) | Mean Pore Diameter (Å) |
---|---|---|---|---|
Amberlite XAD4 | styrene-divinylbenzene | Nonpolar | 750 | 100 |
Amberlite XAD7HP | acrylic | Polar | 500 | 400 |
Amberlite XAD16N | styrene-divinylbenzene | Nonpolar | 800 | 200 |
Compound | Retention Time (min) | Concentration (wt.%) |
---|---|---|
α-Thujene | 8.75 | 0.461 ± 0.049 |
α-Pinene | 9.02 | 1.992 ± 0.081 |
Sabinene | 10.62 | 2.395 ± 0.104 |
β-Pinene | 10.81 | 14.517 ± 0.338 |
Myrcene | 11.35 | 1.427 ± 0.078 |
α-Terpinene | 12.55 | 0.224 ± 0.060 |
p-Cymene | 12.88 | 0.530 ± 0.010 |
Limonene | 13.16 | 65.082 ± 0.488 |
γ-Terpinene | 14.40 | 9.743 ± 0.087 |
Terpinolene | 15.66 | 0.433 ± 0.015 |
Linalool | 16.38 | 0.161 ± 0.033 |
Terpinen-4-ol | 20.13 | 0.168 ± 0.064 |
α-Terpineol | 20.82 | 0.272 ± 0.010 |
Nerol | 22.25 | 0.169 ± 0.008 |
Neral | 22.83 | 0.383 ± 0.018 |
Geranial | 24.19 | 0.492 ± 0.060 |
Neryl acetate | 28.26 | 0.400 ± 0.032 |
Geranyl acetate | 29.12 | 0.273 ± 0.081 |
trans-Caryophyllene | 30.86 | 0.228 ± 0.005 |
α-trans-Bergamotene | 31.47 | 0.289 ± 0.011 |
β-Bisabolene | 34.56 | 0.361 ± 0.009 |
Extract Concentration (ppm) | S. aureus (log CFU/mL) | E. coli (log CFU/mL) | |
---|---|---|---|
Control | - | 7.69 ± 0.09 a | 7.50 ± 0.02 a |
LP | 1000 | 7.40 ± 0.13 a | 7.62 ± 0.11 a |
10,000 | 7.79 ± 0.09 a | 7.43 ± 0.27 a | |
100,000 | 7.96 ± 0.32 a | 7.78 ± 0.13 a | |
LEO | 15 | 7.05 ± 0.11 b | >7.5 a |
50 | 6.76 ± 0.74 b | 7.49 ± 0.09 a | |
150 | 5.54 ± 0.54 c | 6.09 ± 0.44 b | |
500 | 4.18 ± 0.91 c | 4.07 ± 1.93 c | |
1500 | 2.92 ± 1.05 d | 2.95 ± 1.09 cd | |
5000 | <1 e | 1.45 ± 0.64 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Abad, A.; Ramos, M.; Hamzaoui, M.; Kohnen, S.; Jiménez, A.; Garrigós, M.C. Optimisation of Sequential Microwave-Assisted Extraction of Essential Oil and Pigment from Lemon Peels Waste. Foods 2020, 9, 1493. https://doi.org/10.3390/foods9101493
Martínez-Abad A, Ramos M, Hamzaoui M, Kohnen S, Jiménez A, Garrigós MC. Optimisation of Sequential Microwave-Assisted Extraction of Essential Oil and Pigment from Lemon Peels Waste. Foods. 2020; 9(10):1493. https://doi.org/10.3390/foods9101493
Chicago/Turabian StyleMartínez-Abad, Antonio, Marina Ramos, Mahmoud Hamzaoui, Stephane Kohnen, Alfonso Jiménez, and María Carmen Garrigós. 2020. "Optimisation of Sequential Microwave-Assisted Extraction of Essential Oil and Pigment from Lemon Peels Waste" Foods 9, no. 10: 1493. https://doi.org/10.3390/foods9101493
APA StyleMartínez-Abad, A., Ramos, M., Hamzaoui, M., Kohnen, S., Jiménez, A., & Garrigós, M. C. (2020). Optimisation of Sequential Microwave-Assisted Extraction of Essential Oil and Pigment from Lemon Peels Waste. Foods, 9(10), 1493. https://doi.org/10.3390/foods9101493