The Relationship between Glucosinolates and the Sensory Characteristics of Steamed-Pureed Turnip (Brassica Rapa subsp. Rapa L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Turnip Sample and Preparation
2.2. Reagents and Chemicals
2.3. Glucosinolates Extraction
2.4. LC-MS Analysis
2.5. Sensory Analysis
2.6. Statistical Analysis
3. Results
3.1. Identification and Quantification of Glucosinolates
3.2. Sensory Characteristics
3.3. Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mithen, R.F.; Dekker, M.; Verkerk, R.; Rabot, S.; Johnson, I.T. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J. Sci. Food Agric. 2000, 80, 967–984. [Google Scholar] [CrossRef]
- Al-Gendy, A.A.; El-gindi, O.D.; Hafez, A.S.; Ateya, A.M. Glucosinolates, volatile constituents and biological activities of Erysimum corinthium Boiss. (Brassicaceae). Food Chem. 2010, 118, 519–524. [Google Scholar] [CrossRef]
- Kim, M.K.; Park, J.H.Y. Cruciferous vegetable intake and the risk of human cancer: Epidemiological evidence. Proc. Nutr. Soc. 2009, 68, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.G.; Bonnema, G.; Zhang, N.; Kwak, J.H.; de Vos, R.C.H.; Beekwilder, J. Evaluation of glucosinolate variation in a collection of turnip (Brassica rapa) germplasm by the analysis of intact and desulfo glucosinolates. J. Agric. Food Chem. 2013, 61, 3984–3993. [Google Scholar] [CrossRef] [PubMed]
- Engel, E.; Baty, C.; Le Corre, D.; Souchon, I.; Martin, N. Flavor-active compounds potentially implicated in cooked cauliflower acceptance. J. Agric. Food Chem. 2002, 50, 6459–6467. [Google Scholar] [CrossRef]
- Francisco, M.; Velasco, P.; Romero, Á.; Vázquez, L.; Cartea, M.E. Sensory quality of turnip greens and turnip tops grown in northwestern Spain. Eur. Food Res. Technol. 2009, 230, 281–290. [Google Scholar]
- Bell, L.; Methven, L.; Signore, A.; Oruna-Concha, M.J.; Wagstaff, C. Analysis of seven salad rocket (Eruca sativa) accessions: The relationships between sensory attributes and volatile and non-volatile compounds. Food Chem. 2017, 218, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, S.R.; Jo, J.S.; Lee, J.G. Comparison of glucosinolate profiles in different tissues of nine Brassica crops. Molecules 2015, 20, 15827–15841. [Google Scholar] [CrossRef]
- Hanschen, F.S.; Schreiner, M. Isothiocyanates, nitriles, and epithionitriles from glucosinolates are affected by genotype and developmental stage in Brassica oleracea varieties. Front. Plant Sci. 2017, 8, 1095. [Google Scholar] [CrossRef] [Green Version]
- Kabouw, P.; Biere, A.; Van Der Putten, W.H.; Van Dam, N.M. Intra-specific differences in root and shoot glucosinolate profiles among white cabbage (Brassica oleracea var. capitata) cultivars. J. Agric. Food Chem. 2010, 58, 411–417. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Yang, J.; Zhu, Z. Variation in glucosinolates in pak choi cultivars and various organs at different stages of vegetative growth during the harvest period. J. Zhejiang Univ. Sci. B 2013, 14, 309–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, Y.; Gabriel-Neumann, E.; Ngwene, B.; Krumbein, A.; George, E.; Platz, S.; Rohn, S.; Schreiner, M. Topsoil drying combined with increased sulfur supply leads to enhanced aliphatic glucosinolates in Brassica juncea leaves and roots. Food Chem. 2014, 152, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Barickman, T.C.; Kopsell, D.A.; Sams, C.E. Selenium influences glucosinolates and isothiocyanates and increases sulfur uptake in Arabidopsis thaliana and rapid-cycling Brassica oleracea. J. Agric. Food Chem. 2013, 61, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Schonhof, I.; Krumbein, A.; Li, L.; Stützel, H.; Schreiner, M. Glucosinolate concentration in turnip (Brassica rapa ssp. rapifera L.) roots as affected by nitrogen and sulfur supply. J. Agric. Food Chem. 2007, 55, 8452–8457. [Google Scholar] [CrossRef] [PubMed]
- Traka, M.; Mithen, R. Glucosinolates, isothiocyanates and human health. Phytochem Rev. 2009, 8, 269–282. [Google Scholar] [CrossRef]
- Cox, D.N.; Melo, L.; Zabaras, D.; Delahunty, C.M. Acceptance of health-promoting Brassica vegetables: The influence of taste perception, information and attitudes. Public Health Nutr. 2012, 15, 1474–1482. [Google Scholar] [CrossRef] [Green Version]
- Jia, C.-G.; Xu, C.-J.; Wei, J.; Yuan, J.; Yuan, G.-F.; Wang, B.-L.; Wang, Q.-M. Effect of modified atmosphere packaging on visual quality and glucosinolates of broccoli florets. Food Chem. 2009, 114, 28–37. [Google Scholar] [CrossRef]
- Nugrahedi, P.Y.; Verkerk, R.; Widianarko, B.; Dekker, M. A mechanistic perspective on process-induced changes in glucosinolate content in Brassica vegetables: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 823–838. [Google Scholar] [CrossRef]
- CEIC. United Kingdom Agricultural Sown Area: By Commodities. Available online: https://www.ceicdata.com/en/united-kingdom/agricultural-sown-area-by-commodities (accessed on 14 February 2020).
- Bell, L.; Oruna-Concha, M.J.; Wagstaff, C. Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC-MS: Highlighting the potential for improving nutritional value of rocket crops. Food Chem. 2015, 172, 852–861. [Google Scholar] [CrossRef] [Green Version]
- Jasper, J.; Wagstaff, C.; Bell, L. Growth temperature influences postharvest glucosinolate concentrations and hydrolysis product formation in first and second cuts of rocket salad. Postharvest Biol. Technol. 2020, 163, 111157. [Google Scholar]
- Jin, J.; Koroleva, O.A.; Gibson, T.; Swanston, J.; Magan, J.; Zhang, Y.; Rowland, I.R.; Wagstaff, C. Analysis of phytochemical composition and chemoprotective capacity of rocket (Eruca sativa and Diplotaxis tenuifolia) leafy salad following cultivation in different environments. J. Agric. Food Chem. 2009, 57, 5227–5234. [Google Scholar] [CrossRef] [PubMed]
- Clarke, D.B. Glucosinolates, structures and analysis in food. Anal. Methods 2010, 2, 310–325. [Google Scholar] [CrossRef]
- Cataldi, T.R.I.; Rubino, A.; Lelario, F.; Bufo, S.A. Naturally occurring glucosinolates in plant extracts of rocket salad (Eruca sativa L.) identified by liquid chromatography coupled with negative ion electrospray ionization and quadrupole ion-trap mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 2374–2388. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.; Fenwick, G.R. Glucosinolate content of Brassica vegetables: Analysis of twenty-four cultivars of Calabrese (green sprouting broccoli, Brassica oleracea L. var. botrytis subvar. cymosa Lam.). Food Chem. 1987, 25, 259–268. [Google Scholar] [CrossRef]
- Zhang, H.; Schonhof, I.; Krumbein, A.; Gutezeit, B.; Li, L.; Stützel, H.; Schreiner, M. Water supply and growing season influence glucosinolate concentration and composition in turnip root (Brassica rapa ssp. rapifera L.). J. Plant Nutr. Soil Sci. 2008, 171, 255–265. [Google Scholar] [CrossRef]
- Justen, V.L.; Fritz, V.A.; Cohen, J.D. Seasonal variation in glucosinolate accumulation in turnips grown under photoselective nettings. Hortic. Environ. Biotechnol. 2012, 53, 108–115. [Google Scholar] [CrossRef]
- Padilla, G.; Cartea, M.E.; Velasco, P.; de Haro, A.; Ordás, A. Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry 2007, 68, 536–545. [Google Scholar] [CrossRef]
- Kim, S.-J.; Kawaguchi, S.; Watanabe, Y. Glucosinolates in vegetative tissues and seeds of twelve cultivars of vegetable turnip rape (Brassica rapa L.). Soil Sci. Plant Nutr. 2003, 49, 337–346. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-J.; Ishida, M.; Matsuo, T.; Watanabe, M.; Watanabe, Y. Separation and identification of glucosinolates of vegetable turnip rape by LC / APCI-MS and comparison of their contents in ten cultivars of vegetable turnip rape (Brassica rapa L.). Soil Sci. Plant Nutr. 2001, 47, 167–177. [Google Scholar] [CrossRef]
- del Carmen Martínez-Ballesta, M.; Moreno, D.A.; Carvajal, M. The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int. J. Mol. Sci. 2013, 14, 11607–11625. [Google Scholar]
- Francisco, M.; Cartea, M.E.; Soengas, P.; Velasco, P. Effect of genotype and environmental conditions on health-promoting compounds in Brassica rapa. J. Agric. Food Chem. 2011, 59, 2421–2431. [Google Scholar] [CrossRef] [PubMed]
- Helland, H.S.; Leufvén, A.; Bengtsson, G.B.; Pettersen, M.K.; Lea, P.; Wold, A.-B. Storage of fresh-cut swede and turnip: Effect of temperature, including sub-zero temperature, and packaging material on sensory attributes, sugars and glucosinolates. Postharvest Biol. Technol. 2016, 111, 370–379. [Google Scholar] [CrossRef]
- Pasini, F.; Verardo, V.; Cerretani, L.; Caboni, M.F.; D’Antuono, L.F. Rocket salad (Diplotaxis and Eruca spp.) sensory analysis and relation with glucosinolate and phenolic content. J. Sci. Food Agric. 2011, 91, 2858–2864. [Google Scholar] [CrossRef] [PubMed]
- Schonhof, I.; Krumbein, A.; Brückner, B. Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower. Nahrung/Food 2004, 48, 25–33. [Google Scholar] [CrossRef]
- Bladh, K.T.; Olsson, K.M.; Yndgaard, F. Evaluation of glucosinolates in Nordic horseradish (Armoracia Rusticana). Bot. Lith. 2013, 19, 48–56. [Google Scholar]
- Bell, L.; Oloyede, O.O.; Lignou, S.; Wagstaff, C.; Methven, L. Taste and flavor perceptions of glucosinolates, isothiocyanates, and related Compounds. Mol. Nutr. Food Res. 2018, 62, 1700990. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek, M.N.; Walczak, M.; Skrzypczak-Zielińska, M.; Jeleń, H.H. Bitter taste of Brassica vegetables: The role of genetic factors, receptors, isothiocyanates, glucosinolates, and flavor context. Crit. Rev. Food Sci. Nutr. 2018, 58, 3130–3140. [Google Scholar] [CrossRef]
- Francisco, M.; Velasco, P.; Moreno, D.A.; García-Viguera, C.; Cartea, M.E. Cooking methods of Brassica rapa affect the preservation of glucosinolates, phenolics and vitamin C. Food Res. Int. 2010, 43, 1455–1463. [Google Scholar] [CrossRef] [Green Version]
- HassanpourFard, M.; Naseh, G.; Lotfi, N.; Hosseini, S.M.; Hosseini, M. Effects of aqueous extract of turnip leaf (Brassica rapa) in alloxan-induced diabetic rats. Avicenna J. Phytomed. 2015, 5, 148–156. [Google Scholar]
Batch | Purchase Date | Origin of Turnip |
---|---|---|
B1 | December 2015 | The UK |
B2 | December 2015 | The Netherlands |
B3 | February 2016 | The UK (75%) and The Netherlands (25%) 1 |
B4 | April 2016 | The UK (24%) and The Netherlands (76%) 1 |
B5 | April 2016 | The UK |
B6 | June 2016 | The Netherlands |
B7 | June 2016 | The UK |
Sensory Characteristic | Definition |
---|---|
Aroma | |
Apple | Aroma associated with apple |
Cooked swede | Aroma associated with cooked swede |
Green vegetable | Aroma associated with green vegetable (spinach) |
Sweetcorn | Aroma associated with sweetcorn |
Savoury | Aroma associated with savoury food |
Sweet | Aroma associated with sweet food |
Earthy | Aroma associated with earth or soil |
Starchy | Aroma associated with starchy food (mashed potato) |
Tannin | Aroma associated with tea |
Wet | Aroma associated with musty |
Taste | |
Salty | Taste associated with sodium chloride |
Umami | Taste associated with monosodium glutamate |
Sweet | Taste associated with sucrose solution (0.5%, 1.0%, 2.0% and 2.6%) |
Bitter | Taste associated with quinine sulphate solution (0.00005%, 0.0001%, 0.0002%, 0.0004% and 0.0006%) |
Flavour | |
Earthy | Flavour associated with earth or soil |
Tannin | Flavour associated with tea |
Apple | Flavour associated with apple |
Starchy | Flavour associated with starchy food (mashed potato) |
Peak No. | Glucosinolate | Group | Side Chain | Mass Ion | Batch | p Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B1 | B2 | B3 | B4 | B5 | B6 | B7 | ||||||
1 | Progoitrin | Aliphatic | (2R)-2-hydroxy-3-butenyl | 388 | 1.68 ± 0.03 ab | 1.94 ± 0.2 a | 1.73 ± 0.2 ab | 1.76 ± 0.04 ab | 1.34 ± 0.05 b | 1.37 ± 0.14 b | 1.69 ± 0.26 ab | 0.004 |
2 | Glucoalyssin | Aliphatic | 5-methylsulfinylpentyl | 450 | 0.10 ± 0.09 ab | 0.14 ± 0.1 a | ND b | ND b | ND b | ND b | ND b | 0.01 |
3 | Gluconapin | Aliphatic | 3-butenyl | 372 | 1.15 ± 0.34 b | 2.03 ± 0.95 b | 1.22 ± 0.12 b | 0.80 ± 0.25 b | 0.43 ± 0.25 b | 9.49 ± 0.68 a | 11.21 ± 1.4 a | <0.0001 |
4 | 4-hydroxy-glucobrassicin | Indole | 4-hydroxy-3- indolylmethyl | 463 | 0.32 ± 0.01 bc | 0.30 ± 0.02 c | 0.18 ± 0.03 d | 0.27 ± 0.01 c | 0.14 ± 0.01 d | 0.37 ± 0.03 ab | 0.39 ± 0.03 a | <0.0001 |
5 | Glucobrassicanapin | Aliphatic | 4-pentenyl | 386 | 3.77 ± 0.26 a | 5.06 ± 0.97 a | 4.76 ± 0.95 a | 3.70 ± 0.04 a | 1.92 ± 0.13 b | 1.29 ± 0.1 b | 1.33 ± 0.1 b | <0.0001 |
6 | Glucoerucin | Aliphatic | 4-methylthiobutyl | 420 | 0.48 ± 0.07 de | 0.84 ± 0.24 cde | 1.46 ± 0.14 c | 1.15 ± 0.55 cd | ND e | 7.15 ± 0.32 a | 6.27 ± 0.39 b | <0.0001 |
7 | Glucobrassicin | Indole | 3-indolylmethyl | 447 | 0.87 ± 0.02 c | 1.08 ± 0.06 ab | 0.65 ± 0.06 d | 0.70 ± 0.08 cd | 0.90 ± 0.15 bc | 1.13 ± 0.04 a | 1.19 ± 0.07 a | <0.0001 |
8 | Glucoberteroin | Aliphatic | 5-methylthiopentyl | 434 | 1.37 ± 0.12 a | 1.56 ± 0.03 a | 0.95 ± 0.1 c | 1.08 ± 0.07 bc | 0.21 ± 0.06 d | 1.30 ± 0.09 ab | 1.38 ± 0.16 a | <0.0001 |
9 | Gluconasturtiin | Arylaliphatic | 2-phenethyl | 422 | 9.72 ± 0.27 bc | 10.94 ± 0.59 b | 8.96 ± 0.2 c | 9.20 ± 0.57 bc | 9.43 ± 0.1 bc | 19.81 ± 1.5 a | 19.32 ± 0.6 a | <0.0001 |
10 | 4-methoxy-glucobrassicin | Indole | 4-methoxy-3-indolylmethyl | 477 | 0.05 ± 0.01 b | 0.07 ± <0.01 a | 0.03 ± <0.01 b | 0.04 ± <0.01 b | 0.05 ± <0.01 b | 0.07 ± 0.02 a | 0.05 ± < 0.01 ab | <0.001 |
11 | Glucona-poleiferin | Aliphatic | 2-hydroxy-4- pentenyl | 402 | 0.72 ± 0.01 e | 1.10 ± 0.02 cd | 1.00 ± 0.21 cd | 0.97 ± 0.04 d | 1.23 ± 0.01 bc | 1.38 ± 0.07 ab | 1.58 ± 0.06 a | <0.0001 |
12 | Neogluco-brassicin | Indole | N-methoxy-3- indolylmethyl | 477 | 0.26 ± 0.03 b | 0.41 ± 0.03 a | 0.31 ± 0.06 b | 0.30 ± 0.01 b | 0.41 ± 0.03 a | 0.28 ± 0.02 b | 0.34 ± 0.02 ab | <0.001 |
Total glucosinolates | 20.48 ± 0.67 bc | 25.46 ± 2.47 b | 21.25 ± 1.97 bc | 19.97 ± 1.47 bc | 16.07 ± 0.46 c | 43.64 ± 2.66 a | 44.74 ± 3.0 a | <0.0001 |
Sensory Characteristic | Batch | Significance Between Samples (p-Value) | ||||||
---|---|---|---|---|---|---|---|---|
B1 | B2 | B3 | B4 | B5 | B6 | B7 | ||
Aroma | ||||||||
Apple | 2.8 | 4.3 | 8.0 | 4.0 | 9.1 | 3.8 | 2.8 | 0.34 |
Cooked Swede | 15.7 | 17.6 | 13.4 | 20.8 | 15.4 | 21.9 | 22.3 | 0.21 |
Green vegetable | 12.8 | 17.9 | 12.7 | 12.5 | 14.3 | 14.6 | 18.2 | 0.66 |
Sweetcorn | 3.5 | 5.3 | 1.4 | 3.7 | 1.8 | 3.2 | 2.1 | 0.32 |
Savoury | 18.0 | 24.0 | 19.8 | 21.6 | 22.8 | 24.9 | 26.3 | 0.06 |
Sweet | 15.1 | 13.7 | 16.6 | 14.7 | 17.2 | 15.5 | 15.2 | 0.83 |
Earthy | 11.0 | 12.5 | 9.7 | 11.2 | 9.5 | 16.6 | 20.1 | 0.06 |
Starchy | 18.4 | 16.7 | 15.5 | 14.2 | 12.9 | 13.2 | 12.3 | 0.35 |
Tannin | 2.1 | 1.8 | 2.0 | 2.4 | 2.4 | 1.3 | 2.9 | 0.75 |
Wet | 12.2 ab | 14.7 a | 9.7 ab | 8.9 ab | 9.4 ab | 10.4 ab | 8.0 b | 0.04 |
Taste | ||||||||
Salty | 6.4 | 7.1 | 5.5 | 10.2 | 13.6 | 6.4 | 7.8 | 0.05 |
Umami | 14.3 | 19.6 | 17.2 | 19.5 | 23.3 | 23.0 | 15.3 | 0.08 |
Sweet | 33.1 | 30.3 | 31.2 | 35.3 | 30.5 | 34.5 | 26.3 | 0.24 |
Bitter | 30.8 c | 53.2 a | 33.1 bc | 30.2 c | 34.5 bc | 40.3 bc | 43.3 ab | <0.0001 |
Flavour | ||||||||
Earthy | 11.8 | 18.9 | 11.0 | 16.2 | 15.1 | 18.9 | 19.9 | 0.11 |
Tannin | 9.8 b | 20.1 a | 8.3 b | 7.9 b | 9.4 b | 12.3 ab | 15.9 ab | 0.0003 |
Apple | 4.3 abc | 3.3 bc | 8.7 abc | 12.0 ab | 12.6 a | 2.6 c | 1.9 c | 0.0008 |
Starchy | 13.5 | 14.5 | 12.3 | 15.3 | 14.3 | 12.6 | 12.0 | 0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nor, N.D.M.; Lignou, S.; Bell, L.; Houston-Price, C.; Harvey, K.; Methven, L. The Relationship between Glucosinolates and the Sensory Characteristics of Steamed-Pureed Turnip (Brassica Rapa subsp. Rapa L.). Foods 2020, 9, 1719. https://doi.org/10.3390/foods9111719
Nor NDM, Lignou S, Bell L, Houston-Price C, Harvey K, Methven L. The Relationship between Glucosinolates and the Sensory Characteristics of Steamed-Pureed Turnip (Brassica Rapa subsp. Rapa L.). Foods. 2020; 9(11):1719. https://doi.org/10.3390/foods9111719
Chicago/Turabian StyleNor, Nurfarhana Diana Mohd, Stella Lignou, Luke Bell, Carmel Houston-Price, Kate Harvey, and Lisa Methven. 2020. "The Relationship between Glucosinolates and the Sensory Characteristics of Steamed-Pureed Turnip (Brassica Rapa subsp. Rapa L.)" Foods 9, no. 11: 1719. https://doi.org/10.3390/foods9111719
APA StyleNor, N. D. M., Lignou, S., Bell, L., Houston-Price, C., Harvey, K., & Methven, L. (2020). The Relationship between Glucosinolates and the Sensory Characteristics of Steamed-Pureed Turnip (Brassica Rapa subsp. Rapa L.). Foods, 9(11), 1719. https://doi.org/10.3390/foods9111719