Mycotoxin Occurrence, Exposure and Health Implications in Infants and Young Children in Sub-Saharan Africa: A Review
Abstract
:1. Introduction
2. Mycotoxin Occurrence in Foods for Infants and Young Children
2.1. Cereal-Based Products
2.2. Breast Milk and Infant Formula
2.3. Oilseed- and Fruit-Based Products
3. Mycotoxin Exposure Assessment of Infants and Young Children in Sub-Saharan Africa
3.1. Dietary Exposure Assessment
3.2. Mycotoxin Exposure Assessment Using Biomarkers
4. Health Implications Associated with Mycotoxin Exposure of Infants and Young Children in Sub-Saharan Africa
4.1. Child Growth Impairment
4.1.1. Aflatoxin Exposure and Infant Growth
4.1.2. Fumonisin Exposure and Infant Growth
4.1.3. Postulated Mechanism for Growth Impairment
4.2. Child Immune and Nervous Systems
Mycotoxin Exposure and Autism Spectrum Disorder
4.3. Causative Agent of Cancer
5. Conclusion and Future Direction
Author Contributions
Funding
Conflicts of Interest
References
- Fox, E.M.; Howlett, B.J. Secondary metabolism: Regulation and role in fungal biology. Curr. Opin. Microbiol. 2008, 11, 481–487. [Google Scholar] [CrossRef]
- I Pitt, J. Toxigenic fungi and mycotoxins. Br. Med Bull. 2000, 56, 184–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage, 2nd ed.; Springer Science and Business Media LLC: New York, NY, USA, 1997. [Google Scholar]
- Eskola, M.; Kos, G.; Elliott, C.T.; HajšLová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2019, 60, 2773–2789. [Google Scholar] [CrossRef] [PubMed]
- Janzen, D.H. Why fruits rot, seeds mold, and meat spoils. Am. Nat. 1977, 111, 691–713. [Google Scholar] [CrossRef]
- Tsitsigiannis, D.I.; Mirto, D.; Antoniu, P.P.; Tjamos, E.C. Biological control strategies of mycotoxigenic fungi and associated mycotoxins in mediterranean basin crops. Phytopathol. Mediterr. 2012, 51, 158–174. [Google Scholar] [CrossRef]
- Magan, N.; Sanchis, V.; Aldred, D. The Role of Spoilage Fungi in Seed Deterioration. In Fungal Biotechnology in Agriculture, Food and Environmental Application; Aurora, D.K., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 2003; pp. 311–323. [Google Scholar]
- Begum, F.; Samajpati, N. Mycotoxin production on rice, pulses and oilseeds. Naturwissenschaften 2000, 87, 275–277. [Google Scholar] [CrossRef] [PubMed]
- Chilaka, C.A.; De Boevre, M.; Atanda, O.O.; De Saeger, S. Occurrence of Fusarium mycotoxins in cereal crops and processed products (ogi) from Nigeria. Toxins 2016, 8, 342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, B.L.; Coppa, C.F.S.C.; De Neeff, D.V.; Corassin, C.H.; Oliveira, C.A.F. Mycotoxins in fruits and fruit-based products: Occurrence and methods for decontamination. Toxin Rev. 2018, 38, 263–272. [Google Scholar] [CrossRef]
- Kabak, B.; Dobson, A.D.W. Mycotoxins in spices and herbs–An update. Crit. Rev. Food Sci. Nutr. 2015, 57, 18–34. [Google Scholar] [CrossRef]
- Sedova, I.; Kiseleva, M.; Tutelyan, V. Mycotoxins in tea: Occurrence, methods of determination and risk evaluation. Toxins 2018, 10, 444. [Google Scholar] [CrossRef] [Green Version]
- Bertero, A.; Moretti, A.; Spicer, L.J.; Caloni, F. Fusarium molds and mycotoxins: Potential species-specific effects. Toxins 2018, 10, 244. [Google Scholar] [CrossRef] [Green Version]
- Fung, F.; Clark, R.F. Health effects of mycotoxins: A toxicological overview. J. Toxicol. Clin. Toxicol. 2004, 42, 217–234. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, N.; Dänicke, S.; Edler, L.; Gottschalk, C.; Lassek, E.; Marko, D.; Rychlik, M.; Mally, A. A critical evaluation of health risk assessment of modified mycotoxins with a special focus on zearalenone. Mycotoxin Res. 2019, 35, 27–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peraica, M.; Radić, B.; Lucić, A.; Pavlović, M. Toxic effects of mycotoxins in humans. Bull. World Health Organ. 1999, 77, 754–766. [Google Scholar]
- Boon, P.E.; Bakker, M.I.; Van Klaveren, J.D.; Van Rossum, C.T.M. Risk assessment of the dietary exposure to contaminants and pesticide residues in young children in the Netherlands. Eur. J. Nutr. Food Saf. 2014, 4, 8–9. [Google Scholar] [CrossRef]
- Peraica, M.; Richter, D.; Rašić, D. Mycotoxicoses in children. Arch. Ind. Hyg. Toxicol. 2014, 65, 347–363. [Google Scholar] [CrossRef] [Green Version]
- Alassane-Kpembi, I.; Schatzmayr, G.; Taranu, I.; Marin, D.; Puel, O.; Oswald, I.P. Mycotoxins co-contamination: Methodological aspects and biological relevance of combined toxicity studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3489–3507. [Google Scholar] [CrossRef] [PubMed]
- Marin, S.; Ramos, A.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef]
- De Ruyck, K.; De Boevre, M.; Huybrechts, I.; De Saeger, S. Dietary mycotoxins, co-exposure, and carcinogenesis in humans: Short review. Mutat. Res. Mutat. Res. 2015, 766, 32–41. [Google Scholar] [CrossRef] [Green Version]
- De Santis, B.; Brera, C.; Mezzelani, A.; Soricelli, S.; Ciceri, F.; Moretti, G.; Debegnach, F.; Bonaglia, M.C.; Villa, L.; Molteni, M.; et al. Role of mycotoxins in the pathobiology of autism: A first evidence. Nutr. Neurosci. 2019, 22, 132–144. [Google Scholar] [CrossRef] [PubMed]
- De Santis, B.; Raggi, M.E.; Moretti, G.; Facchiano, F.; Mezzelani, A.; Villa, L.; Bonfanti, A.; Campioni, A.; Rossi, S.; Camposeo, S.; et al. Study on the association among mycotoxins and other variables in children with autism. Toxins 2017, 9, 203. [Google Scholar] [CrossRef] [PubMed]
- Marasas, W.F.O.; Riley, R.T.; Hendricks, K.A.; Stevens, V.L.; Sadler, T.W.; Waes, J.G.-V.; Missmer, S.A.; Cabrera, J.; Torres, O.; Gelderblom, W.C.A.; et al. Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: A potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J. Nutr. 2004, 134, 711–716. [Google Scholar] [CrossRef]
- Missmer, S.A.; Suarez, L.; Felkner, M.; Wang, E.; Merrill, A.H.; Rothman, K.J.; Hendricks, K.A. Exposure to fumonisins and the occurrence of neural tube defects along the Texas–Mexico border. Environ. Health Perspect. 2006, 114, 237–241. [Google Scholar] [CrossRef]
- Abdulrazzaq, Y.M.; Osman, N.; Ibrahim, A. Fetal exposure to aflatoxins in the United Arab Emirates. Ann. Trop. Paediatr. 2002, 22, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Abdulrazzaq, Y.M.; Osman, N.; Yousif, Z.M.; Trad, O. Morbidity in neonates of mothers who have ingested aflatoxins. Ann. Trop. Paediatr. 2004, 24, 145–151. [Google Scholar] [CrossRef]
- Etzel, R.A. What the primary care pediatrician should know about syndromes associated with exposures to mycotoxins. Curr. Probl. Pediatr. Adolesc. Health Care 2006, 36, 282–305. [Google Scholar] [CrossRef]
- Katerere, D.R.; Shephard, G.S.; Faber, M. Infant malnutrition and chronic aflatoxicosis in Southern Africa: Is there a link? Int. J. Food Safety, Nutr. Public Health 2008, 1, 127. [Google Scholar] [CrossRef]
- De Rodriguez, C.A.S.; Bongiovanni, A.M.; De Borrego, L.C. An epidemic of precocious development in Puerto Rican children. J. Pediatr. 1985, 107, 393–396. [Google Scholar] [CrossRef]
- Hsieh, D.P.H. Potential human health hazards of mycotoxins. In Mycotoxins and phytotoxins; Natori, S., Hashimoto, K., Ueno, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 1989; pp. 69–80. [Google Scholar]
- Gong, Y.; Cardwell, K.; Hounsa, A.; Egal, S.; Turner, P.; Hall, A.; Wild, C. Dietary aflatoxin exposure and impaired growth in young children from Kisumu District, Kenya: Cross sectional study. Br. Med. J. 2002, 325, 20–21. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Hounsa, A.; Egal, S.; Turner, P.C.; Sutcliffe, A.E.; Hall, A.J.; Cardwell, K.; Wild, C.P. Postweaning exposure to aflatoxin results in impaired child growth: A longitudinal study in Benin, West Africa. Environ. Health Perspect. 2004, 112, 1334–1338. [Google Scholar] [CrossRef]
- Turner, P.C.; E Moore, S.; Hall, A.J.; Prentice, A.M.; Wild, C.P. Modification of immune function through exposure to dietary aflatoxin in Gambian children. Environ. Health Perspect. 2003, 111, 217–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, P.C.; Collinson, A.C.; Cheung, Y.B.; Gong, Y.; Hall, A.J.; Prentice, A.M.; Wild, C.P. Aflatoxin exposure in utero causes growth faltering in Gambian infants. Int. J. Epidemiol. 2007, 36, 1119–1125. [Google Scholar] [CrossRef] [Green Version]
- Okoth, S.A.; Ohingo, M. Dietary aflatoxin exposure and impaired growth in young children from Kisumu District, Kenya: Cross sectional study. Afr. J. Health Sci. 2004, 11, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Kimanya, M.E.; De Meulenaer, B.; Roberfroid, D.; Lachat, C.; Kolsteren, P. Fumonisin exposure through maize in complementary foods is inversely associated with linear growth of infants in Tanzania. Mol. Nutr. Food Res. 2010, 54, 1659–1667. [Google Scholar] [CrossRef] [PubMed]
- IARC Effects of Aflatoxins and Fumonisins on Child Growth; IARC (International Agency for Research on Cancer) Working Group Report No. 9; Wild, C.P.; Miller, J.D.; Groopman, J.D. (Eds.) IARC: Lyon, France, 2015. [Google Scholar]
- Kamala, A.; Kimanya, M.; Lachat, C.; Jacxsens, L.; Haesaert, G.; Kolsteren, P.; Ortiz, J.; Tiisekwa, B.; De Meulenaer, B. Risk of exposure to multiple mycotoxins from maize-based complementary foods in Tanzania. J. Agric. Food Chem. 2016, 65, 7106–7114. [Google Scholar] [CrossRef]
- Chen, C.; Mitchell, N.J.; Gratz, J.; Houpt, E.R.; Gong, Y.; Egner, P.A.; Groopman, J.D.; Riley, R.T.; Showker, J.L.; Svensen, E.; et al. Exposure to aflatoxin and fumonisin in children at risk for growth impairment in rural Tanzania. Environ. Int. 2018, 115, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.E.; Prendergast, A.J.; Turner, P.C.; Mbuya, M.N.N.; Mutasa, K.; Kembo, G.; Stoltzfus, R.J. The potential role of mycotoxins as a contributor to stunting in the SHINE Trial. Clin. Infect. Dis. 2015, 61, S733–S737. [Google Scholar] [CrossRef] [Green Version]
- Adekoya, I.; Njobeh, P.; Obadina, A.; Chilaka, C.; Okoth, S.; De Boevre, M.; De Saeger, S. Awareness and prevalence of mycotoxin contamination in selected Nigerian fermented foods. Toxins 2017, 9, 363. [Google Scholar] [CrossRef] [Green Version]
- Kiarie, G. Aflatoxin exposure among young children in urban low-income areas of Nairobi and association with child growth. Afr. J. Food, Agric. Nutr. Dev. 2016, 16, 10967–10990. [Google Scholar] [CrossRef]
- Oluwafemi, F.T. Aflatoxin M1 levels in lactating mothers in two Nigerian cities. Arch. Clin. Microbiol. 2012, 3, 1–6. [Google Scholar] [CrossRef]
- Phoku, J.; Dutton, M.; Njobeh, P.; Mwanza, M.; Egbuta, M.; Chilaka, C. Fusarium infection of maize and maize-based products and exposure of a rural population to fumonisin B1 in Limpopo Province, South Africa. Food Addit. Contam. Part A 2012, 29, 1743–1751. [Google Scholar] [CrossRef] [PubMed]
- FAO. Worldwide Regulations for Mycotoxins in Food and Feed in 2003; FAO: Rome, Italy, 2014. [Google Scholar]
- Chilaka, C.A. Fusarium mycotoxins and their modified forms in Nigerian foods: Occurrence and influence of traditional processing methods. Doctoral Thesis, Ghent University, Ghent, Belgium, November 2017. [Google Scholar]
- De Boevre, M.; Di Mavungu, J.D.; Landschoot, S.; Audenaert, K.; Eeckhout, M.; Maene, P.; Haesaert, G.; De Saeger, S. Natural occurrence of mycotoxins and their masked forms in food and feed products. World Mycotoxin J. 2012, 5, 207–219. [Google Scholar] [CrossRef]
- Pereira, C.S.; Cunha, S.C.; Fernandes, J.O. Prevalent Mycotoxins in Animal Feed: Occurrence and Analytical Methods. Toxins 2019, 11, 290. [Google Scholar] [CrossRef] [Green Version]
- Schenzel, J.; Hungerbühler, K.; Bucheli, T.D. Mycotoxins in the environment: II. occurrence and origin in Swiss river waters. Environ. Sci. Technol. 2012, 46, 13076–13084. [Google Scholar] [CrossRef]
- Chilaka, C.A.; De Boevre, M.; Atanda, O.O.; De Saeger, S. The Status of Fusarium mycotoxins in sub-Saharan Africa: A review of emerging trends and post-harvest mitigation strategies towards Food Control. Toxins 2017, 9, 19. [Google Scholar] [CrossRef]
- Chilaka, C.A.; De Boevre, M.; Atanda, O.O.; De Saeger, S. Prevalence of Fusarium mycotoxins in cassava and yam products from some selected Nigerian markets. Food Control. 2018, 84, 226–231. [Google Scholar] [CrossRef]
- Pereira, V.; Fernandes, J.O.; Cunha, S. Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends Food Sci. Technol. 2014, 36, 96–136. [Google Scholar] [CrossRef]
- Klerks, M.; Bernal, M.J.; Román, S.; Bodenstab, S.; Gil, A.; Sanchez-Siles, L.M. Infant cereals: Current status, challenges, and future opportunities for whole grains. Nutrients 2019, 11, 473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chilaka, C.A.; De Boevre, M.; Atanda, O.O.; De Saeger, S. Quantification of Fusarium mycotoxins in Nigerian traditional beers and spices using a multi-mycotoxin LC-MS/MS method. Food Control 2018, 87, 203–210. [Google Scholar] [CrossRef]
- Chilaka, C.A.; De Boevre, M.; Atanda, O.O.; De Saeger, S. Fate of Fusarium mycotoxins during processing of Nigerian traditional infant foods (ogi and soybean powder). Food Res. Int. 2019, 116, 408–418. [Google Scholar] [CrossRef]
- Karlovsky, P.; Suman, M.; Berthiller, F.; De Meester, J.; Eisenbrand, G.; Perrin, I.; Oswald, I.P.; Speijers, G.; Chiodini, A.; Recker, T.; et al. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 2016, 32, 179–205. [Google Scholar] [CrossRef]
- Alvito, P.; Sizoo, E.A.; Almeida, C.M.M.; Van Egmond, H.P. Occurrence of aflatoxins and ochratoxin A in baby foods in portugal. Food Anal. Methods 2008, 3, 22–30. [Google Scholar] [CrossRef]
- Cappozzo, J.; Jackson, L.; Lee, H.J.; Zhou, W.; Al-Taher, F.; Zweigenbaum, J.; Ryu, D. Occurrence of ochratoxin A in infant foods in the United States. J. Food Prot. 2017, 80, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Juan, C.; Raiola, A.; Mañes, J.; Ritieni, A. Presence of mycotoxin in commercial infant formulas and baby foods from Italian market. Food Control. 2014, 39, 227–236. [Google Scholar] [CrossRef]
- Rubert, J.; Soler, C.; Mañes, J. Application of an HPLC–MS/MS method for mycotoxin analysis in commercial baby foods. Food Chem. 2012, 133, 176–183. [Google Scholar] [CrossRef]
- Asam, S.; Rychlik, M. Potential health hazards due to the occurrence of the mycotoxin tenuazonic acid in infant food. Eur. Food Res. Technol. 2013, 236, 491–497. [Google Scholar] [CrossRef]
- Bonerba, E.; Ceci, E.; Balzaretti, C.; Vallone, L.; Crescenzo, G.; Di Pinto, A.; Celano, G.; Tantillo, G.; Bozzo, G. Ochratoxin A detection by HPLC-FL in processed baby foods. J. Nephrol. Ther. 2017, 7, 1–6. [Google Scholar] [CrossRef]
- Gotthardt, M.; Asam, S.; Gunkel, K.; Moghaddam, A.F.; Baumann, E.; Kietz, R.; Rychlik, M. Quantitation of six alternaria toxins in infant foods applying stable isotope labeled standards. Front. Microbiol. 2019, 10, 109. [Google Scholar] [CrossRef] [Green Version]
- Hassan, Z.U.; Al Thani, R.; Atia, F.A.; Al Meer, S.; Migheli, Q.; Jaoua, S. Co-occurrence of mycotoxins in commercial formula milk and cereal-based baby food on the Qatar market. Food Addit. Contam. Part B 2018, 11, 191–197. [Google Scholar] [CrossRef]
- Lee, H.J.; Ryu, D. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: Public health perspectives of their co-occurrence. J. Agric. Food Chem. 2017, 65, 7034–7051. [Google Scholar] [CrossRef] [PubMed]
- Rychlik, M.; Lepper, H.; Weidner, C.; Asam, S. Risk evaluation of the Alternaria mycotoxin tenuazonic acid in foods for adults and infants and subsequent risk management. Food Control 2016, 68, 181–185. [Google Scholar] [CrossRef]
- Zhang, K.; Flannery, B.M.; Oles, C.J.; Adeuya, A. Mycotoxins in infant/toddler foods and breakfast cereals in the US retail market. Food Addit. Contam. Part B 2018, 11, 183–190. [Google Scholar] [CrossRef]
- Lombaert, G.A.; Pellaers, P.; Roscoe, V.; Mankotia, M.; Neil, R.; Scott, P.M. Mycotoxins in infant cereal foods from the Canadian retail market. Food Addit. Contam. 2003, 20, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Scott, P.M.; Zhao, W.; Feng, S.; Lau, B.P.-Y. Alternaria toxins alternariol and alternariol monomethyl ether in grain foods in Canada. Mycotoxin Res. 2012, 28, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Kimanya, M.E.; Shirima, C.P.; Magoha, H.; Shewiyo, D.H.; De Meulenaer, B.; Kolsteren, P.; Gong, Y.Y. Co-exposures of aflatoxins with deoxynivalenol and fumonisins from maize based complementary foods in Rombo, Northern Tanzania. Food Control. 2014, 41, 76–81. [Google Scholar] [CrossRef]
- Ware, L.Y.; Durand, N.; Nikiema, P.A.; Alter, P.; Fontana, A.; Montet, D.; Barro, N. Occurrence of mycotoxins in commercial infant formulas locally produced in Ouagadougou (Burkina Faso). Food Control 2017, 73, 518–523. [Google Scholar] [CrossRef]
- Ojuri, O.T.; Ezekiel, C.N.; Sulyok, M.; Ezeokoli, O.T.; Oyedele, O.A.; I Ayeni, K.; Eskola, M.K.; Šarkanj, B.; HajšLová, J.; Adeleke, R.A.; et al. Assessing the mycotoxicological risk from consumption of complementary foods by infants and young children in Nigeria. Food Chem. Toxicol. 2018, 121, 37–50. [Google Scholar] [CrossRef]
- Ezekiel, C.N.; A Abia, W.; Braun, D.; Sarkanj, B.; I Ayeni, K.; A Oyedele, O.; Michael-Chikezie, E.C.; Ezekiel, V.C.; Mark, B.; Ahuchaogu, C.P.; et al. Comprehensive Mycotoxin Exposure Biomonitoring in Breastfed and Non-Exclusively Breastfed Nigerian Children. medRxiv 2020, 1–45. [Google Scholar] [CrossRef]
- Magoha, H.; Kimanya, M.; De Meulenaer, B.; Roberfroid, D.; Lachat, C.; Kolsteren, P. Risk of dietary exposure to aflatoxins and fumonisins in infants less than 6 months of age in Rombo, Northern Tanzania. Matern. Child Nutr. 2016, 12, 516–527. [Google Scholar] [CrossRef]
- Njoroge, S.M.C.; Matumba, L.; Kanenga, K.; Siambi, M.; Waliyar, F.; Maruwo, J.; Monyo, E.S. A case for regular aflatoxin monitoring in peanut butter in Sub-Saharan Africa: Lessons from a 3-year survey in Zambia. J. Food Prot. 2016, 79, 795–800. [Google Scholar] [CrossRef]
- Mupunga, I.; Lebelo, S.L.; Mngqawa, P.; Rheeder, J.P. Natural occurrence of aflatoxins in peanuts and peanut butter from Bulawayo, Zimbabwe. J. Food Prot. 2014, 77, 1814–1818. [Google Scholar] [CrossRef] [PubMed]
- Horta, B.; Bahl, R.; Martines, J.; Victoria, C. Evidence on the Long-Term Effects of Breastfeeding: Systematic Reviews and Meta-Analyses; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Ito, S.; Lee, A. Drug excretion into breast milk - Overview. Adv. Drug Deliv. Rev. 2003, 55, 617–627. [Google Scholar] [CrossRef]
- Warth, B.; Braun, D.; Ezekiel, C.N.; Turner, P.C.; Degen, G.H.; Marko, D. Biomonitoring of mycotoxins in human breast milk: Current state and future perspectives. Chem. Res. Toxicol. 2016, 29, 1087–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubert, J.; León, N.; Sáez, C.; Martins, C.P.B.; Godula, M.; Yusà, V.; Mañes, J.; Soriano, J.M.; Soler, C. Evaluation of mycotoxins and their metabolites in human breast milk using liquid chromatography coupled to high resolution mass spectrometry. Anal. Chim. Acta 2014, 820, 39–46. [Google Scholar] [CrossRef]
- Bogalho, F.; Duarte, S.; Cardoso, M.; Almeida, A.; Cabeças, R.; Lino, C.; Pena, A. Exposure assessment of Portuguese infants to Aflatoxin M1 in breast milk and maternal social-demographical and food consumption determinants. Food Control 2018, 90, 140–145. [Google Scholar] [CrossRef]
- Radonić, J.R.; Tanackov, S.D.K.; Mihajlović, I.J.; Grujić, Z.S.; Miloradov, M.B.V.; Škrinjar, M.M.; Sekulić, M.M.T. Occurrence of aflatoxin M1 in human milk samples in Vojvodina, Serbia: Estimation of average daily intake by babies. J. Environ. Sci. Heal. Part B 2017, 52, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Postupolski, J.; Karłowski, K.; Kubik, P. Ochratoxin a in maternal and foetal blood and in maternal milk. Rocz. Panstw. Zakl. Hig. 2006, 57, 23–30. [Google Scholar]
- Dostal, A.; Jakusova, L.; Cajdova, J.; Hudeckova, H. Results of the first studies of occurence of ochratoxin A in human milk in Slovakia. Bratislava Lek List. 2008, 109, 276–278. [Google Scholar]
- Muñoz, K.; Wollin, K.-M.; Kalhoff, H.; Degen, G.H. Occurrence of the mycotoxin ochratoxin a in breast milk samples from Germany. Gesundheitswesen 2013, 75, 194–197. [Google Scholar] [CrossRef]
- Galvano, F.; Pietri, A.; Bertuzzi, T.; Gagliardi, L.; Ciotti, S.; Luisi, S.; Bognanno, M.; La Fauci, L.; Iacopino, A.M.; Nigro, F.; et al. Maternal dietary habits and mycotoxin occurrence in human mature milk. Mol. Nutr. Food Res. 2008, 52, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Barut Uyar, B.; Karaağaoğlu, N.; Girgin, G.; Gürbay, A.; Karaağaoğlu, E. Aflatoxin M1 and ochratoxin A levels in breast milk in Ankara, Turkey (1017.8). FASEB J. 2014, 28, 1017.8. [Google Scholar] [CrossRef]
- Braun, D.; Ezekiel, C.N.; Abia, W.A.; Wisgrill, L.; Degen, G.H.; Turner, P.C.; Marko, D.; Warth, B. Unraveling early-life mycotoxin exposures via LC-MS/MS breast milk analysis. ChemRxiv. Prepr. 2018. [Google Scholar] [CrossRef]
- Adejumo, O.; Atanda, O.; Raiola, A.; Somorin, Y.; Bandyopadhyay, R.; Ritieni, A. Correlation between aflatoxin M1 content of breast milk, dietary exposure to aflatoxin B1 and socioeconomic status of lactating mothers in Ogun State, Nigeria. Food Chem. Toxicol. 2013, 56, 171–177. [Google Scholar] [CrossRef]
- Alegbe, S.D.; Yakubu, S.E.; Olonitola, S.O.; Mukhtar, M.D. Assessing aflatoxin M1 levels among lactating mothers’ in Damaturu Yobe State, Nigeria. Bayero J. Pure Appl. Sci. 2018, 10, 198. [Google Scholar] [CrossRef] [Green Version]
- Magoha, H.; De Meulenaer, B.; Kimanya, M.; Hipolite, D.; Lachat, C.; Kolsteren, P. Fumonisin B1 contamination in breast milk and its exposure in infants under 6 months of age in Rombo, Northern Tanzania. Food Chem. Toxicol. 2014, 74, 112–116. [Google Scholar] [CrossRef]
- Tchana, A.N.; Moundipa, P.F.; Tchouanguep, F.M. Aflatoxin contamination in food and body fluids in relation to malnutrition and cancer status in Cameroon. Int. J. Environ. Res. Public Health 2010, 7, 178–188. [Google Scholar] [CrossRef]
- Atanda, O.; Oguntubo, A.; Adejumo, O.; Ikeorah, J.; Akpan, I. Aflatoxin M1 contamination of milk and ice cream in Abeokuta and Odeda local governments of Ogun State, Nigeria. Chemosphere 2007, 68, 1455–1458. [Google Scholar] [CrossRef]
- Kang ’ethe, E.K.; Gatwiri, M.; Sirma, A.J.; Ouko, E.O.; Mburugu-Musoti, C.K.; Kitala, P.M.; Nduhiu, G.J.; Nderitu, J.G.; Mungatu, J.K.; Hietaniemi, V.; et al. Exposure of Kenyan population to aflatoxins in foods with special reference to Nandi and Makueni counties ***Ministry of Agriculture Livestock and Fisheries, Veterinary Laboratories Kabete, Private Bag Kabete. Food Qual. Saf. 2017, 1, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Gratz, S.W.; Dinesh, R.; Yoshinari, T.; Holtrop, G.; Richardson, A.J.; Duncan, G.; MacDonald, S.; Lloyd, A.; Tarbin, J. Masked trichothecene and zearalenone mycotoxins withstand digestion and absorption in the upper GI tract but are efficiently hydrolyzed by human gut microbiota in vitro. Mol. Nutr. Food Res. 2016, 1600680-n/a. [Google Scholar] [CrossRef]
- Jonsyn, F.E.; Maxwell, S.M.; Hendrickse, R.G. Ochratoxin A and aflatoxins in breast milk samples from Sierra Leone. Mycopathologia 1995, 131, 121–126. [Google Scholar] [CrossRef]
- Elzupir, A.O.; Abas, A.R.A.; Fadul, M.H.; Modwi, A.K.; Ali, N.M.; Jadian, A.F.F.; Ahmed, N.A.A.; Adam, S.Y.A.; Ahmed, N.A.M.; Khairy, A.A.A.; et al. Aflatoxin M1 in breast milk of nursing Sudanese mothers. Mycotoxin Res. 2012, 28, 131–134. [Google Scholar] [CrossRef]
- Magoha, H.; Kimanya, M.; De Meulenaer, B.; Roberfroid, D.; Lachat, C.; Kolsteren, P. Association between aflatoxin M exposure through breast milk and growth impairment in infants from northern Tanzania. World Mycotoxin J. 2014, 7, 277–284. [Google Scholar] [CrossRef]
- Meucci, V.; Razzuoli, E.; Soldani, G.; Massart, F. Mycotoxin detection in infant formula milks in Italy. Food Addit. Contam. Part A 2010, 27, 64–71. [Google Scholar] [CrossRef]
- Baydar, T.; Erkekoglu, P.; Sipahi, H.; Sahin, G. Aflatoxin B1, M1 and ochratoxin A levels in infant formulae and baby foods marketed in Ankara, Turkey. J. Food Drug Anal. 2007, 15, 89–92. [Google Scholar] [CrossRef]
- Akhtar, S.; Shahzad, M.A.; Yoo, S.H.; Ismail, A.; Hameed, A.; Ismail, T.; Riaz, M. Determination of aflatoxin M1 and heavy metals in infant formula milk brands available in Pakistani markets. Korean J. Food Sci. Anim. Resour. 2017, 37, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Kolakowski, B.; O’rourke, S.M.; Bietlot, H.P.; Kurz, K.; Aweryn, B. Ochratoxin a concentrations in a variety of grain-based and non-grain-based foods on the canadian retail market from 2009 to 2014. J. Food Prot. 2016, 79, 2143–2159. [Google Scholar] [CrossRef]
- Ok, H.E.; Choi, S.-W.; Kim, M.; Chun, H.S. HPLC and UPLC methods for the determination of zearalenone in noodles, cereal snacks and infant formula. Food Chem. 2014, 252–257, 252–257. [Google Scholar] [CrossRef]
- Ishikawa, A.T.; Takabayashi-Yamashita, C.R.; Ono, E.Y.S.; Bagatin, A.K.; Rigobello, F.F.; Kawamura, O.; Hirooka, E.Y.; Itano, E.N. Exposure assessment of infants to aflatoxin M1 through consumption of breast milk and infant powdered milk in Brazil. Toxins (Basel). 2016, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Westland, S.; Crawley, H. Fruit and vegetable based purées in pouches for infants and young children; First Steps Nutrition Trust: London, UK, 2018. [Google Scholar]
- American Academy of Pediatrics Committee on Nutrition Soy Protein-based Formulas: Recommendations for use in Infant Feeding. Pediatrics 1998, 101, 148–153. [CrossRef] [Green Version]
- Kane, N.; Ahmedna, M.; Yu, J. Development of a fortified peanut-based infant formula for recovery of severely malnourished children. Int. J. Food Sci. Technol. 2010, 45, 1965–1972. [Google Scholar] [CrossRef]
- Tam, J.; Mankotia, M.; Mably, M.; Pantazopoulos, P.; Neil, R.J.; Calway, P.; Scott, P.M. Survey of breakfast and infant cereals for aflatoxins B1, B2, G1 and G2. Food Addit. Contam. 2006, 23, 693–699. [Google Scholar] [CrossRef]
- Egbuta, M.A.; Mwanza, M.; Phoku, J.Z.; Chilaka, C.A.; Dutton, M.F. Comparative analysis of mycotoxigenic fungi and mycotoxins contaminating soya bean seeds and processed soya bean from Nigerian markets. Adv. Microbiol. 2016, 06, 1130–1139. [Google Scholar] [CrossRef] [Green Version]
- Njoroge, S.M.C.; Matumba, L.; Kanenga, K.; Siambi, M.; Waliyar, F.; Maruwo, J.; Machinjiri, N.; Monyo, E.S. Aflatoxin B1 levels in groundnut products from local markets in Zambia. Mycotoxin Res. 2017, 33, 113–119. [Google Scholar] [CrossRef]
- Cano-Sancho, G.; Marin, S.; Ramos, A.J.; Sanchis, V. Survey of patulin occurrence in apple juice and apple products in Catalonia, Spain, and an estimate of dietary intake. Food Addit. Contam. Part. B 2009, 2, 59–65. [Google Scholar] [CrossRef]
- Torović, L.; Dimitrov, N.; Assunção, R.; Alvito, P. Risk assessment of patulin intake through apple-based food by infants and preschool children in Serbia. Food Addit. Contam. Part. A 2017, 34, 2023–2032. [Google Scholar] [CrossRef]
- Hammami, W.; Al Thani, R.; Fiori, S.; Al-meer, S.; Atia, F.A.; Rabah, D. Patulin and patulin producing Penicillium spp. occurrence in apples and apple-based products including baby food. J. Infect. Dev. Ctries. 2017, 11, 343–349. [Google Scholar] [CrossRef] [Green Version]
- Darouj, E.; Massouh, L.; Ghanem, I. Investigation of ochratoxin A in Syrian consumed baby foods. Food Control. 2016, 62, 97–103. [Google Scholar] [CrossRef]
- JECFA Evaluation of Certain Food Additives and Contaminants; World Health Organ. Tech. Rep. Ser. No 884; WHO: Geneva, Switzerland, 2011; Available online: https://apps.who.int/iris/bitstream/handle/10665/44515/WHO_TRS_960_eng.pdf?sequence=1 (accessed on 15 February 2020).
- JECFA Safety Evaluation of Certain Food Additives and Contaminants. In Prepared by the Sixty-Eighth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); Food Agric. Organ. United Nations, World Health Organ. IPCS-Int. Program. Chem. Safety, WHO Food Addit. Ser. No. 59; World Health Organ: Geneva, Switzerland, 2008; Available online: https://apps.who.int/iris/bitstream/handle/10665/198360/9789240694897_eng.pdf?sequence=1 (accessed on 15 February 2020).
- EFSA Scientific Opinion on the risks for public and animal health related to the presence of citrinin in food and feed. EFSA J. 2012, 10, 1–82. [CrossRef]
- Adetunji, M.C.; Atanda, O.O.; Ezekiel, C.N. Risk Assessment of Mycotoxins in Stored Maize Grains Consumed by Infants and Young Children. Children 2017, 4, 58. [Google Scholar] [CrossRef]
- Kimanya, M.E.; de Meulenaer, B.; Baert, K.; Tiisekwa, B.; van Camp, J.; Samapundo, S.; Lachat, C.; Kolsteren, P. Exposure of infants to fumonisins in maize-based complementary foods in rural Tanzania. Mol. Nutr. Food Res. 2009, 53, 667–674. [Google Scholar] [CrossRef]
- Degen, G. Tools for investigating workplace-related risks from mycotoxin exposure. World Mycotoxin J. 2011, 4, 315–327. [Google Scholar] [CrossRef]
- Wild, C.P.; Rasheed, F.N.; Jawla, M.F.B.; Hall, A.J.; Jansen, L.A.M.; Montesano, R. In-utero exposure to aflatoxin in West Africa. Lancet 1991, 337, 1602. [Google Scholar] [CrossRef]
- Denning, D.W.; Allen, R.; Wilkinson, A.P.; Morgan, M.R.A. Transplacental transfer of aflatoxin in humans. Carcinogenesis 1990, 11, 1033–1035. [Google Scholar] [CrossRef]
- Hernandez-Vargas, H.; Castelino, J.; Silver, M.J.; Dominguez-Salas, P.; Cros, M.P.; Durand, G.; Le Calvez-Kelm, F.; Prentice, A.M.; Wild, C.P.; Moore, S.E.; et al. Exposure to aflatoxin B1 in Utero is associated with DNA methylation in white blood cells of infants in The Gambia. Int. J. Epidemiol. 2015, 44, 1238–1248. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.Y.; Egal, S.; Hounsa, A.; Turner, P.C.; Hall, A.J.; Cardwell, K.F.; Wild, C.P. Determinants of aflatoxin exposure in young children from Benin and Togo, West Africa: The critical role of weaning. Int. J. Epidemiol. 2003, 32, 556–562. [Google Scholar] [CrossRef] [Green Version]
- Watson, S.; Chen, G.; Sylla, A.; Routledge, M.N.; Gong, Y.Y. Dietary exposure to aflatoxin and micronutrient status among young children from Guinea. Mol. Nutr. Food Res. 2016, 60, 511–518. [Google Scholar] [CrossRef] [Green Version]
- Shirima, C.P.; Kimanya, M.E.; Routledge, M.N.; Srey, C.; Kinabo, J.L.; Humpf, H.-U.; Wild, C.P.; Tu, Y.-K.; Gong, Y.Y. A prospective study of growth and biomarkers of exposure to aflatoxin and fumonisin during early childhood in Tanzania. Environ. Health Perspect. 2015, 123, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Asiki, G.; Seeley, J.; Srey, C.; Baisley, K.; Lightfoot, T.; Archileo, K.; Agol, D.; Abaasa, A.; Wakeham, K.; Routledge, M.N.; et al. A pilot study to evaluate aflatoxin exposure in a rural Ugandan population. Trop. Med. Int. Health 2014, 19, 592–599. [Google Scholar] [CrossRef]
- Ediage, E.N.; Di Mavungu, J.D.; Song, S.; Sioen, I.; De Saeger, S. Multimycotoxin analysis in urines to assess infant exposure: A case study in Cameroon. Environ. Int. 2013, 57–58, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Ayelign, A.; Woldegiorgis, A.Z.; Adish, A.; De Boevre, M.; Heyndrickx, E.; De Saeger, S. Assessment of aflatoxin exposure among young children in Ethiopia using urinary biomarkers. Food Addit. Contam. - Part A Chem. Anal. Control. Expo. Risk Assess. 2017, 34, 1606–1616. [Google Scholar] [CrossRef] [PubMed]
- Polychronaki, N.; Wild, C.P.; Mykkänen, H.; Amra, H.; Abdel-Wahhab, M.; Sylla, A.; Diallo, M.; El-Nezami, H.; Turner, P.C. Urinary biomarkers of aflatoxin exposure in young children from Egypt and Guinea. Food Chem. Toxicol. 2008, 46, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Ezekiel, C.N.; Warth, B.; Ogara, I.M.; Abia, W.A.; Ezekiel, V.C.; Atehnkeng, J.; Sulyok, M.; Turner, P.C.; Tayo, G.O.; Krska, R.; et al. Mycotoxin exposure in rural residents in northern Nigeria: A pilot study using multi-urinary biomarkers. Environ. Int. 2014, 66, 138–145. [Google Scholar] [CrossRef]
- Srey, C.; Kimanya, M.E.; Routledge, M.N.; Shirima, C.P.; Gong, Y.Y. Deoxynivalenol exposure assessment in young children in Tanzania. Mol. Nutr. Food Res. 2014, 58, 1574–1580. [Google Scholar] [CrossRef]
- Kotir, J.H. Climate change and variability in sub-Saharan Africa: A review of current and future trends and impacts on agriculture and food security. Environ. Dev. Sustain. 2011, 13, 587–605. [Google Scholar] [CrossRef]
- Wood, L.F.; Wood, M.P.; Fisher, B.S.; Jaspan, H.B.; Sodora, D.L. T cell activation in South African HIV-exposed infants correlates with ochratoxin a exposure. Front. Immunol. 2017, 8, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirima, C.P.; Kimanya, M.E.; Kinabo, J.L.; Routledge, M.N.; Srey, C.; Wild, C.P.; Gong, Y.Y. Dietary exposure to aflatoxin and fumonisin among Tanzanian children as determined using biomarkers of exposure Candida. Mol. Nutr. Food Res. 2013, 57, 1874–1881. [Google Scholar] [CrossRef] [Green Version]
- Sarkanj, B.; Ezekiel, C.N.; Turner, P.C.; Abia, W.A.; Rychlik, M.; Krska, R.; Warth, B. Ultra-sensitive, stable isotope assisted quantification of multiple urinary mycotoxin exposure biomarkers.pdf. Anal. Chim. Acta 2018, 1019, 84–92. [Google Scholar] [CrossRef]
- Gong, Y.Y.; Watson, S.; Routledge, M.N. Aflatoxin exposure and associated human health effects, a review of epidemiological studies. Food Saf. 2016, 4, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Tesfamariam, K.; De Boevre, M.; Kolsteren, P.; Belachew, T.; Mesfin, A.; De Saeger, S.; Lachat, C. Dietary mycotoxins exposure and child growth, immune system, morbidity, and mortality: A systematic literature review. Crit. Rev. Food Sci. Nutr. 2019, 0, 1–21. [Google Scholar] [CrossRef]
- Watson, S.; Moore, S.E.; Darboe, M.K.; Chen, G.; Tu, Y.; Huang, Y.; Eriksen, K.G.; Bernstein, R.M.; Prentice, A.M.; Wild, C.P.; et al. Impaired growth in rural Gambian infants exposed to aflatoxin: A prospective cohort study. BMC Public Health 2018, 18, 1247. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, V.; Jones, K.; Leroy, J.L. The impact of reducing dietary aflatoxin exposure on child linear growth: A cluster randomised controlled trial in Kenya. BMJ Glob. Health 2018, 3. [Google Scholar] [CrossRef] [Green Version]
- McMillan, A.; Renaud, J.B.; Burgess, K.M.N.; Orimadegun, A.E.; Akinyinka, O.O.; Allen, S.J.; Miller, J.D.; Reid, G.; Sumarah, M.W. Aflatoxin exposure in Nigerian children with severe acute malnutrition. Food Chem. Toxicol. 2018, 111, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Kamala, A.; Shirima, C.; Jani, B.; Bakari, M.; Sillo, H.; Rusibamayila, N.; De Saeger, S.; Kimanya, M.; Gong, Y.Y.; Simba, A. Outbreak of an acute aflatoxicosis in Tanzania during 2016. World Mycotoxin J. 2018, 11, 311–320. [Google Scholar] [CrossRef]
- Natamba, B.K.; Wang, J.-S.; Young, S.L.; Ghosh, S.; Griffiths, J.K. Perinatal Exposure to Aflatoxins is Associated with a Lower Rate of Weight Gain Among HIV-Infected Pregnant Women and Reduced Linear Growth of HIV-Exposed Infants. FASEB J. 2016, 30, 432.6. [Google Scholar] [CrossRef]
- Lauer, J.M.; Duggan, C.P.; Ausman, L.M.; Griffiths, J.K.; Webb, P.; Wang, J.S.; Xue, K.S.; Agaba, E.; Nshakira, N.; Ghosh, S. Maternal aflatoxin exposure during pregnancy and adverse birth outcomes in Uganda. Matern. Child. Nutr. 2019, 15, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, N.J.; Hsu, H.; Chandyo, R.K.; Shrestha, B.; Bodhidatta, L.; Tu, Y.; Gong, Y.; Egner, P.A.; Ulak, M.; Groopman, J.D.; et al. Aflatoxin exposure during the first 36 months of life was not associated with impaired growth in Nepalese children: An extension of the MAL-ED study. PLoS ONE 2017, 12, e0172124. [Google Scholar] [CrossRef]
- Shouman, B.O.; El Morsi, D.; Shabaan, S.; Abdel-Hamid, A.H.; Mehrim, A. Aflatoxin B1 level in relation to child’s feeding and growth. Indian, J. Pediatr. 2012, 79, 56–61. [Google Scholar] [CrossRef]
- Mahdavi, R.; Nikniaz, L.; Arefhosseini, S.R.; Vahed Jabbari, M. Determination of aflatoxin M1 in breast milk samples in Tabriz-Iran. Matern. Child. Health J. 2010, 14, 141–145. [Google Scholar] [CrossRef]
- Leroy, J.L.; Sununtnasuk, C.; García-Guerra, A.; Wang, J.S. Low level aflatoxin exposure associated with greater linear growth in southern Mexico: A longitudinal study. Matern. Child. Nutr. 2018, 14, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.E.; Stoltzfus, R.J.; Prendergast, A. Food chain mycotoxin exposure, gut health, and impaired growth: A conceptual framework. Adv. Nutr. 2012, 3, 526–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castelino, J.; Routledge, M.; Wilson, S.; Dunne, D.; Mwatha, J.; Gachuhi, K.; Wild, C.P.; Gong, Y.Y. Aflatoxin exposure is inversely associated with IGF1 and IGFBP3 levels in vitro and in Kenyan school children. Mol. Nutr. Food Res. 2015, 59, 574–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woods, K.; Camacho-Hubner, C.; Savage, M.; Clark, A. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N. Engl. J. Med. 1996, 335, 1363–1367. [Google Scholar] [CrossRef]
- Gong, Y.; Turner, P.; Hall, A.; Wild, C. Aflatoxin exposure and impaired child growth in West Africa: An unexplored international public health burden. In Mycotoxins Detection Methods, Management, Public Health and Agricultural Trade; Leslie, J., Banerjee, R.A.V., Eds.; Cromwell Press: Trowbridge, UK, 2008; pp. 53–66. ISBN 9781845930820. [Google Scholar]
- Yazar, S.; Omurtag, G.Z. Fumonisins, trichothecenes and zearalenone in cereals. Int. J. Mol. Sci. 2008, 9, 2062–2090. [Google Scholar] [CrossRef] [PubMed]
- Semba, R.D.; Shardell, M.; Ashour, F.A.S.; Moaddel, R.; Trehan, I.; Maleta, K.M.; Ordiz, M.I.; Kraemer, K.; Khadeer, M.A.; Ferrucci, L.; et al. Child stunting is associated with low circulating essential amino acids. EBioMedicine 2016, 6, 246–252. [Google Scholar] [CrossRef] [Green Version]
- Slotte, J.P. Biological functions of sphingomyelins. Prog. Lipid Res. 2013, 52, 424–437. [Google Scholar] [CrossRef]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef]
- Riley, R.T.; Torres, O.; Matute, J.; Gregory, S.G.; Ashley-Koch, A.E.; Showker, J.L.; Mitchell, T.; Voss, K.A.; Maddox, J.R.; Waes, J.B.G. Evidence for fumonisin inhibition of ceramide synthase in humans consuming maize-based foods and living in high exposure communities in Guatemala. Mol. Nutr. Food Res. 2016, 59, 2209–2224. [Google Scholar] [CrossRef] [Green Version]
- Masching, S.; Naehrer, K.; Schwartz-Zimmermann, H.-E.; Sarandan, M.; Schaumberger, S.; Dohnal, I.; Nagl, V.; Schatzmayr, D. Gastrointestinal degradation of fumonisin B1 by carboxylesterase FumD prevents fumonisin induced alteration of sphingolipid metabolism in Turkey and Swine. Toxins (Basel) 2016, 8, 84. [Google Scholar] [CrossRef] [Green Version]
- Ratnaseelan, A.M.; Tsilioni, I.; Theoharides, T.C. Effects of Mycotoxins on Neuropsychiatric Symptoms and Immune Processes. Clin. Ther. 2018, 40, 903–917. [Google Scholar] [CrossRef]
- Bondy, G.S.; Pestka, J.J. Immunomodulation by fungal toxins. J. Toxicol. Environ. HealthPart. B Crit. Rev. 2000, 3, 109–143. [Google Scholar] [CrossRef]
- Pierron, A.; Alassane-Kpembi, I.; Oswald, I.P. Impact of mycotoxin on immune response and consequences for pig health. Anim. Nutr. 2016, 2, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Mehrzad, J.; Devriendt, B.; Baert, K.; Cox, E. Aflatoxins of type B and G affect porcine dendritic cell maturation in vitro. J. Immunotoxicol. 2015, 12, 174–180. [Google Scholar] [CrossRef]
- Williams, J.H.; Phillips, T.D.; Jolly, P.E.; Stiles, J.K.; Jolly, C.M.; Aggarwal, D. Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. 2004, 80, 1106–1122. [Google Scholar] [CrossRef]
- Allen, S.J.; Wild, C.P.; Wheeler, J.G.; Riley, E.M.; Montesano, R.; Bennett, S.; Whittle, H.C.; Hall, A.J.; Greenwood, B.M. Aflatoxin exposure, malaria and hepatitis B infection in rural Gambian children. Trans. R. Soc. Trop. Med. Hyg. 1992, 86, 426–430. [Google Scholar] [CrossRef]
- Jolly, P.E.; Shuaib, F.M.; Jiang, Y.; Preko, P.; Baidoo, J.; Stiles, J.K.; Wang, J.-S.; Phillips, T.D.; Williams, J.H. Association of high viral load and abnormal liver function with high aflatoxin B1–albumin adduct levels in HIV-positive Ghanaians: Preliminary observations. Food Addit Contam Part. A Chem Anal. Control. Expo. Risk Assess. 2011, 28, 1224–1234. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Jolly, P.E.; Ellis, W.O.; Wang, J.S.; Phillips, T.D.; Williams, J.H. Aflatoxin B1 albumin adduct levels and cellular immune status in Ghanaians. Int. Immunol. 2005, 17, 807–814. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Jolly, P.E.; Preko, P.; Wang, J.S.; Ellis, W.O.; Phillips, T.D.; Williams, J.H. Aflatoxin-related immune dysfunction in health and in human immunodeficiency virus disease. Clin. Dev. Immunol. 2008, 2008. [Google Scholar] [CrossRef]
- Obuseh, F.A.; Jolly, P.E.; Kulczycki, A.; Ehiri, J.; Waterbor, J.; Desmond, R.A.; Preko, P.O.; Jiang, Y.; Piyathilake, C.J. Aflatoxin levels, plasma vitamins A and E concentrations, and their association with HIV and hepatitis B virus infections in Ghanaians: A cross-sectional study. J. Int. AIDS Soc. 2011, 14, 1–10. [Google Scholar] [CrossRef]
- Keenan, J.; Jolly, P.; Preko, P.; Baidoo, J.; Wang, J.S.; Phillips, T.D.; Williams, J.H.; McGwin, G.J. Association between aflatoxin B1 albumin adduct levels and tuberculosis infection among HIV+ Ghanaians. Arch. Clin. Microbiol. 2011, 2, 1–6. [Google Scholar] [CrossRef]
- Liu, M.; Guo, S.; Stiles, J.K. The emerging role of CXCL10 in cancer. Oncol. Lett. 2011, 2, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Meditz, A.L.; Haas, M.K.; Folkvord, J.M.; Melander, K.; Young, R.; McCarter, M.; MaWhinney, S.; Campbell, T.B.; Lie, Y.; Coakley, E.; et al. HLA-DR+ CD38+ CD4+ T lymphocytes have elevated CCR5 expression and roduce the majority of R5-tropic HIV-1 RNA in vivo. J. Virol. 2011, 85, 10189–10200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armah, H.B.; Wilson, N.O.; Sarfo, B.Y.; Powell, M.D.; Bond, V.C.; Anderson, W.; Adjei, A.A.; Gyasi, R.K.; Tettey, Y.; Wiredu, E.K.; et al. Cerebrospinal fluid and serum biomarkers of cerebral malaria mortality in Ghanaian children. Malar. J. 2007, 6, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Levy, S.E.; Mandell, D.S.; Schultz, R.T. Autism. Lancet 2009, 374, 1627–1638. [Google Scholar] [CrossRef]
- Duringer, J.; Fombonne, E.; Craig, M. No association between mycotoxin exposure and autism: A pilot case-control study in school-aged children. Toxins (Basel) 2016, 8, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franz, L.; Chambers, N.; von Isenburg, M.; de Vries, P.J. Autism spectrum disorder in sub-Saharan Africa: A comprehensive scoping review. Autism Res. 2017, 10, 723–749. [Google Scholar] [CrossRef] [Green Version]
- UNICEF Division of Data, Research, & and Policy. Generation 2030 Africa. 2014. Available online: https://www.unicef.org/publications/files/Generation_2030_Africa.pdf (accessed on 3 March 2020).
- Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxins as human carcinogens—The IARC Monographs classification. Mycotoxin Res. 2017, 33, 65–73. [Google Scholar] [CrossRef]
- Gouas, D.; Shi, H.; Hainaut, P. The aflatoxin-induced TP53 mutation at codon 249 (R249S): Biomarker of exposure, early detection and target for therapy. Cancer Lett. 2009, 286, 29–37. [Google Scholar] [CrossRef]
- Hsu, I.C.; Metcalf, R.A.; Sun, T.; Welsh, J.A.; Wang, N.J.; Harris, C.C. Mutational hot spot in the p53 gene in human hepatocellular carcinomas. Nature 1991, 350, 427–428. [Google Scholar] [CrossRef] [PubMed]
- Bressac, B.; Kew, M.; Wands, J.; Ozturk, M. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature 1991, 350, 429–431. [Google Scholar] [CrossRef]
- Wu, F.; Stacy, S.L.; Kensler, T.W. Global risk assessment of aflatoxins in maize and peanuts: Are regulatory standards adequately protective? Toxicol. Sci. 2013, 135, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Kew, M.C. Synergistic interaction between aflatoxin B1 and hepatitis B virus in hepatocarcinogenesis. Liver Int. 2003, 23, 405–409. [Google Scholar] [CrossRef] [PubMed]
- El-Serag, H.B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 2012, 142, 1264–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO/WHO Aflatoxin. Safety evaluation of certain contaminants in food. Prepared by the Sixty-Eighth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); WHO Food Additive Series 40.: Geneva, Switzerland, 1999. [Google Scholar]
- McGlynn, K.A.; London, W.T. Epidemiology and natural history of hepatocellular carcinoma. Best Pract. Res. Clin. Gastroenterol. 2005, 19, 3–23. [Google Scholar] [CrossRef] [PubMed]
- Portolani, N.; Coniglio, A.; Ghidoni, S.; Giovanelli, M.; Benetti, A.; Tiberio, G.A.M.; Giulini, S.M. Early and late recurrence after liver resection for hepatocellular carcinoma: Prognostic and therapeutic implications. Ann. Surg. 2006, 243, 229–235. [Google Scholar] [CrossRef]
- Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Global Cancer Statistics, 2002. CA Cancer J. Clin. 2005, 55, 74–108. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chang, C.H.; Marsh, G.M.; Wu, F. Hepatocellular carcinoma in infancy and childhood in Ibadan, Western Nigeria. Br J Cancer 1967; Eur. J. Cancer 2012, 48, 2125–2136. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Egner, P.A.; Jacobson, L.P.; Munoz, A.; Zhu, Y.-R.; Qian, G.-S.; Wu, F.; Yuan, J.-M.; Groopman, J.D.; Kensler, T.W. Reduced aflatoxin exposure presages decline in liver cancer mortality in an endemic region of China. Cancer Prev. Res. 2013. [Google Scholar] [CrossRef] [Green Version]
- Khanna, R.; Verma, S.K. Pediatric hepatocellular carcinoma. World J. Gastroenterol. 2018, 24, 3980–3999. [Google Scholar] [CrossRef]
- Cameron, H.M.; Warwick, G.P. Primary cancer of the liver in Kenyan children. Br. J. Cancer 1977, 36, 793–803. [Google Scholar] [CrossRef] [Green Version]
- Kew, M.C.; Hodkinson, J.; Paterson, A.C.; Song, E. Hepatitis-B virus infection in black children with hepatocellular carcinoma. J. Med. Virol. 1982, 9, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.O.; Edington, G.M.; Obakponovwe, P.C. Hepatocellular carcinoma in infancy and childhood in Ibadan, Western Nigeria. Br. J. Cancer 1967, 21, 474–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Y.Y.; Wilson, S.; Mwatha, J.K.; Routledge, M.N.; Castelino, J.M.; Zhao, B.; Kimani, G.; Kariuki, H.C.; Vennervald, B.J.; Dunne, D.W.; et al. Aflatoxin exposure may contribute to chronic hepatomegaly in Kenyan school children. Environ. Health Perspect. 2012, 120, 893–896. [Google Scholar] [CrossRef] [PubMed]
- Kuniholm, M.H.; Lesi, O.A.; Mendy, M.; Akano, A.O.; Sam, O.; Hall, A.J.; Whittle, H.; Bah, E.; Goedert, J.J.; Hainaut, P.; et al. Aflatoxin exposure and viral hepatitis in the etiology of liver cirrhosis in The Gambia, West Africa. Environ. Health Perspect. 2008, 116, 1553–1557. [Google Scholar] [CrossRef]
- Adler, M.; Muller, K.; Rached, E.; Dekant, W.; Mally, A. Modulation of key regulators of mitosis linked to chromosomal instability is an early event in ochratoxin A carcinogenicity. Carcinogenesis 2009, 30, 711–719. [Google Scholar] [CrossRef] [Green Version]
- Marin-Kuan, M.; Nestler, S.; Verguet, C.; Bezencon, C.; Piguet, D.; Mansourian, R.; Holzwarth, J.; Grigorov, M.; Delatour, T.; Mantle, P.; et al. A toxicogenomics approach to identify new plausible epigenetic mechanisms of ochratoxin A carcinogenicity in rat. Toxicol. Sci. 2006, 89, 120–134. [Google Scholar] [CrossRef]
- Boorman, G.A. Toxicology and carcinogenesis studies of ochratoxin a in f344/n rats. Natl. Toxicol. Program. Tech. Rep. Ser. 1989, 5, 1–142. [Google Scholar]
- Marin-Kuan, M.; Cavin, C.; Delatour, T.; Schilter, B. Ochratoxin A carcinogenicity involves a complex network of epigenetic mechanisms. Toxicon 2008, 52, 195–202. [Google Scholar] [CrossRef]
- Schrenk, D.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L. (Ron); Leblanc, J.-C.; Nebbia, C.S.; Nielsen, E.; et al. Risk assessment of ochratoxin A in food. EFSA J. 2020, 18, 6113. [Google Scholar] [CrossRef]
- Ibrahim, A.S.; Zaghloul, H.; Badria, F.A. Case report evidence of relationships between hepatocellular carcinoma and ochratoxicosis. PLoS ONE 2013, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.B.; Phulukdaree, A.; Chuturgoon, A.A. Fumonisin B1 induces oxidative stress in oesophageal (SNO) cancer cells. Toxicon 2018, 141, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Dellafiora, L.; Galaverna, G.; Dall’Asta, C. Mechanisms of fumonisin B1 toxicity: A computational perspective beyond the ceramide synthases inhibition. Chem. Res. Toxicol. 2018, 31, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
- Chuturgoon, A.; Phulukdaree, A.; Moodley, D. Fumonisin B1 induces global DNA hypomethylation in HepG2 cells–An alternative mechanism of action. Toxicology 2014, 315, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Braun, M.S.; Wink, M. Exposure, occurrence, and chemistry of fumonisins and their cryptic derivatives. Compr. Rev. Food Sci. Food Saf. 2018, 17, 769–791. [Google Scholar] [CrossRef] [Green Version]
- Devnarain, N.; Tiloke, C.; Nagiah, S.; Chuturgoon, A.A. Fusaric acid induces oxidative stress and apoptosis in human cancerous oesophageal SNO cells. Toxicon 2017, 126, 4–11. [Google Scholar] [CrossRef]
- Ye, J.; Montero, M.; Stack, B.C. Effects of fusaric acid treatment on laryngeal squamous cell carcinoma. Chemotherapy 2013, 59, 121–128. [Google Scholar] [CrossRef]
- Ekbom, A. Growing evidence that several human cancers may originatein utero. Semin. Cancer Biol. 1998, 8, 237–244. [Google Scholar] [CrossRef]
Country | Toxin Type | Food Type | Sample Number | Sample Preparation | Analytical Method | LOD/LOQ (µg/kg) | % +ve | Range (µg/kg) | Reference |
---|---|---|---|---|---|---|---|---|---|
Kenya | a ΣAF | Weaning flour | 242 | NA | TLC | NA | 29 | 2–82 | [37] |
a ΣAF | Maize | 186 | NA | ELISA | NA | 95 | 0–88.8 | [44] | |
a ΣAF | Sorghum | 89 | 100 | 0.1–194.4 | |||||
Nigeria | ΣFB | Ogi | 30 | SPE (C18), MulitiSep | LC-MS/MS | NA | 93 | 3557 * | [9] |
DON | 13 | 61 * | |||||||
15-ADON | 3 | 60 * | |||||||
DON-3G | 17 | 30 * | |||||||
ZEN | 3 | 39 * | |||||||
α-ZEL | 7 | 20 * | |||||||
β-ZEL | 10 | 19 * | |||||||
HT-2 | 3 | 13 * | |||||||
NIV | 7 | 148 * | |||||||
FUS-X | 7 | 133 * | |||||||
ΣFB | PSP | 32 | SPE (C18), MulitiSep | LC-MS/MS | NA | 28 | 34–500 | [48] | |
DON | 13.3 | 16 | 61–180 | ||||||
15-ADON | 2.5 | 31 | 71–113 | ||||||
DON-3G | 2.7 | 22 | 12–14 | ||||||
ZEN | 3.6 | 81 | 27–388 | ||||||
α-ZEL | 5.0 | 13 | 19–22 | ||||||
T-2 | 13.4 | 9 | 10–13 | ||||||
HT-2 | 4.4 | 25 | 22–35 | ||||||
FUS-X | 32.9 | 22 | 66–276 | ||||||
NIV | 48.1 | 22 | 70–104 | ||||||
DON | FMG | 35 | SPE (C18), MulitiSep | LC-MS/MS | 7/14 | 11 | <LOQ-55 | [43] | |
a ΣAF | NA | 26 | <LOQ-17 | ||||||
ALT | 40/80 | 9 | <LOQ | ||||||
HT-2 | 6.5/13 | 9 | 20–21 | ||||||
ΣFB | NA | 77 | 42-3555 | ||||||
Nigeria | STG | FMG | 35 | SPE (C18), MulitiSep | LC-MS/MS | 1.3/2.5 | 29 | 4–7 | [43] |
ZEN | 3.3/6.5 | 9 | <LOQ | ||||||
ENN B | 6.3/12 | 14 | 12–14 | ||||||
DON | FSG | SPE (C18), MulitiSep | LC-MS/MS | 12/24 | 9 | 32–112 | [43] | ||
a ΣAF | NA | 11 | <LOQ–40 | ||||||
DAS | 0.5/1.0 | 11 | 1–2 | ||||||
AME | 6.3/12 | 23 | 30–35 | ||||||
ΣFB | NA | 83 | <LOQ–168 | ||||||
OTA | 2.5/5 | 6 | 5–6 | ||||||
STG | 2.5/5 | 23 | <LOQ | ||||||
3-NPA | Family cereal | 26 | Dilute and shoot | LC-MS/MS | 0.8 | 61.5 | 1.6–18.5 | [74] | |
a ΣAF | NA | 100 | 0.4–11.1 | ||||||
ALT | 0.4 | 15.4 | 0.4–0.9 | ||||||
BEA | 0.008 | 69.2 | 0.1–0.6 | ||||||
CIT | 0.16 | 88.5 | 1.2–151 | ||||||
DCIT | 2 | 7.7 | 2.2–3.4 | ||||||
FA2 | 2.4 | 65.4 | 2.4–42.6 | ||||||
ΣFB | NA | 100 | 62.3–1255 | ||||||
FB4 | 2.4 | 96.2 | 7.3–109 | ||||||
MON | 1.6 | 92.3 | 1.7–34.8 | ||||||
OTA | 0.4 | 7.7 | 0.5–0.5 | ||||||
3-NPA | Peanut | 5 | Dilute and shoot | LC-MS/MS | 0.8 | 20 | 5.4 | [74] | |
a ΣAF | NA | 80 | 6.5–13.6 | ||||||
BEA | 0.008 | 80 | 0.6–4.1 | ||||||
MON | 1.6 | 60 | 2.2–3.5 | ||||||
3-NPA | Ogi | 23 | Dilute and shoot | LC-MS/MS | 0.8 | 4.3 | 3.7 | [74] | |
a ΣAF | NA | 52.2 | 0.4–46.8 | ||||||
AFM1 | 0.4 | 4.3 | 0.9 | ||||||
BEA | 0.008 | 82.6 | 0.1–5.3 | ||||||
Nigeria | ALT | Ogi | 23 | Dilute and shoot | LC-MS/MS | 0.4 | 4.3 | 0.4 | [74] |
CIT | 0.16 | 60.9 | 0.8-159 | ||||||
DCIT | 2 | 4.3 | 3.9 | ||||||
FA1 | 2 | 43.5 | 1.2–11.3 | ||||||
FA2 | 2.4 | 43.5 | 5.3–42.3 | ||||||
ΣFB | NA | 87.0 | 32.4–910 | ||||||
FB4 | 2.4 | 78.3 | 3.8-222 | ||||||
MON | 1.6 | 17.4 | 2.4–32.3 | ||||||
OTA | 0.4 | 8.7 | 0.7–1.8 | ||||||
ZEN | 0.12 | 8.7 | 0.4–2.7 | ||||||
3-NPA | Tom bran | 27 | Dilute and shoot | LC-MS/MS | 0.8 | 86.7 | 5.7–993 | [74] | |
Aflatoxicol | 1 | 20 | 1.4–7.8 | ||||||
a ΣAF | NA | 83.3 | 0.5–590 | ||||||
AFM1 | 0.4 | 46.7 | 0.9–24.4 | ||||||
AFP1 | 2.4 | 3.3 | 14.6 | ||||||
ALT | 0.4 | 30 | 1.2–7.2 | ||||||
BEA | 0.008 | 96.7 | 0.1–69 | ||||||
CIT | 0.16 | 73.3 | 1.7–1173 | ||||||
DON | 1.2 | 6.7 | 30.8–31.6 | ||||||
DCIT | 2 | 53.3 | 2.4–210 | ||||||
FA1 | 2 | 16.7 | 2.2–4.3 | ||||||
FA2 | 2.4 | 26.7 | 3.2–26.4 | ||||||
ΣFB | NA | 96.7 | 7.8–1436 | ||||||
FB4 | 2.4 | 60 | 3.7–105 | ||||||
HFB1 | 1.6 | 10 | 2.1–8.1 | ||||||
MON | 1.6 | 96.7 | 5.1–3450 | ||||||
NIV | 1.2 | 10 | 11.4–23.8 | ||||||
OTA | 0.4 | 26.7 | 0.5–26.4 | ||||||
OTB | 1.6 | 10 | 3.5–113 | ||||||
Nigeria | TeA | Tom bran | 27 | Dilute and shoot | LC-MS/MS | 8 | 13.3 | 41.4–292 | [74] |
ZEN | 0.12 | 13.3 | 0.6–10.3 | ||||||
b ΣAF | Cereal products | 42 | Dilute and shoot | LC-MS/MS | NA | 21.4 | 1.0–16.2 | [75] | |
BEA | 0.008/0.024 | 78.6 | 0.1–116 | ||||||
DON | 1.2/3.6 | 4.8 | 52.9–61.5 | ||||||
ENN A | 0.032/0.096 | 16.7 | 0.1–5.7 | ||||||
ENN B | 0.024/0.072 | 19.0 | 0.03–6.9 | ||||||
ENN B1 | 0.04/0.12 | 14.3 | 0.4–14.3 | ||||||
ENN B2 | 0.04/0.12 | 7.1 | 0.09–0.34 | ||||||
FA1 | 2/6 | 2.4 | 2.0 | ||||||
FB1+FB2 | NA | 28.6 | 7.9–194 | ||||||
MON | 1.6/4.8 | 7.1 | 7.2–10.6 | ||||||
ZEN | 0.12/0.36 | 9.5 | 0.5–6.8 | ||||||
Tanzania | ΣFB | Maize flour | 191 | NA | LC-FD | NA | 69 | 21–3201 | [38] |
a ΣAF | Maize flour | 41 | NA | HPLC/FD | 0.01-0.53 | 32 | 0.11–386 | [72] | |
DON | IAC | HPLC/UV | 52 | 44 | 57–825 | ||||
FB1+FB2 | NA | HPLC/FD | 47–53 | 83 | 63–2284 | ||||
a ΣAF | Maize flour | 67 | NA | HPLC/FD | 0.01–0.53 (LOD) | 58 | 0.33–69.5 | [76] | |
FB1+FB2 | 47–53 (LOD) | 31 | 48–1225 | ||||||
Zambia | AFB1 | Peanut butter | 96 c | NA | ELISA | 1 | 73 | 130 f | [77] |
AFB1 | 252 d | NA | 1 | 80 | 10,740 f | ||||
AFB1 | 606 e | NA | 1 | 53 | 1000 f | ||||
Zimbabwe | b ΣAF | Peanut | 18 | IAC | HPLC/FD | NR | 17 | 6.6–622.1 | [78] |
a ΣAF | Peanut butter | 11 | HPLC/FD | NR | 90.9 | 6.1–241.2 |
Country | Toxin Type | Food Type | Sample Number | Sample Preparation | Analytical Method | LOD/LOQ (µg/kg) | % +ve | Range (µg/kg) | Reference |
---|---|---|---|---|---|---|---|---|---|
Burkina Faso | AFB1 | Infant formula | 199 | IAC | HPLC/FD | 0.3/1 | 83.9 | 0–87.4 | [73] |
FB1+B2 | 5/20 | 1.5 | 0–672.9 | ||||||
OTA | 0.05/0.1 | 7.5 | 0–3.2 | ||||||
Cameroon | AFM1 | Breast milk | 62 | LLE | HPLC/FD | NA | 5 | 0.005–0.625 | [94] |
Kenya | AFM1 | Breast milk | 165 | NA | ELISA | 0.005 | 74.6 | <LOD–0.0475 | [96] |
AFM1 | 39 | NA | HPLC/FD | NA | 15.4 | 0.0005–0.1527 | |||
AFM1 | Milk | 128 | NA | ELISA | NA | 100 | 0.002–2.56 | [44] | |
Nigeria | AFM1 | Breast milk | 100 | IAC | HPLC/FD | 0.010 | 82 | 0.057 * | [92] |
BEA | Breast milk | 75 | QuEChERS | LC-MS/MS | 0.006/0.011 | 56 | <LOQ–0.019 | [90] | |
ENN B | 0.004/0.009 | 9 | <LOQ-0.009 | ||||||
OTA | 0.048/0.096 | 15 | <LOQ | ||||||
AFM1 | 0.043/0.087 | 1 | <LOQ | ||||||
AFM1 | Breast milk | 120 | LLE | HPLC/FD | NA | 14 | 2–187 | [45] | |
AFM1 | Breast milk | 50 | IAC | HPLC/FD | 0.01/0.05 | 82 | 0.004–0.092 | [91] | |
AFM1 | Breast milk | 28 | NA | TLC | 2 | 18 | LOD–4.0 | [95] | |
AFM1 | Breast milk | 40 | NA | HPLC/FD | 1 | 77 | 1–601 | [97] | |
BEA | Milk | 36 | Dilute and shoot | LC-MS/MS | 0.008 | 27.8 | 0.04–0.4 | [74] | |
ZEN | 0.12 | 2.8 | 0.6 | ||||||
3-NPA | Infant formula | 17 | Dilute and shoot | LC-MS/MS | 0.8 | 11.8 | 19.6–22.5 | [74] | |
ΣAF | NA | 5.9 | 4.6 | ||||||
ALT | 0.4 | 5.9 | 0.7 | ||||||
CIT | 0.16 | 5.9 | 3.6 | ||||||
BEA | 0.008 | 17.6 | 0.1–13.4 | ||||||
DON | 1.2 | 11.8 | 27.2–36 | ||||||
HT-2 | 3.2 | 5.9 | 18.8 | ||||||
MON | 1.6 | 11.8 | 10–16 | ||||||
NIV | 1.2 | 11.8 | 18.9–22 | ||||||
T-2 | 0.4 | 11.8 | 0.8–119 | ||||||
Nigeria | ZEN | Infant formula | 17 | Dilute and shoot | LC-MS/MS | 0.12 | 23.5 | 0.4–5.4 | [74] |
AFM1 | Breast milk | 22 | SPE | LC-MS/MS | 0.002/0.004 | 18.2 | 0.002 | [75] | |
AME | 0.0005/0.001 | 95.5 | 0.0005–0.0117 | ||||||
BEA | 0.0001/0.0003 | 100 | 0.001–0.012 | ||||||
DCIT | 0.014/0.028 | 27.3 | 0.014–0.0597 | ||||||
ENN B | 0.0007/0.0014 | 72.7 | 0.0007–0.0101 | ||||||
ENN B1 | 0.0005/0.001 | 22.7 | 0.0005–0.0012 | ||||||
OTA | 0.002/0.004 | 63.6 | 0.002–0.0676 | ||||||
OTB | 0.0025/0.005 | 9.1 | 0.0053–0.0067 | ||||||
STG | 0.0005/0.001 | 4.6 | 0.0012 | ||||||
Sierra Leone | OTA | Breast milk | 113 | NA | HPLC/FD | 0.2 | 35 | 0.2–337 | [98] |
AFB1 | 0.05 | 18 | 0.05–372 | ||||||
AFM1 | 0.2 | 31 | 0.2–99 | ||||||
AFM2 | 0.07 | 62 | 0.07–77.5 | ||||||
AFG1 | 0.005 | 19 | 0.005–139 | ||||||
AFG2 | 0.003 | 22 | 0.003–366 | ||||||
Aflatoxicol | 0.05 | 36 | 0.005–50.9 | ||||||
Sudan | AFM1 | Breast milk | 94 | LLE | HPLC/FD | 0.013 | 54 | 0.007–2.561 | [99] |
Tanzania | AFM1 | Breast milk | 143 | NA | HPLC/FD | 0.005 | 100 | 0.01–0.55 | [93] |
FB1 | Breast milk | 131 | LLE, SAX | HPLC/FD | 5.5/19.5 | 44 | 6.570–47.105 | [100] |
Country | Sample Size | Mycotoxin | Concentration (µg/kg) | Exposure Level, Mean (Range) | % Prevalence | PDI | TDI | Reference |
---|---|---|---|---|---|---|---|---|
µg/kg bw/day | ||||||||
Nigeria | 70 | AFB1 (infants) | 324.7 * | 1850 * ng/kg bw/day | NR | 1.91 * | 0.00017 | [120] |
AFB1 (children) | 324.7 * | 740 * ng/kg bw/day | 0.76 * | 0.00017 | ||||
137 | AFB1 | 0.12–473.8 | 2.5–51,192 ng/kg bw/day | NR | NR | 0.00017 | [74] | |
AFs | 0.88–589.8 | 25.7–54,892 ng/kg bw/day | 0.00017 | |||||
FBs | 4.6–1,540 | 0–138.6 ng/kg bw/day | 2 | |||||
OTA | 0–26.4 | 0–2.03 ng/kg bw/day | 0.1a | |||||
CIT | 0.08–1,173 | 0.002–102 ng/kg bw/day | 0.2 | |||||
BEA | 0.004–69 | 0–3.14 ng/kg bw/day | 90 | |||||
MON | 0.8–3,450 | 0.02–156.8 ng/kg bw/day | 200 | |||||
Tanzania | 254 | FBs (sorted maize) | 19–1758 | 1.99 (0.32–144.29) b µg/kg bw/day | 10 c | <1.0 | 2.0 | [121] |
FBs (unsorted maize) | 19–21,666 | 36.80 (10.2–144.29) b µg/kg bw/day | ||||||
143 | AFs | 0.33–69.47 | 0.14–120 ng/kg bw/day | 39 | 0.017 | [76] | ||
FBs | 48–1224 | 0.005–0.88 µg/kg bw/day | 21 | <2 | 2 | |||
131 | FBs | 6.57–471.1 | 0.78–64.93 µg/kg bw/day | 44.3 | 2.0 | [93] | ||
143 | AFM1 | 0.01–0.55 | 0:81–66.79 ng/kg bw/day | 96 d | NR | NR | [100] | |
41 | AFs | 0.11–386 | 1–786 ng/kg bw/day | 32 | 0.017 | [72] | ||
DON | 57–825 | 0.38–8.87 µg/kg bw/day | 44 | 1 | ||||
FBs | 63–2284 | 0.19–26.37 µg/kg bw/day | 83 | 2 | ||||
191 | FBs | 21–3201 | 0.003–28.84 µg/kg bw/day | 69 | NR | 2 | [38] |
Country | Sample Size | Matrix | Mycotoxin | Concentration: Mean (Range) | % Prevalence | PDI | TDI | Reference |
---|---|---|---|---|---|---|---|---|
µg/kg bw/day | ||||||||
Benin | 200 | Blood (sampled in February) | AFs | 37.4 | 98-100 | NR | NR | [34] |
Blood (sampled in June) | AFs | 38.7 | ||||||
Blood (sampled in October) | AFs | 86.8 | ||||||
Benin and Togo | 480 | Blood | AFs | 32.8 (5–1064) | 99 | NR | NR | [33] |
Blood (fully weaned) | AFs | 45.6 (38.8–53.7) | ||||||
Blood (partially breastfed) | AFs | 18.0 (15.2–21.3) | ||||||
Benin and Togo | 479 | Blood | AFs | 32.8 (25.3–42.5) | 99 | [126] | ||
Gambia | 119 | Blood (maternal) | AFs | 40.4 (4.8–260.8) | 100 | NR | NR | [36] |
99 | Blood (cord) | AFs | 10.1 (5.0–189.6) | 48.5 | ||||
118 | Blood (infant) | AFs | 8.7 (5.0–30.2) | 11 | ||||
Guinea | 305 | Blood (at harvest) | AFs | 12.7 (10.9–14.7) | 88.2 | NR | NR | [127] |
288 | Blood (post-harvest) | AFs | 16.3 (14.4–18.5) | 93.4 | ||||
Tanzania | 166 | Blood (at recruitment) | AFs | 4.7 (3.9–5.6) | 67 | NR | NR | [128] |
Blood (after 6 months) | AFs | 12.9 (9.9–16.7) | 84 | |||||
Blood (after 12 months) | AFs | 23.5 (19.9–27.7) | 99 | |||||
Uganda | 96 | Blood | AFs | 9.7 (8.2–11.5) | 95.8 | NR | NR | [129] |
Cameroon | 220 | Urine | FB1 | 2.96 (0.06–48) | 11 | 0.71 | 2.0 | [130] |
DON | 2.22 (0.1–77) | 17 | 2.89 | 1.0 | ||||
OTA | 0.2 (0.04–2.4) | 32 | NR | NR | ||||
AFM1 | 0.33 (0.06–4.7) | 31 | ||||||
ZEN | 0.97 (0.65–5.0) | 4 | ||||||
α-ZEL | 0.98 (0.26–1.3) | 4 | ||||||
β-ZEL | 1.52 (0.02–12.5) | 8 | ||||||
Ethiopia | 200 | Urine | AFM1 | 0.064 (0.06–0.07) | 7 | NR | NR | [131] |
AFB2 | 0.047 (<LOQ–0.063) | 4.5 | ||||||
AFG1 | 0.061 (0.054–0.065) | 2.5 | ||||||
AFG2 | 0.0068 (0.066–0.07) | 3 | ||||||
Guinea | 50 | Urine | AFB1 | 0.027 (0.016–0.043) | 16 | NR | NR | [132] |
AFB2 | 0.0008 (0.0005–0.0013) | 58 | ||||||
AFG1 | 0.027 (0.023–0.031) | 2 | ||||||
AFG2 | 0.0011 (0.0007–0.0017) | 36 | ||||||
AFM1 | 0.0163 (0.0101–0.027) | 64 | ||||||
Nigeria | 19 | Urine | AFM1 | 0.1 | 10.53 | 0.67 | NA | [133] |
DON-15-O-GLU | 1.5 | 5.3 | NR | NA | ||||
FB1 | 3.7 | 21.1 | NR | 2.0 | ||||
OTA | 0.1 | 21.1 | NR | 0.12 a | ||||
Tanzania | 166 | Urine(at recruitment) | FBs | 0.314 (0.257–0.383) | 98 | NR | NR | [128] |
Urine (after 6 months) | FBs | 0.167 (0.135–0.207) | 96 | |||||
Urine (after 12 months) | FBs | 0.570 (0.465–0.698) | 100 | |||||
166 | Urine (at recruitment) | DON | 1.1 (0.8–1.4) | 51 | 0.063 | 1 | [134] | |
Urine (after 6 months) | DON | 2.3 (1.7–3.2) | 70 | 0.122 | 1 | |||
Urine (after 12 months) | DON | 5.7 (4.1–7.9) | 80 | 0.268 | 1 |
Country | Population Size/Group | Matrix/Study Design | Toxin Type | Concentration Range (Rate) | % Rate of Malnutrition | Result | Reference |
---|---|---|---|---|---|---|---|
Benin and Togo | 480 Children Age: 9 months–5 years | AF-albumin (blood)/cross-sectional | AFs | 5–1064 pg/mg (99%) | HAZ: 33% WAZ: 29% WHZ: 6% | AF-albumin concentration negatively correlated with the growth parameters (HAZ (p = 0.001), WAZ (p = 0.005), and WHZ (p = 0.047)). | [33] |
Benin | 200 Children Age: 16–37 months | AF-albumin (blood)/longitudinal (8 months) at three points: February, June, and October | AFs | February: 37.4 pg/mg (98%) June: 38.7 pg/mg (99.5%) October: 86.8 pg/mg (100%) | Not calculated | AF-albumin level measured at recruitment or the mean of three time points was inversely associated with HAZ and WHZ scores measured at the last time point. Strong negative correlation (p < 0.0001) between AF-albumin and height increase over the 8 months follow-up after adjustment for age, sex, height at recruitment, socioeconomic status, village, and weaning status. Highest quartile of AF-albumin was associated with a mean 1.7 cm reduction in growth over 8 months compared with the lowest quartile. | [34] |
Cameroon | 220 Children Age: 1.5–4.5 years | Urine/cross-sectional | OTA DON AFM1 FB1 ZEN β-ZEL α-ZEL | 73% of the samples were contaminated with mycotoxin | HAZ: 39% WAZ: 37% WHZ: 23% | Significant differences were observed between the weaning categories and AFM1 concentration detected in the urine. No association between the different malnutrition categories (stunted, wasting, and underweight) and the mycotoxin concentrations detected in the urine samples. | [130] |
Ethiopia | 200 Children Age: 1–4 years | Urine/cross-sectional | AFs | Values in ng/mL: AFM1: 0.06–0.07 AFB2: <LOQ–0.06 AFG1: 0.05–0.065 AFG2: 0.066-0.07 AF (17%) | HAZ: 45% WAZ: 17% WHZ: 1% | No association between the different malnutrition categories (stunted, wasting, and underweight) and AF exposure. | [131] |
Gambia | 138 Children Age: 0–12 months | AF-albumin (blood)/longitudinal (14 months follow-up from birth until one year of age) | AFs | Maternal blood: 4.8–260.8 pg/mg (100%) Cord blood: 5.0–189.6 pg/mg (48.5%) | Not calculated | High maternal AF-albumin was associated to lower HAZ (p = 0.044) and WAZ (p = 0.012) scores. Reduction of maternal AF-albumin from 110 pg/mg to 10 pg/mg would lead to an increase of 0.8 kg in weight and 2 cm increase in height of a child within the first year of life. | [36] |
Infant blood: 5.0–30.2 pg/mg (11%) | AF-albumin measured at Week 16 was negatively related to HAZ (p = 0.002). | ||||||
374 Infants Age: 0–2 years | AF-albumin (blood)/longitudinal | AFs | 48, 98, and 99% had detectable AF-albumin concentrations (LOD > 3.0 pg/mg at 6, 12, 18 months, respectively) | HAZ: 25.9% WAZ: 24.4% WHZ: 12.9% | Inverse relationships between AF-albumin adducts and HAZ, WAZ, and WHZ scores from the age of 6 to 18 months. Inverse relationship between AF-albumin at 6 months and change in WHZ between 6 and 12 months (p = 0·013). AF-albumin at 12 months was associated with changes in HAZ and infant length between the age of 12 and 18 months. AF-albumin at 6 months was associated with IGFBP-3 at 12 months (p = 0·043). | [141] | |
Kenya | 242 Children Age: 3–36 months | Weaning flour/cross-sectional | AFs | 2–82 µg/kg (29%) | HAZ: 34% WAZ: 30% WHZ: 6% | Highly significant association between children that consumed AF-contaminated flour and prevalence of wasting (p = 0.002). | [37] |
204 Children Age: 1–3 years | Cereals (maize, sorghum) and milk/cross-sectional | AFs AFM1 | AF: 0–194 µg/kg in cereals AFM1: 0.002–2.56 µg/kg in milk (98%) | HAZ: 41% WAZ: 17% WHZ: 4% | AFM1 was negatively associated with HAZ (p = 0.047). No association between total AFs (AFB and AFG) and HAZ, WAZ, and WHZ Scores. | [44] | |
Kenya | 881 Children Age: 0–2 years | AFB1-lysine adduct/cluster randomised longitudinal | AFs | *18.1 pg/mg albumin | Not calculated | The intervention significantly reduced endline serum AFB1-lysine adduct levels (p = 0.025). No effect on the prevalence of stunting or LAZ, though a significant effect on child linear growth was found at midline (11–19 months). | [142] |
Nigeria | 58 Children Age: 6–48 months (with severe acute malnutrition) | AFB1-lysine/cross-sectional | AFs | 0.2–59.2 pg/mg albumin | Severe acute malnutrition: 81% HAZ: 74% | Significantly higher AFB1-lysine concentrations in stunted children compared to non-stunted children as well as in children with severe acute malnutrition compared to controls. No significant association between AFB1-lysine and stunting after adjustment for malnutrition status (OR = quartile 3, 1.21; 95% CI: 0.086–31.45) and no correlation between AFB1-lysine and WAZ. | [143] |
Tanzania | 215 Infants Age: 6 months | Maize/longitudinal (follow-up at 6 and 12 months of age) | FBs | 21–3201 µg/kg (69% of 191 maize samples) | Not calculated | Infants exposed to FBs above the PMTDI (2 µg/kg) were significantly shorter by 1.3 cm and lighter by 328 g at 12 months (p = 0.002). | [38] |
143 Infants Age: 0–6 months 143 Lactating mothers | Breast milk/longitudinal (follow-up at three points: 1st, 3rd, and 5th months of age) | AFM1 | 1st month: 0.01–0.55 ng/mL 3rd month: 0.01–0.47 ng/mL 5th month: 0.01–0.34 ng/mL | 1st month: HAZ: 11% WAZ: 4% WHZ: 4% 3rd month: HAZ: 13% WAZ: 9% WHZ: 1% 5th month HAZ: 17% WAZ: 10% WHZ: 3% | Significant inverse association between AFM1 exposure levels and WAZ or HAZ (p < 0.05). | [100] | |
Tanzania | 166 Children Age: 6–14 months old | AF-albumin and UFB1/ longitudinal (12 month follow-up) | AFs FBs | AF-albumin: at recruitment: *4.7 pg/mg (67%), 6 months: *12.9 pg/mg (84%), 12 months: *23.5 pg/mg (99%) UFB1: at recruitment: *313.9 pg/mg (98%), 6 months: *167.3 pg/mg (96%), 12 months: *569.5 pg/mg (100%) | At recruitment HAZ: 44% WAZ: 8% WHZ: 2% At 6 months: HAZ: 55% WAZ: 14% WHZ: 2% At 12 months: HAZ: 56% WAZ: 14% WHZ: 0.7% | No significant negative association between mean AF-albumin levels and child growth (HAZ, WHZ, or WAZ score). Negative association between mean UFB1 concentrations (at recruitment, and 6 and 12 months from recruitment) and HAZ at recruitment. | [128] |
143 Infants Age: under 6 months | Maize flour/longitudinal (follow-up at three points: 1st, 3rd, and 5th months of age) | AFs FBs | AF: 0.33–69.5 µg/kg (58% of 67 maize samples) FB: 48–1224 µg/kg (31% of 67 maize samples) | WAZ: 35% of 115 infants HAZ: 43% of 115 infants | Insignificant association was observed between exposure to AFs or FBs and stunting or underweight. | [76] | |
300 Children | Maize/cluster randomised controlled trial | AFs FBs | Not reported | Not calculated | AF and FB intakes were inversely associated with WAZ. WAZ was 6.7% lower in the intervention group. Mean WAZ difference between the groups was 0.57 (p = 0.007). | [144] | |
Tanzania | 114 Children Age: under 36 months | AFB1- lysine and UFB1/ longitudinal | AFs FBs | AFB1-lysine: 0.28–25.1 pg/mg (72%) UFB1:<LOD–16.6 ng/mL (80%) | At 24 months: HAZ: 61% WAZ: 17% WHZ: 3% At 36 months: HAZ: 75% WAZ: 21% WHZ: 0% | No associations were found between AF exposure and growth impairment as measured by stunting, underweight, or wasting. However, FB exposure was negatively associated with underweight. | [41] |
Uganda | 246 Dyads | Maternal serum/longitudinal (follow-up: pregnancy up to one year) | AFs | AFB1: *113.9 pg/mg | Not calculated | A negative effect of AF exposure on infant linear growth (HAZ) in HIV-positive pregnant women and their infants. Infants of HIV-positive women were in high perinatal AF category with lower HAZ scores (0.460) when compared with the infants of HIV-negative low-AF exposed women (p = 0.006). | [145] |
220 infants Age: 0–48 h | Maternal serum/cross-sectional | AFs | AFB1: 0.71–95.6 pg/mg albumin | Not calculated | Maternal AFB-lysine levels were significantly associated with lower birth weight (adj-β: p = 0.040), lower WAZ (adj-β: p = 0.037), smaller HC (adj-β: p = 0.035), and lower HCZ (adj-β: p = 0.023) at birth. No significant associations were observed between maternal AFB-lysine levels and infant length, WHZ, HAZ, or gestational age at birth. | [146] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adaku Chilaka, C.; Mally, A. Mycotoxin Occurrence, Exposure and Health Implications in Infants and Young Children in Sub-Saharan Africa: A Review. Foods 2020, 9, 1585. https://doi.org/10.3390/foods9111585
Adaku Chilaka C, Mally A. Mycotoxin Occurrence, Exposure and Health Implications in Infants and Young Children in Sub-Saharan Africa: A Review. Foods. 2020; 9(11):1585. https://doi.org/10.3390/foods9111585
Chicago/Turabian StyleAdaku Chilaka, Cynthia, and Angela Mally. 2020. "Mycotoxin Occurrence, Exposure and Health Implications in Infants and Young Children in Sub-Saharan Africa: A Review" Foods 9, no. 11: 1585. https://doi.org/10.3390/foods9111585
APA StyleAdaku Chilaka, C., & Mally, A. (2020). Mycotoxin Occurrence, Exposure and Health Implications in Infants and Young Children in Sub-Saharan Africa: A Review. Foods, 9(11), 1585. https://doi.org/10.3390/foods9111585