Occurrence of Listeria spp. and Listeria monocytogenes Isolated from PDO Taleggio Production Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collection
2.2. Sample Analysis
2.3. L. monocytogenes Serogroup and Whole Genome Sequencing (WGS)
2.4. Statistical Analysis
3. Results
3.1. Prevalence of Listeria spp. in the Dairy Plants
3.2. Prevalence and Counts of Listeria spp. on FCS and NFCS
3.3. Identification of Listeria spp. Isolates
3.4. Listeria monocytogenes Characterization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Allerberger, F.; Wagner, M. Listeriosis: A resurgent foodborne infection. Clin. Microbiol. Infect. 2010, 16, 16–23. [Google Scholar] [CrossRef] [Green Version]
- EFSA; ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2018. EFSA J. 2019, 17, 5926. [Google Scholar]
- Little, C.L.; Rhoades, J.R.; Sagoo, S.K.; Harris, J.; Greenwood, M.; Mithani, V.; Grant, K.; McLauchlin, J. Microbiological quality of retail cheeses made from raw, thermized or pasteurized milk in the UK. Food Microbiol. 2008, 25, 304–312. [Google Scholar] [CrossRef] [PubMed]
- EC—European Commission. European Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. O.J.E.U. 2005, L 338/1. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32005R2073&from=EN (accessed on 11 September 2020).
- Gaulin, C.; Ramsay, D.; Bekal, S. Widespread listeriosis outbreak attributable to pasteurized cheese, which led to extensive cross-contamination affecting cheese retailers, Quebec, Canada, 2008. J. Food Prot. 2012, 75, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Koch, J.; Dworak, R.; Prager, R.; Becker, B.; Brockmann, S.; Wicke, A.; Wichmann-Schauer, H.; Hof, H.; Werber, D.; Stark, K. Large listeriosis outbreak linked to cheese made from pasteurized milk, Germany, 2006–2007. Foodborne Pathog. Dis. 2010, 7, 1581–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amato, E.; Filipello, V.; Gori, M.; Lomonaco, S.; Losio, M.N.; Parisi, A.; Huedo, P.; Knabel, S.J.; Pontello, M. Identification of a major Listeria monocytogenes outbreak clone linked to soft cheese in Northern Italy—2009–2011. BMC Infect. Dis. 2017, 17, 342. [Google Scholar] [CrossRef]
- ANSES—French Agency for Food, Environmental and Occupational Health & Safety. EURL Lm Guidance Document to Evaluate the Competence of Laboratories Implementing Challenge Tests and Durability Studies Related to Listeria monocytogenes in Ready-To-Eat Foods Version 2—7 May 2018. Available online: https://ec.europa.eu/food/sites/food/files/safety/docs/biosafety_fh_mc_guidance-comp-labs.pdf (accessed on 11 September 2020).
- Lianou, A.; Koutsumanis, K.P. Strain variability of the behavior of foodborne bacterial pathogens: A review. Int. J. Food Microbiol. 2013, 167, 310–321. [Google Scholar] [CrossRef]
- Melo, J.P.; Andrew, W.; Faleiro, M.L. Listeria monocytogenes in cheese and the dairy environment remains a food safety challenge: The role of stress responses. Food Res. Int. 2015, 67, 75–90. [Google Scholar] [CrossRef]
- Almeida, G.; Magalhães, R.; Carneiro, L.; Santos, I.; Silva, J.; Ferreira, V.; Hogg, T.; Teixeira, P. Foci of contamination of Listeria monocytogenes in different cheese processing plants. Int. J. Food Microbiol. 2013, 167, 303–309. [Google Scholar] [CrossRef]
- Parisi, A.; Latorre, L.; Fraccalvieri, R.; Miccolupo, A.; Normanno, G.; Caruso, M.; Santagada, G. Occurrence of Listeria spp. in dairy plants in Southern Italy and molecular subtyping of isolates using AFLP. Food Control 2013, 29, 91–97. [Google Scholar] [CrossRef]
- Fox, E.; Hunt, K.; O’Brien, M.; Jordan, K. Listeria monocytogenes in Irish farmhouse cheese processing environments. Int. J. Food Microbiol. 2011, 145, S39–S45. [Google Scholar] [CrossRef]
- Fox, E.; O’Mahony, T.; Clancy, M.; Dempsey, R.; O’Brien, M.; Jordan, K. Listeria monocytogenes in the Irish dairy farm environment. J. Food Prot. 2009, 72, 1450–1456. [Google Scholar] [CrossRef] [PubMed]
- Manfreda, G.; De Cesare, A.; Stella, S.; Cozzi, M.; Cantoni, C. Occurrence and ribotypes of Listeria monocytogenes in Gorgonzola cheeses. Int. J. Food Microbiol. 2005, 102, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Ibba, M.; Cossu, F.; Spanu, V.; Virdis, S.; Spanu, C.; Scarano, C.; De Santis, E.P.L. Listeria monocytogenes contamination in dairy plants: Evaluation of Listeria monocytogenes environmental contamination in two cheese-making plants using sheeps milk. Ital. J. Food Saf. 2013, 2, 109–112. [Google Scholar] [CrossRef] [Green Version]
- Latorre, A.A.; Van Kessel, J.A.S.; Karns, J.S.; Zurakowski, M.J.; Pradhan, A.K.; Boor, K.J.; Adolph, E.; Sukhnanand, S.; Schukken, Y.H. Increased in vitro adherence and on-farm persistence of predominant and persistent Listeria monocytogenes strains in the milking system. Appl. Environ. Microbiol. 2011, 77, 3676–3684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latorre, A.A.; Van Kessel, J.A.S.; Karns, J.S.; Zurakowski, M.J.; Pradhan, A.K.; Zadoks, R.N.; Boor, K.J.; Schukken, Y.H. Molecular ecology of Listeria monocytogenes: Evidence for a reservoir in milking equipment on a dairy farm. Appl. Environ. Microbiol. 2009, 75, 1315–1323. [Google Scholar] [CrossRef] [Green Version]
- Spanu, C.; Scarano, C.; Ibba, M.; Spanu, V.; De Santis, E.P.L. Occurrence and traceability of Listeria monocytogenes strains isolated from sheep’s milk cheese-making plants environment. Food Control 2015, 47, 318–325. [Google Scholar] [CrossRef]
- Lou, Y.; Yousef, A.E. Adaptation to sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factors. Appl. Environ. Microbiol. 1997, 63, 1252–1255. [Google Scholar] [CrossRef] [Green Version]
- Codex Alimentarius Commission. Guidelines on the Application of General Principles of Food Hygiene to the Control of Listeria monocytogenes in Foods; CAC/GL 61-2007; Codex Alimentarius Commission: Rome, Italy, 2007. [Google Scholar]
- Anonymous. “Il Taleggio” [Italian]. Available online: https://www.taleggio.it/it/taleggio#produzione_slide_28 (accessed on 9 August 2020).
- ISO—International Standardization Organization. Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 1: Detection Method; ISO 11290-1:2017; International Standardization Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Torresi, M.; Ruolo, A.; Acciari, V.A.; Ancora, M.; Blasi, G.; Cammà, C.; Centorame, P.; Centorotola, G.; Curini, V.; Guidi, F.; et al. A Real Time PCR screening assay for rapid detection of Listeria monocytogenes outbreak strains. Foods 2020, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Doumith, M.; Buchrieser, C.; Glaser, P.; Jacquet, C.; Martin, P. Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J. Clin. Microbiol. 2004, 42, 3819–3822. [Google Scholar] [CrossRef] [Green Version]
- Kérouanton, A.; Marault, M.; Petit, L.; Grout, J.; Dao, T.T.; Brisabois, A. Evaluation of a multiplex PCR assay as an alternative method for Listeria monocytogenes serotyping. J. Microbiol. Methods 2010, 80, 134–137. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 5 June 2020).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nurk, S.; Bankevich, A.; Antipov, D.; Gurevich, A.A.; Korobeynikov, A.; Lapidus, A.; Prjibelski, A.D.; Pyshkin, A.; Sirotkin, A.; Sirotkin, Y.; et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J. Comput. Biol. 2013, 20, 714–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, M.; Machado, M.P.; Silva, D.N.; Rossi, M.; Moran-Gilad, J.; Santos, S.; Ramirez, M.; Carriço, J.A. chewBBACA: A complete suite for gene-by-gene schema creation and strain identification. Microb. Genom. 2018, 4, e000166. [Google Scholar] [CrossRef]
- Moura, A.; Criscuolo, A.; Pouseele, H.; Maury, M.M.; Leclercq, A.; Tarr, C.; Björkman, J.T.; Dallman, T.; Reimer, A.; Enouf, V.; et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat. Microbiol. 2016, 2, 1–10. [Google Scholar] [CrossRef]
- De Cesare, A.; Mioni, R.; Manfreda, G. Prevalence of Listeria monocytogenes in fresh and fermented Italian sausages and ribotyping of contaminating strains. Int. J. Food Microbiol. 2007, 120, 124–130. [Google Scholar] [CrossRef]
- Tirloni, E.; Stella, S.; Bernardi, C.; Dalgaard, P.; Rosshaug, P.S. Predicting growth of Listeria monocytogenes in fresh ricotta. Food Microbiol. 2019, 78, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Perrin, M.; Bemer, M.; Delamare, C. Fatal case of Listeria innocua bacteremia. J. Clin. Microbiol. 2003, 41, 5308–5309. [Google Scholar] [CrossRef] [Green Version]
- Maury, M.M.; Bracq-Dieye, H.; Huang, L.; Vales, G.; Lavina, M.; Thouvenot, P.; Disson, O.; Leclercq, A.; Brisse, S.; Lecuit, M. Hypervirulent Listeria monocytogenes clones’ adaption to mammalian gut accounts for their association with dairy products. Nat. Commun. 2019, 10, 2488. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, E.M.; Bjorkman, J.T.; Kiil, K.; Grant, K.; Dallman, T.; Painset, A.; Amar, C.; Roussel, S.; Guillier, L.; Felix, B.; et al. Closing gaps for performing a risk assessment on Listeria monocytogenes in ready-to-eat (RTE) foods: Activity 3, the comparison of isolates from different compartments along the food chain, and in humans using whole genome sequencing (WGS) analysis. EFSA Support. Publ. 2017, 14, 1151E. [Google Scholar] [CrossRef] [Green Version]
- Maury, M.; Chenal-Francisque, V.; Bracq-Dieye, H.; Han, L.; Leclercq, A.; Vales, G.; Moura, A.; Gouin, E.; Scortti, M.; Disson, O.; et al. Spontaneous loss of virulence in natural populations of Listeria monocytogenes. Infect. Immun. 2017, 85, e00541-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Plant | Month | Number of Samples | Listeria spp. | Listeria monocytogenes | ||
---|---|---|---|---|---|---|
Positive Samples | % | Positive Samples | % | |||
A | May | 40 | 4 | 10.0 b | 0 | 0 |
July | 34 | 9 | 26.5 b | 0 | 0 | |
October | 26 | 19 | 73.1 a | 0 | 0 | |
All A | 100 | 32 | 32.0 y | 0 | 0 | |
B | May | 38 | 2 | 5.3 | 0 | 0 |
July | 32 | 2 | 6.3 | 0 | 0 | |
October | 26 | 5 | 19.2 | 0 | 0 | |
All B | 96 | 9 | 9.4 z | 0 | 0 | |
C | May | 31 | 8 | 25.8 a | 0 | 0 |
July | 25 | 0 | 0 b | 0 | 0 | |
October | 24 | 1 | 4.2 | 0 | 0 | |
All C | 80 | 9 | 11.3 z | 0 | 0 | |
D | May | 29 | 6 | 20.1 b | 0 | 0 |
July | 29 | 11 | 37.9 | 2 | 6.9 | |
October | 26 | 16 | 61.5 a | 0 | 0 | |
All D | 84 | 33 | 39.3 y | 2 | 2.4 | |
Total | May | 138 | 20 | 14.5 b | 0 | 0 |
July | 120 | 22 | 18.3 b | 2 | 6.9 | |
October | 102 | 41 | 40.2 a | 0 | 0 | |
All | 360 | 83 | 23.1 | 2 | 0.6 |
Area | Typology | Sample | N° Positive for Listeria spp./ Analyzed Samples | N° of Isolates | ||||
---|---|---|---|---|---|---|---|---|
Plant A | Plant B | Plant C | Plant D | Total | ||||
Milk pasteurization | FCS | Milk filter | - | - | 0/1 | - | 0/1 | - |
Non-tr-NFCS | Water hose | - | - | 1/2 | - | 1/2 | 1 | |
Drain | - | 0/6 | 1/4 | - | 1/10 | 1 | ||
Total | - | 0/6 | 2/7 | - | 2/13 (15.4%) b | 2 | ||
Production | FCS | Curdling tank | 0/3 | 0/1 | 0/1 | - | 0/5 | - |
Table-grind-box-board | 1/7 | 0/4 | 0/8 | - | 1/19 | 1 | ||
Whey collection duct (internal surface) | 0/2 | 0/7 | 0/5 | - | 0/14 | - | ||
Operator’s hand | 0/2 | 0/3 | 0/2 | - | 0/7 | - | ||
Tr-NFCS | Door-handle | 0/1 | 0/2 | 0/2 | - | 0/5 | - | |
Trolley wheels | 1/4 | 0/4 | 1/5 | - | 2/13 | 2 | ||
Operator’s boots | 0/2 | 0/4 | 0/3 | - | 0/9 | - | ||
Non-tr-NFCS | Table-boxes (external surface) | 0/4 | 0/4 | 0/2 | - | 0/10 | - | |
Whey collection duct (external surface) | 0/3 | 1/6 | 1/5 | - | 2/14 | 2 | ||
Water hose | 0/3 | 0/3 | 0/2 | - | 0/8 | - | ||
Wall (drip) | 0/3 | 0/1 | 1/5 | - | 1/9 | 1 | ||
Floor | 0/5 | 1/8 | 1/2 | - | 2/15 | 2 | ||
Drains | 1/7 | 3/16 | 1/19 | - | 5/42 | 10 | ||
Total | 3/46 | 5/63 | 5/61 | - | 13/170 (7.6%) b,c | 18 | ||
Brining | FCS | Brining vat (internal surface) | 0/3 | 0/3 | - | - | 0/6 | - |
Tr-NFCS | Plastic doors | 1/2 | - | - | - | 1/2 | 1 | |
Non-tr-NFCS | Brining vat (external surface) | 1/1 | 0/1 | - | - | 1/2 | 1 | |
Drains | 2/4 | - | 0/4 | - | 2/8 | 5 | ||
Total | 4/10 | 0/4 | 0/4 | - | 4/18 (22.2%) b | 7 | ||
Ripening | FCS | Brushing table | 3/3 | - | - | - | 3/3 | 6 |
Brush | 3/3 | - | - | 0/2 | 3/5 | 5 | ||
Operator’s gloves | 0/2 | - | - | 0/3 | 0/5 | - | ||
Plastic boxes-board-cheese cloth | 2/7 | - | - | 0/6 | 2/13 | 2 | ||
Tr-NFCS | Operator’s boots | 1/2 | - | - | 2/3 | 3/5 | 4 | |
Non-tr-NFCS | Water hose | 1/2 | - | - | - | 1/2 | 1 | |
Floor | 5/9 | - | - | 2/6 | 7/15 | 7 | ||
Drains | 3/4 | - | - | 15/24 | 18/28 | 41 | ||
Total | 18/32 | - | - | 19/44 | 37/76 (48.7%) a | 66 | ||
Cleaning | Non-tr-NFCS | Equipment washing machine | - | 0/1 | - | 0/3 | 0/4 | - |
Drains | - | 1/1 | - | 2/3 | 3/4 | 3 | ||
Total | - | 1/2 | - | 2/6 | 3/8 (37.5%) b | 3 | ||
Packaging | FCS | Table/conveyor | - | - | - | 1/6 | 1/6 | 1 |
Cheese cutter | - | - | - | 0/2 | 0/2 | - | ||
Operator’s hands | - | - | - | 0/2 | 0/2 | - | ||
Tr-NFCS | Trolley wheels | 2/3 | - | - | - | 2/3 | 2 | |
Operator’s boots | - | - | - | 0/1 | 0/1 | - | ||
Non-tr-NFCS | Drain | 1/3 | - | - | 2/6 | 3/9 | 3 | |
Total | 3/6 | - | - | 3/17 | 6/23 (26.1%) b | 6 | ||
Blue cheese piercing, cutting and packaging | FCS | Table | - | - | - | 1/3 | 1/3 | 1(1) |
Cheese piercing-cutting equipment | - | - | - | 1/5 | 1/5 | 1(1) | ||
Board | - | - | - | 1/1 | 1/1 | 2 | ||
Non-tr-NFCS | Drains | - | - | - | 3/5 | 3/5 | 6 | |
Total | - | - | - | 6-2 */14 | 6-2 */14 (42.9%) a | 10-2 * | ||
Ricotta/butter production | FCS | Butter churn-ricotta smoothing equipment | - | 0/4 | 0/3 | - | 0/7 | - |
FCS/non-tr-NFCS | Handle-Operator’s hand | - | 0/1 | 0/1 | - | 0/2 | - | |
Tr-NFCS | Operator’s boots | - | 0/2 | - | - | 0/2 | - | |
Non-tr-NFCS | Table-cooler tank | - | 0/4 | - | - | 0/4 | - | |
Water hose | - | 0/1 | - | - | 0/1 | - | ||
Floor | - | 0/1 | - | - | 0/1 | - | ||
Drains | - | 1/3 | - | - | 1/3 | 1 | ||
Total | - | - | 1/16 | 0/4 | - | 1/20 (5%) b,c | 1 | |
Other | Tr-NFCS | Sampler overshoes | 4/6 | 2/5 | 2/4 | 3/3 | 11/18 (61.1%) a | 12 |
Ingredients | Salt | 0/1 | 0/1 | - | - | 0/2 | - | |
Brine (brining) | - | 0/3 | 0/2 | - | 0/5 | - | ||
Brine (ripening) | 0/2 | - | - | 0/3 | 0/5 | - | ||
Milk | 0/1 | 0/6 | 0/4 | - | 0/11 | - | ||
Total | 0/4 | 0/10 | 0/6 | 0/3 | 0/23 | - | ||
Product | Ricotta | - | 0/4 | - | - | 0/4 | - | |
Curd | 0/3 | 0/4 | 0/3 | - | 0/10 | - | ||
Final product (PDO Taleggio) | 0/5 | 0/1 | 0/4 | 0/12 | 0/22 | - |
Plant | Species | May | July | October | General |
---|---|---|---|---|---|
A | L. innocua | 4/4 (100%) | 12/14 (85.7%) | 24/31 (77.4%) | 40/49 (81.6%) |
L. ivanovii | - | - | 4/31 (12.9%) | 4/49 (8.2%) | |
L. grayi | - | - | 2/31 (6.5%) | 2/49 (4.1%) | |
L. welshimeri | - | - | 1/31 (3.2%) | 1/49 (2.0%) | |
L. seeligeri | - | 2/14 (14.3%) | - | 2/49 (4.1%) | |
B | L. innocua | - | 2/2 (100%) | 4/5 (80%) | 6/9 (66.7%) |
L. grayi | 1/2 (50%) | - | - | 1/9 (11.1%) | |
L. welshimeri | - | - | 1/5 (20%) | 1/9 (11.1%) | |
L. seeligeri | 1/2 (50%) | - | - | 1/9 (11.1%) | |
C | L. innocua | - | - | 1/1 (100%) | 1/9 (11.1%) |
L. ivanovii | 8/8 (100%) | - | - | 8/9 (88.9%) | |
D | L. innocua | 13/13 (100%) | 8/15 (53.3%) | 29/30 (96.7%) | 50/58 (86.2%) |
L. grayi | - | 4/15 (26.7%) | - | 4/58 (6.9%) | |
L. welshimeri | - | 1/15 (6.7%) | 1/30 (3.3%) | 2/58 (3.45%) | |
L. monocytogenes | - | 2/15 (13.3%) | - | 2/58 (3.45%) | |
Total | L. innocua | 17/27 (63.0%) | 22/31 (71.0%) | 58/67 (86.5%) | 97/125 (77.6%) |
L. ivanovii | 8/27 (29.6%) | - | 4/67 (6.0%) | 12/125 (9.6%) | |
L. grayi | 1/27 (3.7%) | 4/31 (12.9%) | 2/67 (3.0%) | 7/125 (5.6%) | |
L. welshimeri | - | 1/31 (3.2%) | 3/67 (4.5%) | 4/125 (3.2%) | |
L. seeligeri | 1/27 (3.7%) | 2/31 (6.45%) | - | 3/125 (2.4%) | |
L. monocytogenes | - | 2/31 (6.45%) | - | 2/125 (1.6%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tirloni, E.; Bernardi, C.; Pomilio, F.; Torresi, M.; De Santis, E.P.L.; Scarano, C.; Stella, S. Occurrence of Listeria spp. and Listeria monocytogenes Isolated from PDO Taleggio Production Plants. Foods 2020, 9, 1636. https://doi.org/10.3390/foods9111636
Tirloni E, Bernardi C, Pomilio F, Torresi M, De Santis EPL, Scarano C, Stella S. Occurrence of Listeria spp. and Listeria monocytogenes Isolated from PDO Taleggio Production Plants. Foods. 2020; 9(11):1636. https://doi.org/10.3390/foods9111636
Chicago/Turabian StyleTirloni, Erica, Cristian Bernardi, Francesco Pomilio, Marina Torresi, Enrico P. L. De Santis, Christian Scarano, and Simone Stella. 2020. "Occurrence of Listeria spp. and Listeria monocytogenes Isolated from PDO Taleggio Production Plants" Foods 9, no. 11: 1636. https://doi.org/10.3390/foods9111636
APA StyleTirloni, E., Bernardi, C., Pomilio, F., Torresi, M., De Santis, E. P. L., Scarano, C., & Stella, S. (2020). Occurrence of Listeria spp. and Listeria monocytogenes Isolated from PDO Taleggio Production Plants. Foods, 9(11), 1636. https://doi.org/10.3390/foods9111636