Accumulation of Phenolic Acids during Storage over Differently Handled Fresh Carrots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Quantification of Soluble Phenolic Acids
2.3. Mass Spectrometric Identification
2.4. Statistical Analyses
3. Results and Discussion
3.1. Identification and Quantification of Phenolic Acids
3.2. Effect of Carrot Processing on Total Phenolic Acids
3.3. Effect of Carrot Processing on Individual Phenolic Acid Compounds
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Han, X.; Shen, T.; Lou, H. Dietary polyphenols and their biological significance. Int. J. Mol. Sci. 2007, 8, 950–988. [Google Scholar] [CrossRef] [Green Version]
- Scalbert, A.; Manach, C.; Morand, C.; Remesy, C. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef]
- Granato, D.; Lorenzo, J.M.; Kovacevic, D.B.; Barba, F.J.; Cruz, A.G.; Putnik, P. Functional foods: Product development, technological trends, efficacy testing, and safety. Annu. Rev. Food Sci. Technol. 2020, 11, 93–118. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Naczk, M. Food Phenolics; Technomic Publishing Co. Inc.: Lancaster, PA, USA, 1995. [Google Scholar]
- Mattila, P.; Hellström, J. Phenolic acids in potatoes, vegetables, and some of their products. J. Food Compos. Anal. 2007, 20, 152–160. [Google Scholar] [CrossRef]
- Condurso, C.; Cincotte, F.; Tripodi, G.; Merlino, M.; Giarranta, F.; Verzera, A.; Dini, I.; Tenore, G.C.; Dini, A. A new approach for the shelf-life definition of minimally processed carrots. Postharvest Biol Technol. 2020, 163, 111138. [Google Scholar] [CrossRef]
- Alarcón-Flores, M.I.; Romero-González, R.; Vidal, J.L.M.; González, F.J.E.; Frenich, A.G. Monitoring of phytochemicals in fresh and fresh-cut vegetables: A comparison. Food Chem. 2014, 142, 392–399. [Google Scholar] [CrossRef]
- Babic, I.; Amiot, M.J.; Nguyen-The, C.; Aubert, S. Changes in phenolic content in fresh ready-to-use shredded carrots during storage. J. Food Sci. 1993, 58, 351–356. [Google Scholar] [CrossRef]
- Becerra-Moreno, A.; Benavides, J.; Cisneros-Zevallos, L.; Jacobo-Velaázquez, D.A. Plants as Biofactories: Glyphosate-Induced Production of Shikimic Acid and Phenolic Antioxidants in Wounded Carrot Tissue. J. Agric. Food Chem. 2012, 60, 11378–11386. [Google Scholar] [CrossRef]
- Cisneros-Zevallos, L. The use of controlled post-harvest abiotic stresses as a tool for enhancing the nutraceutical content and adding-value to fresh fruits and vegetables. J. Food Sci. 2003, 68, 1560–1565. [Google Scholar] [CrossRef]
- Du, W.X.; Avena-Bustillos, R.J.; Breksa, A.P., III; McHugh, T.H. Effect of UV-B light and different cutting styles on antioxidant enhancement of commercial fresh-cut carrot products. Food Chem. 2012, 134, 1862–1869. [Google Scholar] [CrossRef]
- Howard, L.R.; Griffin, L.E. Lignin formation and surface discolouration of minimally processed carrot sticks. J. Food Sci. 1993, 58, 1065–1067. [Google Scholar] [CrossRef]
- Klaiber, R.G.; Baur, S.; Koblo, A.; Carle, R. Influence of washing treatment and storage atmosphere on phenylalanine ammonia-lyase activity and phenolic acid content of minimally processed carrot sticks. J. Agric. Food Chem. 2005, 53, 1065–1072. [Google Scholar] [CrossRef]
- Reyes, L.F.; Villarreal, J.E.; Cisneros-Zevallos, L. The increase in antioxidant capacity after wounding depends on the type of fruit or vegetable tissue. Food Chem. 2007, 101, 1254–1262. [Google Scholar] [CrossRef]
- Ruiz-Cruz, S.; Islas-Osuna, M.A.; Sotelo-Mundo, R.R.; Vázquez-Ortiz, F.; González-Aguilar, G.A. Sanitation procedure affects biochemical and nutritional changes of shredded carrots. J. Food Sci. 2007, 72, S146–S152. [Google Scholar] [CrossRef]
- Simões, A.D.N.; Allende, A.; Tudela, J.A.; Puschmann, R.; Gil, M.I. Optimum controlled atmospheres minimise respiration rate and quality losses while increase phenolic compounds of baby carrots. LWT-Food Sci. Technol. 2011, 44, 277–283. [Google Scholar] [CrossRef]
- Lòpez-Gámez, G.; Elez-Martínez, P.; Martín-Belloso, O.; Soliva-Fortuny, R. Enhancing phenolic content in carrots by pulsed electric fields during post-treatment time: Effects on cell viability and quality attributes. Innov. Food Sci. Emerg. Technol. 2020, 59, 102252. [Google Scholar] [CrossRef]
- Viacava, F.; Santana-Gálvez, J.; Heredia-Olea, E.; Pérez-Carrillo, E.; Nair, V.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Sequential application of postharvest wounding stress and extrusion as an innovative tool to increase the concentration of free and bound phenolics in carrots. Food Chem. 2020, 307, 125551. [Google Scholar] [CrossRef]
- Leon, J.; Rojo, E.; Sanchez-Serrano, J.J. Wound signalling in plants. J. Exp. Bot. 2001, 52, 1–9. [Google Scholar] [CrossRef]
- Surjadinata, B.B.; Cisneros-Zevallos, L. Biosynthesis of phenolic antioxidants in carrot tissue increases with wounding intensity. Food Chem. 2012, 134, 615–624. [Google Scholar] [CrossRef]
- Clifford, M.N.; Johnston, K.L.; Knight, S.; Kuhnert, N. Hierarchical scheme for LC-MSn identification for chlorogenic acids. J. Agric. Food Chem. 2003, 51, 2900–2911. [Google Scholar] [CrossRef]
- Formica-Oliveira, A.C.; Martínez-Hernández, G.B.; Aguayo, E.; Gómez, P.A.; Artés, F.; Artés-Hernández, F. UV-C and hyperoxia abiotic stresses to improve healthiness of carrots: Study of combined effects. J. Sci. Food Technol. 2016, 53, 3465–3476. [Google Scholar] [CrossRef]
- Faisal, N.A.; Chathta, S.A.S.; Hussain, A.I.; Ikram, M.; Bukhari, S.A. Liaison of phenolic acids and biological activity of escalating cultivars of Daucus carota. Int. J. Food Prop. 2017, 20, 2782–2792. [Google Scholar] [CrossRef] [Green Version]
- Kreutzmann, S.; Christensen, L.P.; Edelenbos, M. Investigation of bitterness in carrots (Daucus carota L.) based on quantitative chemical and sensory analysis. LWT-Food Sci. Technol. 2008, 41, 193–205. [Google Scholar] [CrossRef]
- Esatbeyoglu, T.; Rodríguez-Werner, M.; Schlösser, A.; Liehr, M.; Ipharraguerre, I.; Winterhalter, P.; Rimbach, G. Fractionation of plant bioactives from black carrots (Daucus carota subspecies sativus varietas atrorubens Alef.) by adsorptive membrane chromatography and analysis of their potential anti-diabetic activity. J. Agric. Food Chem. 2016, 64, 5901–5908. [Google Scholar] [CrossRef]
- Kammerer, D.; Carle, R.; Scheiber, A. Characterization of phenolic acids in black carrots (Daucus carota ssp. sativus var. atrorubens Alef.) by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 1331–1340. [Google Scholar] [CrossRef]
- Pace, B.; Capotorto, I.; Cefola, M.; Minasi, P.; Montemurro, N.; Carbone, V. Evaluation of quality, phenolic and carorotenoid composition of fresh-cut purple Polignano carrots stored in modified atmosphere. J. Food Comp. Anal. 2020, 86, 103363. [Google Scholar] [CrossRef]
- Dini, I.; Tenore, G.C.; Dini, A. New polyphenol derivative in Ipomoea batatas tubers and its antioxidant activity. J. Agric. Food Chem. 2006, 54, 8733–8737. [Google Scholar] [CrossRef]
- Toffali, K.; Ceoldo, S.; Stocchero, M.; Levi, M.; Guzzo, F. Carrot-specific features of the phenylpropanoid pathway identified by feeding cultured cells with defined intermediates. Plant Sci. 2013, 209, 81–92. [Google Scholar] [CrossRef]
- Hager, T.J.; Howard, L.R. Processing effects on carrot phytonutrients. Hortic. Sci. 2006, 41, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Hamauzu, Y. Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem. 2004, 88, 503–509. [Google Scholar] [CrossRef]
- Edelenbos, M.; Balasubramaniam, M.; Pedersen, H.T. Effects of minimal processing and packaking on volatile compounds and other sensory aspects in carrots. Acta Hortic. 2010, 876, 269–277. [Google Scholar] [CrossRef]
- Ahmad, T.; Cawood, M.; Iqbal, Q.; Ariño, A.; Batool, A.; Tariq, R.M.S.; Azam, M.; Akhtar, S. Phytochemicals in Daucus carota and their health benefits—Review article. Foods 2019, 8, 424. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, S.; Rauf, A.; Imran, M.; Qamar, M.; Riaz, M.; Mubarak, M.S. Black carrot (Daucus carota L.), dietary and health promoting perspectives of its polyphenols: A review. Trends Food Sci. Technol. 2017, 66, 36–47. [Google Scholar] [CrossRef]
- Alasalvar, C.; Grigor, J.M.; Zhang, D.; Quantick, P.C.; Shahidi, F. Comparison of volatiles, phenolics, sugars, antioxidant vitamins, and sensory quality of different colored carrot varieties. J. Agric. Food Chem. 2001, 49, 1410–1416. [Google Scholar] [CrossRef]
- Frond, A.D.; Iuhas, C.I.; Stirbu, I.; Leopold, L.; Socaci, S.; Andreea, S.; Ayvaz, H.; Andreea, S.; Mihai, S.; Diaconeasa, Z.; et al. Phytochemical characterization of five edible purple-reddish vegetables: Anthocyanins, flavonoids, and phenolic acid derivatives. Molecules 2019, 24, 1536. [Google Scholar] [CrossRef] [Green Version]
- del Rosario Cuellar-Villarreal, M.; Ortega-Hernández, E.; Becerra-Moreno, A.; Welti-Chanes, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Effects of ultrasound treatment and storage time on the extractability and biosynthesis of nutraceuticals in carrot (Daucus carota). Postharvest Biol. Technol. 2016, 119, 18–26. [Google Scholar] [CrossRef]
- Keser, D.; Gamze, G.; Kelebek, H.; Keksin, M.; Soysal, Y.; Sekerli, Y.E.; Arslan, A.; Selli, S. Characterization of aroma and phenolic composition of carrot (Daucus carota ‘Nantes’) powders obtained from intermittent microwave drying using GC-MS and LC-MS/MS. Food Bioprod. Process. 2020, 119, 350–359. [Google Scholar] [CrossRef]
- Kremr, D.; Bajer, T.; Bajerová, P.; Surmová, S.; Ventura, K. Unremitting problems with chlorogenic acid nomenclature: A review. Quim. Nova 2016, 39, 530–533. [Google Scholar] [CrossRef]
- Jacobo-Velázquez, D.A.; Martínez-Hernández, G.B.; del Rodríguez, S.; Cao, C.-M.; Cisneros-Zevallos, L. Plants as biofactories: Physiological role of reactive oxygen species on the accumulation of phenolic antioxidants in carrot tissue under wounding and hyperoxia stress. J. Agric. Food Chem. 2011, 59, 6583–6593. [Google Scholar] [CrossRef]
- Becerra-Moreno, A.; Redondo-Gil, M.; Benavides, J.; Nair, V.; Cisneros-Zevallos, L.; Jaccobo-Velázquez, D.A. Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot. Front. Plant Sci. 2015, 6, 837. [Google Scholar] [CrossRef] [Green Version]
- Alegria, C.; Gonçalves, E.M.; Moldão-Martins, M.; Cisneros-Zevallos, L.; Abreu, M. Peel removal improves quality without antioxidant loss, through wound-induced phenolic biosynthesis in shredded carrot. Postharvest Biol. Technol. 2016, 120, 232–239. [Google Scholar] [CrossRef]
Phenolic Acid | Deprotonated Formula | Monoisotopic Mass | Detected Mass (m/z) | Mass Difference (ppm) | Characteristic Fragments (MS2) |
---|---|---|---|---|---|
3-Caffeoylquinic acid, 3-CQA | C16H17O9 | 353.0873 | 353.0876 | 0.85 | 191.0558, 179.0345 |
5-Caffeoylquinic acid, 5-CQA | C16H17O9 | 353.0873 | 353.0867 | −1.70 | 191.0551, 179.0348 |
Feruloyl-rutinoside | C22H29O13 | 501.1608 | 501.1605 | −0.60 | 193.0491 |
Caffeoyldaucic acid, CDA | C16H13O10 | 365.0509 | 365.0499 | −1.37 | 203.0183, 179.0337 |
Feruloylquinic acid, FQA | C17H19O9 | 367.1029 | 367.1042 | 3.54 | 191.0556, 193,0514 |
Dicaffeoyldaucic acid, diCDA | C25H19O13 | 527.0826 | 527.0816 | −1.90 | 365.0507, 203.0190, 179.0345 |
3,5-Dicaffeoylquinic acid, 3,5-diCQA | C25H23O12 | 515.1190 | 515.1169 | −4.08 | 353.0897, 191.0536, 179.0354 |
4,5-Dicaffeoylquinic acid, 4,5-diCQA | C25H23O12 | 515.1190 | 515.1182 | −1.55 | 353.0888, 191.0540, 179.0305 |
Caffeoyl-feruloyldaucic acid, CFDA | C26H21O13 | 541.0982 | 541.0969 | −2.40 | 379.0662, 193.0504, 365.0496 |
Feruloyldaucic acid, FDA | C17H15O10 | 379.0655 | 379.0687 | 0.44 | 193.0848, 203.0158 |
Diferuloyldaucic acid | C27H23O13 | 555.1139 | 555.1155 | 2.88 | ND |
Phenolic Acid | Carrot Sample | |||||
---|---|---|---|---|---|---|
Untreated | Washed | Polished | Peeled | Grated | Peels | |
3-Caffeoylquinic acid | 19.1 ± 2.57 | 14.7 ± 1.3 | 10.2 ± 1.8 | 2.35 ± 0.7 | 2.07 ± 0.6 | 57.0 ± 1.8 |
5-Caffeoylquinic acid | 429 ± 45.5 | 540 ± 90.7 | 374 ± 20.0 | 164 ± 59.5 | 144 ± 48.2 | 1760 ± 55 |
Feruloyl-rutinoside | 45.4 ± 5.7 | 83.1 ± 24.9 | 69.6 ± 6.8 | 20.4 ± 6.3 | 23.3 ± 4.0 | 261 ± 7.2 |
Feroyl-quinic acid | 41.9 ± 9.7 | 52.0 ± 13.5 | 43.5 ± 6.5 | 24.5 ± 6.7 | 16.6 ± 5.3 | 163 ± 19.0 |
Caffeoyldaucic acid | 121 ± 6.2 | 112 ± 21.5 | 64.7 ± 6.7 | 20.5 ± 7.3 | 25.2 ± 9.7 | 396 ± 13.3 |
3,5-diCaffeoylquinic acid | 12.9 ± 0.8 | 11.7 ± 2.8 | 7.54 ± 0.7 | 1.75 ± 0.8 | 1.40 ± 0.1 | 42.2 ± 2.4 |
Dicaffeoyldaucic acid | 137 ± 21.7 | 113 ± 24.0 | 56.2 ± 3.7 | 8.10 ± 1.9 | 11.9 ± 7.3 | 356 ± 12.7 |
4,5-diCaffeoylquinic acid | 26.5 ± 2.0 | 21.6 ± 1.8 | 12.4 ± 1.9 | 1.04 ± 0.1 | 1.04 ± 0.5 | 76.7 ± 5.0 |
Caffeoylferuloyldaucic acid | 8.30 ± 1.6 | 7.48 ± 1.4 | 5.16 ± 1.0 | 0.64 ± 0.1 | 0.64 ± 0.4 | 25.9 ± 0.4 |
Feruloyldaucic acid | 34.6 ± 3.5 | 28.7 ± 3.6 | 15.9 ± 0.7 | 1.76 ± 0.3 | 1.21 ± 0.4 | 85.9 ± 4.2 |
diFeruloyldaucic acid | 16.9 ± 2.1 | 12.2 ± 0.6 | 6.42 ± 0.4 | 0.96 ± 0.1 | 0.66 ± 0.0 | 46.4 ± 2.8 |
Total | 893 ± 87.2 | 996 ± 177.2 | 666 ± 23.7 | 246 ± 81.4 | 227 ± 67.9 | 3270 ± 106.6 |
Storage Period | Caffeic Acid (mg/kg) | Ferulic Acid (mg/kg) | Dry Matter (%) |
---|---|---|---|
Days | Untreated Carrots | ||
0 | 411 ± 42.8 b | 71.8 ± 4.9 b | 11.71 ± 0.49 |
2 | 777 ± 175.8 b | 70.5 ± 11.5 b | 12.15 ± 0.30 |
7 | 1657 ± 96.7 a | 79.3 ± 17.3 b | 11.81 ± 0.19 |
14 | 1970.2 ± 256.6 a | 80.64 ± 16.3 b | 11.68 ± 0.27 |
28 | 1898 ± 113.8 a | 117.6 ± 11.9 a | 11.46 ± 0.18 |
p-value 1 | <0.001 | 0.008 | |
Days | Washed Carrots | ||
0 | 440 ± 74.4 b | 84.8 ± 17.3 a | 11.99 ± 0.28 |
2 | 916 ± 57.1 b | 90.2 ± 16.5 a | 12.22 ± 0.37 |
7 | 1839 ± 244.5 a | 77.3 ± 6.2 a | 11.57 ± 0.35 |
14 | 1901 ± 169.0 a | 86.6 ± 4.6 a | 12.10 ± 0.61 |
28 | 2318 ± 278.3 a | 117 ± 26.2 a | 11.63 ± 0.37 |
p-value 1 | <0.001 | 0.100 | |
Days | Polished Carrots | ||
0 | 281 ± 5.3 d | 63.8 ± 5.9 b | 12.52 ± 0.23 |
2 | 891 ± 84.8 c | 87.7 ± 16.1 b | 11.99 ± 0.15 |
7 | 2170 ± 142 b | 73.4 ± 8.7 b | 11.85 ± 0.42 |
14 | 3150 ± 239 a | 94.2 ± 9.4 b | 11.97 ± 0.32 |
28 | 2963 ± 102 a | 145 ± 20.0 a | 11.89 ± 0.24 |
p-value 1 | <0.001 | <0.001 | |
Days | Peeled Carrots | ||
0 | 103 ± 35.7 c | 22.3 ± 6.0 c | 12.25 ± 0.19 |
2 | 562 ± 127.5 c | 75.7 ± 23.9 c | 11.90 ± 0.64 |
7 | 2200 ± 104.7 b | 45.3 ± 6.6 b | 11.78 ± 0.87 |
14 | 2722 ± 191.1 b | 53.4 ± 8.2 b | 11.73 ± 0.96 |
28 | 4256 ± 620.7 a | 146 ± 46.7 a | 11.93 ± 0.35 |
p-value 1 | <0.001 | <0.001 | |
Hours | Grated Carrot | ||
0 | 96.0 ± 35.0 b | 18.7 ± 2.0 b | 12.16 ± 0.32 |
1 | 97.5 ± 20.6 b | 16.6 ± 2.4 b | 12.28 ± 0.14 |
5 | 100 ± 14.5 b | 17.1 ± 2.2 b | 12.11 ± 0.26 |
24 | 200 ± 32.9 a | 33.9 ± 1.7 a | 12.08 ± 0.25 |
p-value 1 | 0.004 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hellström, J.; Granato, D.; Mattila, P.H. Accumulation of Phenolic Acids during Storage over Differently Handled Fresh Carrots. Foods 2020, 9, 1515. https://doi.org/10.3390/foods9101515
Hellström J, Granato D, Mattila PH. Accumulation of Phenolic Acids during Storage over Differently Handled Fresh Carrots. Foods. 2020; 9(10):1515. https://doi.org/10.3390/foods9101515
Chicago/Turabian StyleHellström, Jarkko, Daniel Granato, and Pirjo H. Mattila. 2020. "Accumulation of Phenolic Acids during Storage over Differently Handled Fresh Carrots" Foods 9, no. 10: 1515. https://doi.org/10.3390/foods9101515
APA StyleHellström, J., Granato, D., & Mattila, P. H. (2020). Accumulation of Phenolic Acids during Storage over Differently Handled Fresh Carrots. Foods, 9(10), 1515. https://doi.org/10.3390/foods9101515