Origin Determination of Walnuts (Juglans regia L.) on a Worldwide and Regional Level by Inductively Coupled Plasma Mass Spectrometry and Chemometrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Sample Preparation
2.3. Sample Preparation and Digestion
2.4. Analytical Procedure and Instrumentation
2.5. Multivariate Data Analysis and Classification Models
3. Results and Discussion
3.1. Explanation for the Usage of Walnut Kernels
3.2. Selection of Variables for the Chemometric Analysis of 237 Walnut Kernel Samples
3.3. Chemometric Analysis of the Walnut Samples
3.3.1. Data Investigation and Visualization
3.3.2. Influence of the Harvest Year
3.3.3. Influence of the Cultivar
3.3.4. Classification of the Geographical Origin
3.3.5. Classification of the Regional Origin of French, German and Italian Walnuts
3.3.6. Further Evaluation of the Classification Models’ Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martínez, M.L.; Labuckas, D.O.; Lamarque, A.L.; Maestri, D.M. Walnut (Juglans regia L.): Genetic resources, chemistry, by-products. J. Sci. Food Agric. 2010, 90, 1959–1967. [Google Scholar] [CrossRef] [PubMed]
- Janick, J.; Paull, R.E. The Encyclopedia of Fruit and Nuts; CABI: Wallingford, UK, 2008. [Google Scholar]
- Momchilova, S.; Arpadjan, S.; Blagoeva, E. Accumulation of microelements Cd, Cu, Fe, Mn, Pb, Zn in walnuts (Juglans regia L.) depending on the cultivar and the harvesting year. Bulg. Chem. Commun. 2016, 48, 50–54. [Google Scholar]
- Creydt, M.; Fischer, M. Omics approaches for food authentication. Electrophoresis 2018, 39, 1569–1581. [Google Scholar] [CrossRef] [PubMed]
- McGrath, T.F.; Shannon, M.; Chevallier, O.P.; Ch, R.; Xu, F.; Kong, F.; Peng, H.; Teye, E.; Akaba, S.; Wu, D. Food Fingerprinting: Using a two-tiered approach to monitor and mitigate food fraud in rice. J. AOAC Int. 2020. [Google Scholar] [CrossRef]
- Schelm, S.; Siemt, M.; Pfeiffer, J.; Lang, C.; Tichy, H.-V.; Fischer, M. Food Authentication: Identification and Quantitation of Different Tuber Species via Capillary Gel Electrophoresis and Real-Time PCR. Foods 2020, 9, 501. [Google Scholar] [CrossRef]
- Mannino, G.; Gentile, C.; Maffei, M.E. Chemical partitioning and DNA fingerprinting of some pistachio (Pistacia vera L.) varieties of different geographical origin. Phytochemistry 2019, 160, 40–47. [Google Scholar] [CrossRef]
- Grazina, L.; Amaral, J.S.; Mafra, I. Botanical origin authentication of dietary supplements by DNA-based approaches. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1080–1109. [Google Scholar] [CrossRef] [Green Version]
- Kelly, S.; Heaton, K.; Hoogewerff, J. Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis. Trends Food Sci. Technol. 2005, 16, 555–567. [Google Scholar] [CrossRef]
- Aceto, M. The use of ICP-MS in food traceability. In Advances in Food Traceability Techniques and Technologies; Elsevier: Amsterdam, The Netherlands, 2016; pp. 137–164. [Google Scholar]
- Drivelos, S.A.; Georgiou, C.A. Multi-element and multi-isotope-ratio analysis to determine the geographical origin of foods in the European Union. TrAC Trends Anal. Chem. 2012, 40, 38–51. [Google Scholar] [CrossRef]
- Richter, B.; Gurk, S.; Wagner, D.; Bockmayr, M.; Fischer, M. Food authentication: Multi-elemental analysis of white asparagus for provenance discrimination. Food Chem. 2019, 286, 475–482. [Google Scholar] [CrossRef]
- Segelke, T.; von Wuthenau, K.; Neitzke, G.; Mueller, M.-S.; Fischer, M. Food Authentication: Species and origin determination of truffles (Tuber spp.) by inductively coupled plasma mass spectrometry (ICP-MS) and chemometrics. J. Agric. Food Chem. 2020. [Google Scholar] [CrossRef] [PubMed]
- Oddone, M.; Aceto, M.; Baldizzone, M.; Musso, D.; Osella, D. Authentication and traceability study of hazelnuts from Piedmont, Italy. J. Agric. Food Chem. 2009, 57, 3404–3408. [Google Scholar] [CrossRef] [PubMed]
- Esteki, M.; Farajmand, B.; Amanifar, S.; Barkhordari, R.; Ahadiyan, Z.; Dashtaki, E.; Mohammadlou, M.; Vander Heyden, Y. Classification and authentication of Iranian walnuts according to their geographical origin based on gas chromatographic fatty acid fingerprint analysis using pattern recognition methods. Chemom. Intell. Lab. Syst. 2017, 171, 251–258. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, L.; Li, L.; Ma, N.; Tu, K.; Song, L.; Pan, L. Multisource fingerprinting for region identification of walnuts in Xinjiang combined with chemometrics. J. Food Process. Eng. 2018, 41, e12687. [Google Scholar] [CrossRef]
- Krauß, S.; Vieweg, A.; Vetter, W. Stable isotope signatures (δ2H-, δ13C-, δ15N-values) of walnuts (Juglans regia L.) from different regions in Germany. J. Sci. Food Agric. 2020, 100, 1625–1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popescu, R.; Ionete, R.E.; Botoran, O.R.; Costinel, D.; Bucura, F.; Geana, E.I.; Alabedallat, Y.F.J.; Botu, M. 1H-NMR profiling and carbon isotope discrimination as tools for the comparative assessment of walnut (Juglans regia L.) cultivars with various geographical and genetic origins—A preliminary study. Molecules 2019, 24, 1378. [Google Scholar] [CrossRef] [Green Version]
- Valdés, A.; Beltrán, A.; Mellinas, C.; Jiménez, A.; Garrigós, M.C. Analytical methods combined with multivariate analysis for authentication of animal and vegetable food products with high fat content. Trends Food Sci. Technol. 2018, 77, 120–130. [Google Scholar] [CrossRef] [Green Version]
- Rodushkin, I.; Engström, E.; Sörlin, D.; Baxter, D. Levels of inorganic constituents in raw nuts and seeds on the Swedish market. Sci. Total Environ. 2008, 392, 290–304. [Google Scholar] [CrossRef]
- Juranović Cindrić, I.; Zeiner, M.; Hlebec, D. Mineral composition of elements in walnuts and walnut oils. Int. J. Environ. Res. Public Health 2018, 15, 2674. [Google Scholar] [CrossRef] [Green Version]
- Moodley, R.; Kindness, A.; Jonnalagadda, S.B. Elemental composition and chemical characteristics of five edible nuts (almond, Brazil, pecan, macadamia and walnut) consumed in Southern Africa. J. Environ. Sci. Heal. Part B 2007, 42, 585–591. [Google Scholar] [CrossRef]
- Ozyigit, I.I.; Uras, M.E.; Yalcin, I.E.; Severoglu, Z.; Demir, G.; Borkoev, B.; Salieva, K.; Yucel, S.; Erturk, U.; Solak, A.O. Heavy Metal Levels and Mineral Nutrient Status of Natural Walnut (Juglans regia L.) Populations in Kyrgyzstan: Nutritional Values of Kernels. Biol. Trace Elem. Res. 2018, 189, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAOSTAT). Values of Agricultural Production and Trade of Walnuts in shell. Available online: http://www.fao.org/faostat/en/#home (accessed on 8 September 2020).
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Maaten, L.V.D.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Zhao, H.; Zhang, S.; Zhang, Z. Relationship between multi-element composition in tea leaves and in provenance soils for geographical traceability. Food Control 2017, 76, 82–87. [Google Scholar] [CrossRef]
- Cubero-Leon, E.; Peñalver, R.; Maquet, A. Review on metabolomics for food authentication. Food Res. Int. 2014, 60, 95–107. [Google Scholar] [CrossRef]
- Kim, H.-Y. Analysis of variance (ANOVA) comparing means of more than two groups. Restor. Dent. Endod. 2014, 39, 74–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bland, J.M.; Altman, D.G. Multiple significance tests: The Bonferroni method. Bmj 1995, 310, 170. [Google Scholar] [CrossRef] [Green Version]
- The Mathworks. Visualize Summary Statistics with Box Plot. Available online: https://de.mathworks.com/help/stats/boxplot.html (accessed on 30 October 2020).
- Spruyt, V. How to Draw a Covariance Error Ellipse? Available online: https://www.visiondummy.com/2014/04/draw-error-ellipse-representing-covariance-matrix/ (accessed on 9 November 2020).
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Bachmann, R.; Klockmann, S.; Haerdter, J.; Fischer, M.; Hackl, T. 1H NMR spectroscopy for determination of the geographical origin of hazelnuts. J. Agric. Food Chem. 2018, 66, 11873–11879. [Google Scholar] [CrossRef]
- The Mathworks. Framework for Ensemble Learning. Available online: https://de.mathworks.com/help/stats/framework-for-ensemble-learning.html (accessed on 1 October 2020).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Gerretzen, J.; Szymańska, E.; Jansen, J.J.; Bart, J.; van Manen, H.-J.; van den Heuvel, E.R.; Buydens, L.M. Simple and effective way for data preprocessing selection based on design of experiments. Anal. Chem. 2015, 87, 12096–12103. [Google Scholar] [CrossRef] [Green Version]
- Krstajic, D.; Buturovic, L.J.; Leahy, D.E.; Thomas, S. Cross-validation pitfalls when selecting and assessing regression and classification models. J. Chemin. 2014, 6, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varma, S.; Simon, R. Bias in error estimation when using cross-validation for model selection. BMC Bioinform. 2006, 7, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agriculture Organization of the United Nations (FAOSTAT). Import Quantity of shelled and in-shell Walnuts. Available online: http://www.fao.org/faostat/en/#home (accessed on 15 September 2020).
- Bitter, N.Q.; Fernandez, D.P.; Driscoll, A.W.; Howa, J.D.; Ehleringer, J.R. Distinguishing the region-of-origin of roasted coffee beans with trace element ratios. Food Chem. 2020, 320, 126602. [Google Scholar] [CrossRef] [PubMed]
- Zettl, D.; Bandoniene, D.; Meisel, T.; Wegscheider, W.; Rantitsch, G. Chemometric techniques to protect the traditional Austrian pumpkin seed oil. Eur. J. Lipid Sci. Technol. 2017, 119, 1600468. [Google Scholar] [CrossRef]
- Ballabio, D.; Todeschini, R. Multivariate classification for qualitative analysis. Infrared Spectrosc. Food Qual. Anal. Control 2009, 83, e102. [Google Scholar]
- Mishra, P.; Nordon, A.; Tschannerl, J.; Lian, G.; Redfern, S.; Marshall, S. Near-infrared hyperspectral imaging for non-destructive classification of commercial tea products. J. Food Eng. 2018, 238, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Drivelos, S.A.; Danezis, G.P.; Haroutounian, S.A.; Georgiou, C.A. Rare earth elements minimal harvest year variation facilitates robust geographical origin discrimination: The case of PDO “Fava Santorinis”. Food Chem. 2016, 213, 238–245. [Google Scholar] [CrossRef]
- Cosmulescu, S.N.; Baciu, A.; Achim, G.; Mihai, B.; Trandafir, I. Mineral composition of fruits in different walnut (Juglans regia L.) cultivars. Not. Bot. Horti Agrobot. Cluj-Napoca 2009, 37, 156–160. [Google Scholar]
- Latorre, C.H.; Crecente, R.P.; Martín, S.G.; García, J.B. A fast chemometric procedure based on NIR data for authentication of honey with protected geographical indication. Food Chem. 2013, 141, 3559–3565. [Google Scholar] [CrossRef]
- da Costa, N.L.; Ximenez, J.P.B.; Rodrigues, J.L.; Barbosa, F.; Barbosa, R. Characterization of Cabernet Sauvignon wines from California: Determination of origin based on ICP-MS analysis and machine learning techniques. Eur. Food Res. Technol. 2020, 246, 1193–1205. [Google Scholar] [CrossRef]
- Borràs, E.; Ferré, J.; Boqué, R.; Mestres, M.; Aceña, L.; Busto, O. Data fusion methodologies for food and beverage authentication and quality assessment—A review. Anal. Chim. Acta 2015, 891, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Arndt, M.; Rurik, M.; Drees, A.; Bigdowski, K.; Kohlbacher, O.; Fischer, M. Comparison of different sample preparation techniques for NIR screening and their influence on the geographical origin determination of almonds (Prunus dulcis MILL.). Food Control 2020, 115, 107302. [Google Scholar] [CrossRef]
- Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef]
- Comité Interprofessionnel de la Noix de Grenoble. Noix de Grenoble, zone de Production. Available online: https://www.aoc-noixdegrenoble.com/terroir/zone-de-production/ (accessed on 9 September 2020).
- Segelke, T.; Schelm, S.; Ahlers, C.; Fischer, M. Food Authentication: Truffle (Tuber spp.) Species Differentiation by FT-NIR and Chemometrics. Foods 2020, 9, 922. [Google Scholar] [CrossRef]
Data Pre-Treatment | Classification Method | Validation |
---|---|---|
(i) no pre-treatment | (1) linear discriminant analysis, LDA γ = 0 | (a) stratified nested cross validation |
(ii) log10 | (2) support vector machine, SVM polynomial order = 2 box constraint level = 1 coding: one vs. one | (b) leave-one-out cross validation |
(iii) center (mean) and scale (standard deviation) | (3) subspace discriminant, SSD number learning cycles = 30 | |
(iv) center (median) and scale (standard deviation) | (4) random forest, RF split criterion: Gini’s diversity index max. number of splits = 100 min leaf size = 1 surrogate: off | |
(v) center (median) and scale (range) | ||
(vi) center (median) and scale (interquartile range) |
Predicted Origin | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Switzerland | Chile | China | Germany | France | Hungary | Italy | Pakistan | Turkey | United States | Sensitivity [%] | ||
Actual Origin | Switzerland | 22.1 | 0.0 | 0.0 | 6.4 | 1.6 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 71.3 |
Chile | 0.0 | 3.3 | 0.7 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 66.0 | |
China | 0.7 | 0.0 | 12.7 | 1.0 | 0.4 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 | 84.3 | |
Germany | 2.8 | 0.2 | 0.0 | 39.5 | 6.3 | 0.5 | 0.1 | 0.0 | 0.1 | 0.6 | 79.0 | |
France | 1.2 | 0.0 | 0.0 | 6.8 | 53.3 | 0.8 | 0.5 | 0.0 | 0.5 | 0.1 | 84.6 | |
Hungary | 0.0 | 0.0 | 0.0 | 4.9 | 0.2 | 4.8 | 0.0 | 1.0 | 0.1 | 0.0 | 43.6 | |
Italy | 0.0 | 0.9 | 0.1 | 2.6 | 4.7 | 0.3 | 22.6 | 0.7 | 1.0 | 0.4 | 68.5 | |
Pakistan | 0.0 | 0.0 | 0.4 | 2.0 | 0.0 | 1.1 | 0.3 | 4.4 | 0.0 | 0.0 | 54.4 | |
Turkey | 0.7 | 0.0 | 0.0 | 1.3 | 1.5 | 0.4 | 1.1 | 0.0 | 1.2 | 0.0 | 20.0 | |
United States | 1.0 | 0.3 | 0.7 | 1.0 | 0.0 | 0.1 | 1.2 | 0.3 | 1.6 | 8.9 | 59.3 | |
specificity [%] | 77.8 | 72.5 | 87.5 | 59.6 | 78.6 | 61.1 | 87.8 | 69.0 | 25.5 | 81.7 |
Predicted Origin | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Switzerland | Chile | China | Germany | France | Hungary | Italy | Pakistan | Turkey | United States | Sensitivity [%] | ||
Actual Origin | Switzerland | 24 | 0 | 0 | 5 | 1 | 0 | 0 | 0 | 0 | 1 | 77.4 |
Chile | 0 | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 60.0 | |
China | 1 | 0 | 13 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 86.7 | |
Germany | 2 | 0 | 0 | 41 | 6 | 0 | 0 | 0 | 0 | 1 | 82.0 | |
France | 1 | 0 | 0 | 6 | 54 | 1 | 0 | 0 | 1 | 0 | 85.7 | |
Hungary | 0 | 0 | 0 | 5 | 0 | 5 | 0 | 1 | 0 | 0 | 45.5 | |
Italy | 0 | 0 | 0 | 2 | 4 | 1 | 24 | 1 | 1 | 0 | 72.7 | |
Pakistan | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 5 | 0 | 0 | 62.5 | |
Turkey | 0 | 0 | 0 | 2 | 1 | 0 | 2 | 0 | 1 | 0 | 16.7 | |
United States | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 2 | 9 | 60.0 | |
specificity [%] | 82.8 | 100.0 | 86.7 | 62.1 | 81.8 | 62.5 | 88.9 | 71.4 | 20.0 | 81.8 |
Predicted Regional Origin | ||||||
---|---|---|---|---|---|---|
Pays de la Loire | Nouvelle-Aquitaine | Auvergne-Rhône-Alpes | Occitanie | Sensitivity [%] | ||
Actual Regional Origin | Pays de la Loire | 6.0 | 0.1 | 0.0 | 0.0 | 99.2 |
Nouvelle-Aquitaine | 0.0 | 25.2 | 0.0 | 0.9 | 96.7 | |
Auvergne-Rhône-Alpes | 0.0 | 1.3 | 8.5 | 0.2 | 85.0 | |
Occitanie | 0.3 | 1.2 | 0.8 | 8.9 | 80.5 | |
specificity [%] | 96.0 | 91.0 | 91.9 | 89.4 |
Predicted Regional Origin | ||||||
---|---|---|---|---|---|---|
North Rhine-Westphalia | Baden-Württemberg | Hesse | Lower Saxony | Sensitivity [%] | ||
Actual Regional Origin | North Rhine-Westphalia | 6.3 | 0.0 | 0.0 | 2.7 | 70.0 |
Baden-Württemberg | 0.0 | 15.1 | 0.1 | 0.9 | 94.1 | |
Hesse | 0.0 | 2.0 | 12.0 | 0.0 | 85.7 | |
Lower Saxony | 2.2 | 2.6 | 0.4 | 3.8 | 42.2 | |
specificity [%] | 74.1 | 76.6 | 96.4 | 51.4 |
Predicted Regional Origin | ||||||
---|---|---|---|---|---|---|
Veneto, Padova | Piedmont, Cuneo | Veneto, Rovigo | Campania, Napoli | Sensitivity [%] | ||
Actual Regional Origin | Veneto, Padova | 5.0 | 0.0 | 0.0 | 0.0 | 100.0 |
Piedmont, Cuneo | 0.0 | 11.7 | 1.3 | 0.1 | 89.6 | |
Veneto, Rovigo | 0.0 | 0.4 | 9.6 | 0.0 | 96.0 | |
Campania, Napoli | 0.0 | 0.0 | 0.1 | 3.9 | 97.5 | |
specificity [%] | 100.0 | 96.7 | 87.3 | 98.7 |
Parameter | Accuracy [%] | Number of Classes | Random Distribution [%] | Accuracy-to-Random Ratio | |
---|---|---|---|---|---|
Variables and Equations | a | n | r = 100%/n | a/r | |
global differentiation | all countries of origin | 72.9 | 10 | 10 | 7.29 |
regional differentiations | FR | 91.4 | 4 | 25 | 3.66 |
DE | 77.4 | 4 | 25 | 3.10 | |
IT | 94.2 | 4 | 25 | 3.77 | |
binary classification models | CN vs. DE | 99.5 | 2 | 50 | 1.99 |
US vs. DE | 96.6 | 2 | 50 | 1.93 | |
CL vs. DE | 98.2 | 2 | 50 | 1.96 | |
Europe vs. not-Europe | 92.4 | 2 | 50 | 1.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segelke, T.; von Wuthenau, K.; Kuschnereit, A.; Müller, M.-S.; Fischer, M. Origin Determination of Walnuts (Juglans regia L.) on a Worldwide and Regional Level by Inductively Coupled Plasma Mass Spectrometry and Chemometrics. Foods 2020, 9, 1708. https://doi.org/10.3390/foods9111708
Segelke T, von Wuthenau K, Kuschnereit A, Müller M-S, Fischer M. Origin Determination of Walnuts (Juglans regia L.) on a Worldwide and Regional Level by Inductively Coupled Plasma Mass Spectrometry and Chemometrics. Foods. 2020; 9(11):1708. https://doi.org/10.3390/foods9111708
Chicago/Turabian StyleSegelke, Torben, Kristian von Wuthenau, Anita Kuschnereit, Marie-Sophie Müller, and Markus Fischer. 2020. "Origin Determination of Walnuts (Juglans regia L.) on a Worldwide and Regional Level by Inductively Coupled Plasma Mass Spectrometry and Chemometrics" Foods 9, no. 11: 1708. https://doi.org/10.3390/foods9111708
APA StyleSegelke, T., von Wuthenau, K., Kuschnereit, A., Müller, M. -S., & Fischer, M. (2020). Origin Determination of Walnuts (Juglans regia L.) on a Worldwide and Regional Level by Inductively Coupled Plasma Mass Spectrometry and Chemometrics. Foods, 9(11), 1708. https://doi.org/10.3390/foods9111708