Biochemical, Physicochemical and Sensory Properties of Yoghurts Made from Mixing Milks of Different Mammalian Species
Abstract
:1. Introduction
2. Approximate Composition of Yoghurt
3. Acidity and pH of Yoghurt
4. Sensory Properties of Yoghurt
5. Conclusions and Future Trends
- The understanding of the impact of the association of milk from different species on molecular structure and interactions of components (e.g., fat, proteins) during manufacture. This is essential for the quality attributes of yoghurts because texture, physicochemical properties, flavour, colour, nutritional profile, and bioavailability of nutrients, among other characteristics, are highly dependent on the microstructure.
- Nutritional effects in human diet. These yoghurts could potentially open new avenues by modifying the microbiome composition and altering the function of the host, due to the potentiality of incorporating LAB with specific probiotic effects.
- The shelf life of yoghurt, as these products generally present short life when compared to other fermented products (e.g., cheese).
Author Contributions
Funding
Conflicts of Interest
References
- Khalesi, M.; Salami, M.; Moslehishad, M.; Winterburn, J.; Moosavi-Movahedi, A.A. Biomolecular content of camel milk: A traditional superfood towards future healthcare industry. Trends Food Sci. Technol. 2017, 62, 49–58. [Google Scholar] [CrossRef]
- Fukuda, K. Camel milk. In Milk and Dairy Products in Human Nutrition: Production, Composition and Health; Wiley Online Library: Hoboken, NJ, USA, 2013; pp. 578–593. [Google Scholar]
- Hashim, I.; Khalil, A.; Habib, H. Quality and acceptability of a set-type yogurt made from camel milk. J. Dairy Sci. 2009, 92, 857–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayo, B.; Aleksandrzak-Piekarczyk, T.; Fernandez, M.; Kowalczyk, M.; Álvarez-Martín, P.; Bardowski, J.K.; Fernndez, M.; Lvarez-Martn, P. Updates in the Metabolism of Lactic Acid Bacteria. Biotechnol. Lact. Acid Bact. 2010, 3–33. [Google Scholar] [CrossRef]
- Costa, M.P.; Balthazar, C.F.; Franco, R.; Mársico, E.; Cruz, A.G.; Conte-Junior, C.A. Changes on expected taste perception of probiotic and conventional yogurts made from goat milk after rapidly repeated exposure. J. Dairy Sci. 2014, 97, 2610–2618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barłowska, J.; Szwajkowska, M.; Litwińczuk, Z.; Król, J. Nutritional Value and Technological Suitability of Milk from Various Animal Species Used for Dairy Production. Compr. Rev. Food Sci. Food Saf. 2011, 10, 291–302. [Google Scholar] [CrossRef]
- El-Salam, M.H.A. Fermented Milks, Middle Eastern Fermented Milks, In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Elsevier: London, UK, 2011; pp. 503–506. [Google Scholar]
- FAO; IDF. Guide to good dairy farming practice. In Animal Production and Health Guidelines; Food and Agriculture Organization of the United Nations: Rome, Italy; International Dairy Federation: Brussels, Belgium, 2011; Volume 8, ISBN 9789251069578. [Google Scholar]
- Farah, Z.; Rettenmaier, R.; Atkins, D. Vitamin content of camel milk. Int. J. Vitam. Nutr. Res. 1992, 62, 30–33. [Google Scholar] [PubMed]
- Sawaya, W.N.; Khalil, J.K.; Al-Shalhat, A.; Al-Mohammad, H. Chemical Composition and Nutritional Quality of Camel Milk. J. Food Sci. 1984, 49, 744–747. [Google Scholar] [CrossRef]
- Haenlein, G. Goat milk in human nutrition. Small Rumin. Res. 2004, 51, 155–163. [Google Scholar] [CrossRef]
- Raynal-Ljutovac, K.; Gaborit, P.; Lauret, A. The relationship between quality criteria of goat milk, its technological properties and the quality of the final products. Small Rumin. Res. 2005, 60, 167–177. [Google Scholar] [CrossRef]
- Albenzio, M.; Santillo, A. Biochemical characteristics of ewe and goat milk: Effect on the quality of dairy products. Small Rumin. Res. 2011, 101, 33–40. [Google Scholar] [CrossRef]
- Hodgkinson, A.J.; Wallace, O.A.; Boggs, I.; Broadhurst, M.; Prosser, C. Gastric digestion of cow and goat milk: Impact of infant and young child in vitro digestion conditions. Food Chem. 2018, 245, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Juárez, M.; Ramos, M.; Haenlein, G.F.W. Physico-chemical characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef] [Green Version]
- Haenlein, G.F.W. The nutritional value of sheep milk. Int. J. Anim. Sci. 2001, 16, 253–268. [Google Scholar]
- Slačanac, V.; Božanić, R.; Hardi, J.; Szabó, J.R.; Lučan, M.; Krstanović, V. Nutritional and therapeutic value of fermented caprine milk. Int. J. Dairy Technol. 2010, 63, 171–189. [Google Scholar] [CrossRef]
- Revilla, I.; Lobos-Ortega, I.; Vivar, A.; González-Martin, I.; Hernández-Hierro, J.M.; Gonzalez-Perez, C. Variations in the contents of vitamins A and E during the ripening of cheeses with different compositions. Czech J. Food Sci. 2014, 32, 342–347. [Google Scholar] [CrossRef] [Green Version]
- Haenlein, G.; Anke, M. Mineral and trace element research in goats: A review. Small Rumin. Res. 2011, 95, 2–19. [Google Scholar] [CrossRef]
- Park, Y.W. Goat Milk—Chemistry and Nutrition. In Handbook of Milk of Non-Bovine Mammals; Wiley: Hoboken, NJ, USA, 2017; pp. 42–83. [Google Scholar]
- Silanikove, N.; Leitner, G.; Merin, U.; Prosser, C. Recent advances in exploiting goat’s milk: Quality, safety and production aspects. Small Rumin. Res. 2010, 89, 110–124. [Google Scholar] [CrossRef]
- Wendorff, W.; Haenlein, G.F. Sheep Milk-Composition and Nutrition. In Handbook of Milk of Non-Bovine Mammals; Wiley: Hoboken, NJ, USA, 2017; pp. 210–221. [Google Scholar]
- Karami, M. Investigation of physicochemical, microbiological, and rheological properties and volatile compounds of ewe and cow milk yoghurt. J. Agric. Sci. Technol. 2018, 20, 1149–1160. [Google Scholar]
- Park, Y. Proteolysis and Lipolysis of Goat Milk Cheese. J. Dairy Sci. 2001, 84, E84–E92. [Google Scholar] [CrossRef]
- Ahmad, S.; Gaucher, I.; Rousseau, F.; Beaucher, E.; Piot, M.; Grongnet, J.F.; Gaucheron, F. Effects of acidification on physico-chemical characteristics of buffalo milk: A comparison with cow’s milk. Food Chem. 2008, 106, 11–17. [Google Scholar] [CrossRef]
- Fundora, O.G.; Lezcano, M.E.; Montejo, O.; Pompa, A.; Enriquez, N. A comparative study of milk composition and stability of Murrah river buffaloes and Holstein cows grazing star grass. Cuba. J. Agric. Sci. 2001, 35, 219–222. [Google Scholar]
- Gamble, J.A.; Ellis, N.R.; Besley, A.K. Composition and Properties of Goat’s Milk as Compared with Cow’s Milk; US Department of Agriculture: Washington, DC, USA, 1939.
- Jaubert, A. Les vitamines et les nucléotides du lait de chèvre. In Proceedings of the Intérets Nutritionnel et Diététique du Lait de Chèvre; INRA: Paris, France, 1997; pp. 81–92. [Google Scholar]
- Kondyli, E.; Svarnas, C.; Samelis, J.; Katsiari, M. Chemical composition and microbiological quality of ewe and goat milk of native Greek breeds. Small Rumin. Res. 2012, 103, 194–199. [Google Scholar] [CrossRef]
- Medhammar, E.; Wijesinha-Bettoni, R.; Stadlmayr, B.; Nilsson, E.; Charrondière, U.R.; Burlingame, B. Composition of milk from minor dairy animals and buffalo breeds: A biodiversity perspective. J. Sci. Food Agric. 2012, 92, 445–474. [Google Scholar] [CrossRef] [PubMed]
- Van Nieuwenhove, C.; Gauffin-Cano, P.; Chaia, A.P.; González, S. Chemical composition and fatty acid content of buffalo cheese from northwest argentina: Effect on lipid composition of mice tissues. J. Food Lipids 2007, 14, 232–243. [Google Scholar] [CrossRef]
- Balthazar, C.; Pimentel, T.; Ferrão, L.; Almada, C.; Santillo, A.; Albenzio, M.; Mollakhalili, N.; Mortazavian, A.; Nascimento, J.; Silva, M.; et al. Sheep Milk: Physicochemical Characteristics and Relevance for Functional Food Development. Compr. Rev. Food Sci. Food Saf. 2017, 16, 247–262. [Google Scholar] [CrossRef]
- Kouniba, A.; Berrada, M.; Zahar, M.; Bengoumi, M. Composition and heat stability of Moroccan camel milk. J. Camel Pract. Res. 2005, 12, 105–110. [Google Scholar]
- Jandal, J. Comparative aspects of goat and sheep milk. Small Rumin. Res. 1996, 22, 177–185. [Google Scholar] [CrossRef]
- Jenness, R. Composition and Characteristics of Goat Milk: Review 1968–1979. J. Dairy Sci. 1980, 63, 1605–1630. [Google Scholar] [CrossRef]
- Ceballos, L.S.; Morales, E.R.; Adarve, G.D.L.T.; Castro, J.D.; Martínez, L.P.; Sampelayo, M.R.S. Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. J. Food Compos. Anal. 2009, 22, 322–329. [Google Scholar] [CrossRef]
- Mahmood, A.; Usman, S. A Comparative Study on the Physicochemical Parameters of Milk Samples Collected from Buffalo, Cow, Goat and Sheep of Gujrat, Pakistan. Pak. J. Nutr. 2010, 9, 1192–1197. [Google Scholar] [CrossRef] [Green Version]
- Farah, Z. Composition and characteristics of camel milk. J. Dairy Res. 1993, 60, 603–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grandison, A. Causes of variation in milk composition and their effects on coagulation and cheesemaking. Dairy Ind. Int. 1986, 51, 21–24. [Google Scholar]
- Farah, Z.; Ruegg, M. The Size Distribution of Casein Micelles in Camel Milk. Food Struct. 1989, 8, 211–216. [Google Scholar]
- Gueguen, L. La valeur nutritionnelle minérale du lait de chèvre. INRA 1997, 67–80. [Google Scholar]
- Paccard, P.; Lagriffoul, G. Synthèse bibliographique sur la composition du lait de brebis en composés d’intérêt nutritionnel. Pers. Commun. 2006, 28. [Google Scholar]
- Renner, E. Dictionary of Milk and Dairying; Volkswirtschaftlicher Verlag: München, Germany, 1991; Volume 2, pp. 325–326. [Google Scholar]
- Tamime, A.Y.; Deeth, H.C. Amino acid composition in milk and yoghurt of different species. J. Food Prot. 1980, 43, 939–943. [Google Scholar] [CrossRef]
- Mehaia, M.A.; Al Kahnal, M.A. Studies on camel and goat milk proteins: Nitrogen distribution and amino acid composition. Nutr. Rep. Int. 1989, 39, 351–357. [Google Scholar]
- Zhou, L.; Tang, Q.; Iqbal, M.W.; Xia, Z.; Huang, F.; Li, L.; Liang, M.; Lin, B.; Qin, G.; Zou, C. A comparison of milk protein, fat, lactose, total solids and amino acid profiles of three different buffalo breeds in Guangxi, China. Ital. J. Anim. Sci. 2018, 17, 873–878. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.T.; Nadeem, M.; Imran, M.; Ullah, R.; Ajmal, M.; Jaspal, M.H. Antioxidant properties of Milk and dairy products: A comprehensive review of the current knowledge. Lipids Health Dis. 2019, 18, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Gerchev, G.; Mihaylova, G.; Tsochev, I. Amino acid composition of milk from Tsigai and Karakachanska sheep breeds reared in the Central Balkan mountains region. Biotehnol. u Stoc. 2005, 21, 111–115. [Google Scholar] [CrossRef]
- Queiroga, R.D.C.R.D.E.; Santos, B.M.; Gomes, A.M.P.; Monteiro, M.J.; Teixeira, S.M.; De Souza, E.L.; Pereira, C.J.D.; Pintado, M.M.E. Nutritional, textural and sensory properties of Coalho cheese made of goats’, cows’ milk and their mixture. LWT 2013, 50, 538–544. [Google Scholar] [CrossRef] [Green Version]
- Nuñez, M.; De Renobales, M. IDF International Symposium on Sheep, Goat and other non-Cow Milk. Int. Dairy J. 2016, 58, 1. [Google Scholar] [CrossRef]
- Ranadheera, C.S.; Naumovski, N.; Ajlouni, S. Non-bovine milk products as emerging probiotic carriers: Recent developments and innovations. Curr. Opin. Food Sci. 2018, 22, 109–114. [Google Scholar] [CrossRef]
- Balthazar, C.F.; Silva, H.L.; Esmerino, E.A.; Rocha, R.S.; Moraes, J.; Carmo, M.A.; Azevedo, L.; Camps, I.; Abud, Y.K.; Sant’Anna, C.; et al. The addition of inulin and Lactobacillus casei 01 in sheep milk ice cream. Food Chem. 2018, 246, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Polowsky, P.; Coudé, B.; Johnson, M.; Park, Y.W.; Jiménez-Maroto, L.A. Flavor and Sensory Characteristics of Non-Bovine Species Milk and Their Dairy Products. In Handbook of Milk of Non-Bovine Mammals; Wiley: Hoboken, NY, USA, 2017; pp. 595–623. [Google Scholar] [CrossRef]
- De La Fuente, M.A.; Juárez, M. Authenticity Assessment of Dairy Products. Crit. Rev. Food Sci. Nutr. 2005, 45, 563–585. [Google Scholar] [CrossRef] [PubMed]
- Sant’Ana, A.; Bezerril, F.; Madruga, M.; Batista, A.; Magnani, M.; Souza, E.; Queiroga, R.C.R.E. Nutritional and sensory characteristics of Minas fresh cheese made with goat milk, cow milk, or a mixture of both. J. Dairy Sci. 2013, 96, 7442–7453. [Google Scholar] [CrossRef]
- Aryana, K.J.; Olson, D.W. A 100-Year Review: Yogurt and other cultured dairy products. J. Dairy Sci. 2017, 100, 9987–10013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamime, A.Y.; Deeth, H.C. Yogurt: Technology and Biochemistry1. J. Food Prot. 1980, 43, 939–977. [Google Scholar] [CrossRef]
- Seth, D.; Mishra, H.N.; Deka, S.C. Functional and reconstitution properties of spray-dried sweetened yogurt powder as influenced by processing conditions. Int. J. Food Prop. 2016, 20, 1603–1611. [Google Scholar] [CrossRef]
- Mudgil, P.; Jumah, B.; Ahmad, M.; Hamed, F.; Maqsood, S. Rheological, micro-structural and sensorial properties of camel milk yogurt as influenced by gelatin. LWT 2018, 98, 646–653. [Google Scholar] [CrossRef]
- Vargas, M.; Cháfer, M.; Albors, A.; Chiralt, A.; González-Martínez, C. Physicochemical and sensory characteristics of yoghurt produced from mixtures of cows’ and goats’ milk. Int. Dairy J. 2008, 18, 1146–1152. [Google Scholar] [CrossRef]
- Küçükçetin, A.; Demir, M.; Aşci, A.; Çomak, E. Graininess and roughness of stirred yoghurt made with goat’s, cow’s or a mixture of goat’s and cow’s milk. Small Rumin. Res. 2011, 96, 173–177. [Google Scholar] [CrossRef]
- Uysal, H.; Kiliç, S.; Kavas, G.; Akbulut, N.; Kesenkaş, H. Some properties of set yoghurt made from caprine milk and bovine-caprine milk mixtures fortified by ultrafiltration or the addition of skim milk powder. Int. J. Dairy Technol. 2003, 56, 177–181. [Google Scholar] [CrossRef]
- Güler, Z.; Gürsoy-Balcı, A.C. Evaluation of volatile compounds and free fatty acids in set types yogurts made of ewes’, goats’ milk and their mixture using two different commercial starter cultures during refrigerated storage. Food Chem. 2011, 127, 1065–1071. [Google Scholar] [CrossRef] [PubMed]
- Ibrahem, S.A.; Zubeir, I.E.M.E. Processing, composition and sensory characteristic of yoghurt made from camel milk and camel–sheep milk mixtures. Small Rumin. Res. 2016, 136, 109–112. [Google Scholar] [CrossRef]
- Kaminarides, S.; Anifantakis, E. Characteristics of set type yoghurt made from caprine or ovine milk and mixtures of the two. Int. J. Food Sci. Technol. 2004, 39, 319–324. [Google Scholar]
- Vianna, F.S.; Canto, A.C.; Da Costa-Lima, B.R.; Salim, A.P.A.; Costa, M.P.; Balthazar, C.F.; Oliveira, B.R.; Rachid, R.P.; Franco, R.M.; Conte-Junior, C.A.; et al. Development of new probiotic yoghurt with a mixture of cow and sheep milk: Effects on physicochemical, textural and sensory analysis. Small Rumin. Res. 2017, 149, 154–162. [Google Scholar] [CrossRef]
- Bano, P.; Abdullah, M.; Nadeem, M.; Babar, M.E.; Khan, G.A. Preparation of functional yoghurt from sheep and goat milk blends. Pak. J. Agric. Sci. 2011, 48, 211–215. [Google Scholar]
- Kavas, G.; Uysal, H.; Kiliç, S.; Akbulut, N.; Kesenkaş, H. Production and Selected Properties of Bioghurt Made from Goat Milk and Cow–Goat Milk Mixtures by Ultrafiltration and Addition of Skim Milk Powder. Int. J. Food Prop. 2004, 7, 473–482. [Google Scholar] [CrossRef] [Green Version]
- Serhan, M.; Mattar, J.; Debs, L. Concentrated yogurt (Labneh) made of a mixture of goats’ and cows’ milk: Physicochemical, microbiological and sensory analysis. Small Rumin. Res. 2016, 138, 46–52. [Google Scholar] [CrossRef]
- Bernacka, H.; Chwalna, A.; Jarzynowska, A.; Mistrzak, M. Consumer assessment of yogurts made from sheep’s, goat’s, cow’s and mixed milk. Acta Sci. Pol., Zootech. 2014, 13, 19–28. [Google Scholar]
- Ibrahem, S.A.; Zubeir, I.E.M. El Evaluation of Chemical Composition of Yoghurt Made from Camel and Camel-Sheep Milk Mixtures during Storage. Int. J. Dairy Sci. 2015, 11, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Erkaya, T.; Şengül, M. A Comparative Study on Some Quality Properties and Mineral Contents of Yoghurts Produced From Different Type of Milks. Kafkas Univ. Vet. Fak. Derg. 2012, 18, 323–329. [Google Scholar]
- Park, Y. Rheological characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 73–87. [Google Scholar] [CrossRef]
- Pisanu, S.; Ghisaura, S.; Pagnozzi, D.; Biosa, G.; Tanca, A.; Roggio, T.; Uzzau, S.; Addis, M.F. The sheep milk fat globule membrane proteome. J. Proteom. 2011, 74, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Zourari, A.; Accolas, J.P.; Desmazeaud, M.J. Metabolism and biochemical characteristics of yogurt bacteria. A review. Le Lait 1992, 72, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Güler, Z. Levels of 24 minerals in local goat milk, its strained yoghurt and salted yoghurt (tuzlu yoğurt). Small Rumin. Res. 2007, 71, 130–137. [Google Scholar] [CrossRef]
- Kondyli, E.; Katsiari, M.C. Fatty acid composition of raw ewe’s milk of Boutsiko breed during lactation. Milchwissenschaft 2002, 57, 74–76. [Google Scholar]
- Kondyli, E.; Katsiari, M.C. Differences in lipolysis of Greek hard cheeses made from sheep’s, goat’s or cow’s milk. Milchwissenschaft 2001, 56, 444–445. [Google Scholar]
- Ahmad, S.; Anjum, F.; Huma, N.; Sameen, A.; Zahoor, T. Composition and physico-chemical characteristics of buffalo milk with particular emphasis on lipids, proteins, minerals, enzymes and vitamins. J. Anim. Plant Sci. 2013, 23, 62–74. [Google Scholar]
- Sabahelkhier, M.K.; Faten, M.M.; Omer, F.I. Comparative Determination of Biochemical Constituents between Animals (Goat, Sheep, Cow and Camel) Milk with Human Milk. Res. J. Recent Sci. 2012, 1, 69–71. [Google Scholar]
- Clark, S.; García, M.B.M. A 100-Year Review: Advances in goat milk research. J. Dairy Sci. 2017, 100, 10026–10044. [Google Scholar] [CrossRef] [PubMed]
- De La Fuente, M.A.; Montes, F.; Guerrero, G.; Juárez, M. Total and soluble contents of calcium, magnesium, phosphorus and zinc in yoghurts. Food Chem. 2003, 80, 573–578. [Google Scholar] [CrossRef]
- Loudiyi, M.; Aït-Kaddour, A. Evaluation of the effect of salts on chemical, structural, textural, sensory and heating properties of cheese: Contribution of conventional methods and spectral ones. Crit. Rev. Food Sci. Nutr. 2018, 59, 2442–2457. [Google Scholar] [CrossRef]
- Priyanka, A.; Anubha, S.; Siddharth, P. Yoghurt: Preparation, characteristics and recent advancements. Cibtech J. Bio-Protoc. 2012, 1, 32–44. [Google Scholar]
- Rogelj, L.; Perko, B. Fermentation of goat and cow milk with different lactic acid starter cultures. Publ. -Eur. Assoc. Anim. Prod. 1998, 90, 262–267. [Google Scholar]
- Rysstad, G.; Abrahamsen, R.K. Formation of volatile aroma compounds and carbon dioxide in yogurt starter grown in cows’ and goats’ milk. J. Dairy Res. 1987, 54, 257–266. [Google Scholar] [CrossRef]
- Božanić, R.; Tratnik, L.; Marić, O. The influence of goats milk on viscosity and microbiological quality of yoghurt during storage. Mljekarstvo 1998, 48, 63–74. [Google Scholar]
- Tamime, A.; Robinson, R. Yoghurt: Science and Technology. Camb. Woodhead Publ. 1999, 2, 261–366. [Google Scholar]
- Li, J.; Guo, M. Food Chemistry and Toxicology Effects of Polymerized Whey Proteins on Consistency and Water-holding Properties of Goat’s Milk Yogurt. J. Food Sci. 2006, 71, 34–38. [Google Scholar]
- El Agamy, E.S.I.; Ruppanner, R.; Ismail, A.; Champagne, C.P.; Assaf, R. Antibacterial and antiviral activity of camel milk protective proteins. J. Dairy Res. 1992, 59, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Berhe, T.; Ipsen, R.; Seifu, E.; Kurtu, M.Y.; Eshetu, M.; Hansen, E.B. Comparison of the acidification activities of commercial starter cultures in camel and bovine milk. LWT 2018, 89, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Chr. Hansen. Yo-Flex, 3rd ed.; Technical Bulletin; Chr. Hansen: Hørsholm, Denmark, 2004; pp. 1–35. [Google Scholar]
- Kneifel, W.; Ulberth, F.; Erhard, F.; Jaros, D. Aroma profiles and sensory properties of yogurt and yogurt-related products. I: Screening of commercially available starter cultures. Milchwissenschaft 1992, 47, 362–365. [Google Scholar]
- Robinson, R.K.; Tamime, A.Y. Manufacture of Yoghurt and Other Fermented Milks; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 1993; pp. 1–48. [Google Scholar]
- Malek, A.; Shadarevian, S.; Toufeili, I. Sensory properties and consumer acceptance of concentrated yogurt made from cow’s, goat’s and sheep’s milk. Milchwissenschaft 2001, 56, 687–689. [Google Scholar]
- Domagala, J. Instrumental Texture, Syneresis and Microstructure of Yoghurts Prepared from Goat, Cow and Sheep Milk. Int. J. Food Prop. 2009, 12, 605–615. [Google Scholar] [CrossRef]
- Ulberth, F.; Kneifel, W. Aroma profiles and sensory properties of yogurt and yogurt-related products. II: Classification of starter cultures by means of cluster analysis. Milchwissenschaft 1992, 47, 432–434. [Google Scholar]
- Labropoulos, A.; Collins, W.; Stone, W. Effects of Ultra-High Temperature and Vat Processes on Heat-Induced Rheological Properties of Yogurt. J. Dairy Sci. 1984, 67, 405–409. [Google Scholar] [CrossRef]
- Jumah, R.Y.; Abu-Jdayil, B.; Shaker, R.R. Effect of type and level of starter culture on the rheological properties of set yogurt during gelation process. Int. J. Food Prop. 2001, 4, 531–544. [Google Scholar] [CrossRef]
- Hassan, A.; Frank, J.; Elsoda, M. Observation of bacterial exopolysaccharide in dairy products using cryo-scanning electron microscopy. Int. Dairy J. 2003, 13, 755–762. [Google Scholar] [CrossRef]
- Nelson, J.A.; Trout, G.M. Judging dairy products. Co. Milwaukee 1964, 302–306. [Google Scholar]
- Ha, J.K.; Lindsay, R. Release of Volatile Branched-Chain and Other Fatty Acids from Ruminant Milk Fats by Various Lipases. J. Dairy Sci. 1993, 76, 677–690. [Google Scholar] [CrossRef] [PubMed]
- Lamberet, G.A.; Delacroix-Buchet, A.; Degas, C. Intensité de la lipolyse initiale des laits de chèvre et perception de l’arôme “chèvre” dans les fromages. In Proceedings of the Technical Symposium 7th International Conference Goats: Recent Advances on Goat Milk Quality, Raw Material for Cheesemaking, Poitiers, France, 20 May 2000; pp. 130–139. [Google Scholar]
- Eknæs, M.; Havrevoll, Ø.; Volden, H.; Hove, K. Fat content, fatty acid profile and off-flavours in goats milk—Effects of feed concentrates with different fat sources during the grazing season. Anim. Feed. Sci. Technol. 2009, 152, 112–122. [Google Scholar] [CrossRef]
- Chilliard, Y.; Ferlay, A.; Rouel, J.; Lamberet, G. A Review of Nutritional and Physiological Factors Affecting Goat Milk Lipid Synthesis and Lipolysis. J. Dairy Sci. 2003, 86, 1751–1770. [Google Scholar] [CrossRef] [Green Version]
- Marafon, A.; Sumi, A.; Granato, D.; Alcântara, M.; Tamime, A.; De Oliveira, M.N. Effects of partially replacing skimmed milk powder with dairy ingredients on rheology, sensory profiling, and microstructure of probiotic stirred-type yogurt during cold storage. J. Dairy Sci. 2011, 94, 5330–5340. [Google Scholar] [CrossRef] [PubMed]
- Stahl, T.; Sallmann, H.-P.; Duehlmeier, R.; Wernery, U. Selected vitamins and fatty acid patterns in dromedary milk and colostrum. J. Camel Pract. Res. 2006, 13, 53–57. [Google Scholar]
- Boukria, O.; El Hadrami, E.M.; Boudalia, S.; Safarov, J.; Leriche, F.; Aït-Kaddour, A. The Effect of Mixing Milk of Different Species on Chemical, Physicochemical, and Sensory Features of Cheeses: A Review. Foods 2020, 9, 1309. [Google Scholar] [CrossRef]
Camel Milk | Cow Milk | Goat Milk | Ewe Milk | Buffalo Milk | References | |
---|---|---|---|---|---|---|
pH | 6.38–6.65 | 6.50–6.70 | 6.55–6.69 | 6.51–6.85 | 6.61–6.81 | [10,25,27,28,29,30,31] |
Moisture (g/100 g) | 86.6–90.4 | 87.00–88.1 | 83.67–88.3 | 81.5–83.3 | 82.3–84.0 | [10,27,28,30,32] |
Protein (g/100 g) | 2.95–3.25 | 3.23–3.50 | 2.9–3.83 | 6.21–6.30 | 2.7–4.6 | [10,27,28,30,33,34] |
Fat (g/100 g) | 2.65–3.60 | 3.60–3.67 | 3.8–5.30 | 7.62–7.90 | 5.3–9.0 | [10,27,28,30,33,34] |
Ash (g/100 g) | 0.79–0.83 | 0.65–0.70 | 0.73–0.88 | 0.90–0.98 | 0.7–0.8 | [10,27,28,30,33,35,36] |
Lactose (g/100 g) | 4.05–4.40 | 4.78–4.90 | 4.08–4.73 | 3.7–4.90 | 3.2–4.9 | [10,27,28,30,33,34] |
Acidity (g/100 g) | 0.13 | 0.16–0.19 | 0.14–0.18 | 0.22–0.25 | – | [10,27,28,37] |
Casein (g/100 g) | 2.10–2.30 | 2.28–3.27 | 2.14–3.18 | 3.78–5.20 | 3.02–3.2 | [30,38,39,40] |
Ca a | 106–120 | 112–120 | 126–198 | 195–200 | 147–220 | [10,30,35,41] |
Mg a | 12–14 | 7–11 | 13–36 | 18–21 | 2–16 | [10,30,35,41] |
P a | 63–90 | 59–92 | 97–153 | 124–158 | 102–293 | [10,30,35,41] |
Na a | 69–73 | 45–58 | 38–58 | 44–58 | 47 | [10,30,35,41] |
K a | 156–173 | 106–150 | 190–242 | 136–140 | 112 | [10,30,35,41] |
Fe a | 0.17–0.26 | 0.07–0.46 | 0.55 | 0.72–1.22 | 0.17 | [10,30,41] |
Cu a | 0.12–0.17 | 0.08–0.22 | 0.30 | 0.40–0.68 | 0.02 | [10,30,41] |
Zn a | 0.44–0.6 | 0.3–3.8 | 0.43–3.4 | 5.2–7.47 | 0.5 | [10,30,41] |
Mn a | 0.02–0.09 | 0.02–0.06 | 0.03–0.08 | 0.05–0.09 | – | [10,15,41] |
Vitamin A b | 0.01–0.05 | 0.06–0.37 | 0.04–0.54 | 0.08–0.64 | 0.07 | [10,28,30,32,38,42] |
Vitamin C b | 2.3–18.4 | 0.02–0.94 | 1.29–2.00 | 4.16–4.30 | 2.5 | [10,15,30,34] |
Vitamin D c | – | 0.08 | 0.06 | 0.18 | – | [28,42] |
Vitamin E b | 0.03 | 0.08–0.11 | 0.04 | 0.11–0.12 | 0.19 | [28,30,32,42] |
Vitamin B1 b | 0.03–0.60 | 0.04–0.05 | 0.05 | 0.07–0.08 | 0.05 | [10,28,30,32,38,42] |
Vitamin B2 b | 0.04–0.80 | 0.17–0.20 | 0.14–0.17 | 0.30–0.35 | 0.11 | [10,28,30,32,38,42] |
Vitamin B3 b | 0.46 | 0.09–0.13 | 0.20–0.23 | 0.41–0.42 | 0.17 | [10,28,30,32,42] |
Vitamin B5 b | 0.08 | 0.34–0.43 | 0.31 | 0.41–0.46 | 0.15 | [10,28,30,32,42] |
Vitamin B6 b | 0.05 | 0.04–0.05 | 0.04–0.05 | 0.06–0.08 | 0.33 | [10,28,30,32,42] |
Vitamin B8 c | – | 2.00–2.5 | 1.75–2.00 | 2.5 | 13 | [28,30,32] |
Vitamin B9 c | 4.10 | 5.30–8.5 | 1.00 | 5.00–6.00 | 0.6 | [10,28,30,32,42] |
Vitamin B12 c | 1.50–2 | 0.5–1.35 | 0.06–1.36 | 0.66–5.71 | 0.4 | [10,28,30,32,38,42] |
C4:0 d | 0.66–1.0 | 3.3–3.9 | 1.97–2.6 | 3.07–4.0 | 2.28–2.52 | [10,15,31,34] |
C6:0 d | 0.37 | 1.6–2.5 | 2.03–2.9 | 2.6–3.44 | 1.82–2.04 | [10,15,31,34] |
C8:0 d | 0.23–0.5 | 1.3–15 | 2.28–3.04 | 2.5–3.27 | 1.29–1.57 | [10,15,31,34] |
C10:0 d | 0.1–0.90 | 3.0–3.2 | 8.4–11.0 | 5.54–9.73 | 2.74–3.56 | [10,15,31,34] |
C12:0 d | 0.5–0.79 | 3.1–3.6 | 3.3–6.18 | 3.7–4.92 | 2.91–3.55 | [10,15,31,34] |
C14:0 d | 10.0–12.5 | 9.5–11.1 | 7.71–11.2 | 9.85–11.9 | 6.11–7.49 | [10,15,31,34] |
C16:0 d | 26.6–31.5 | 26.5–27.9 | 23.2–34.8 | 22.5–28.2 | 27.5–36.3 | [10,15,31,34] |
C16:1 d | 9.0–10.4 | 1.5–2.3 | 1.0–2.7 | 0.74–2.2 | 0.35–1.69 | [10,15,31,34] |
C18:0 d | 12.2–14.0 | 12.2–14.6 | 5.77–13.2 | 8.51–12.6 | 10.02–12.28 | [10,15,31,34] |
C18:1 d | 19.1–26.3 | 21.1–29.8 | 15.4–28.5 | 17.8–23.0 | 22.93–25.39 | [10,15,31,34] |
C18:2 d | 2.94–3.4 | 1.4–2.5 | 2.2–4.34 | 2.1–3.57 | 1.56–1.86 | [10,15,31,34] |
Ala e | 2.7–2.8 | 3.41–3.5 | 3–3.39 | 2.4 | 2.89–2.91 | [10,36,43,44,45,46,47,48] |
Arg e | 3.8–3.9 | 3.7–4.06 | 3.90 | – | 2.18–2.51 | [10,36,43,44] |
Asp e | 7.6–6.4 | 7.6–7.9 | 7.8–7.19 | 6.5 | 7.04–7.09 | [10,36,43,44,46,47,48] |
Glu e | 19.5–23.9 | 19.66–21.8 | 5.23–23.2 | 14.5 | 19.36–19.64 | [10,36,43,44,46,47,48] |
Gly e | 1.3–1.7 | 1.75–2.1 | 1.75–1.8 | 3.5 | 1.68–1.7 | [10,36,43,44,46,47,48] |
His e | 2.5–2.7 | 2.8–3.30 | 3–3.53 | 6.7 | 2.17–2.26 | [10,36,43,44,46,47,48] |
Ileu e | 5.0–5.4 | 4.54–6.4 | 4.2–4.61 | 4.6 | 4.68–5.56 | [10,36,43,44,46,47,48] |
Leu e | 9.5–10.4 | 9.44–10.4 | 8.7–9.80 | 9.7–9.9 | 8.74–8.97 | [10,36,43,44,46,47,48] |
Met e | 2.5–3.6 | 2.48–2.7 | 1.8–2.24 | 2.7 | 2.16–2.45 | [10,36,43,44,46,47,48] |
Phe e | 4.6–5.6 | 4.73–5.2 | 4.8–5.04 | 4.2–4.3 | 4.05–5.16 | [10,36,43,44,46,47,48] |
Pro e | 11.1–13 | 8.99–10.0 | 8.93–9.6 | 16.2 | 9.21–9.32 | [10,36,43,44,46,47,48] |
Ser e | 4.2–5.8 | 5.24–5.6 | 4.39–4.8 | 3.4 | 4.81–5.56 | [10,36,43,44,46,47,48] |
Thr e | 4.3–5.2 | 4.11–5.1 | 3.98–4.5 | 4.2–4.4 | 3.95–4.12 | [10,36,43,44,46,47,48] |
Tyr e | 4.0–4.5 | 5.3–5.67 | 4.5–4.67 | 3.7–3.8 | 3.53–3.9 | [10,36,43,44,46,47,48] |
Val e | 6.1–6.9 | 5.24–6.8 | 4.8–6.04 | 6.2–6.4 | 5.23–5.42 | [10,36,43,44,45,46,47,48] |
Product | Country | Milk Mixture | Milk Ratios Studied | Breed | Coagulation | Ripening/Storage | Weight | Cheese Shape/Mould Shape | Reference |
---|---|---|---|---|---|---|---|---|---|
Stirred yoghurt | Spain | CM and GM | Pure CM, pure GM, 3CM:1GM, 1CM:1GM and 1CM:3GM (v/v) | Caprine (Murciano–Granadina) Bovine (Friesian) | Starter culture (MY900, RhodiaFood, Dangé Saint Romain, France), containing Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus (concentration of 0.08 U/L) | 28 days at 4 °C | - | - | Vargas et al. [60] |
Turkey | CM and GM | 1CM:1GM (v/v) | - | 0.1 g/L of frozen pellets (starter culture DI-PROX TY 973, Bioprox, France) | 15 days at 4 °C | 200 mL | Cups | Kucukcetin et al. [61] | |
Set type yoghurt | Turkey | CM and GM | Pure GM, 1CM:1GM and 1CM:2.33GM (v/v) | - | The culture consisted of Lb. acidophilus (5.8 × 108 cfu/g), Str. thermophilus (3.8 × 108 cfu/g) and B. bifidum (7.2 × 107 cfu/g) | 14 days at ± 4 °C | - | - | Uysal et al. [62] |
Turkey | GM and EM | 1CM:1GM (v/v) | Goat (Shami) Ewe (Awassi) | CH-1 and YF-3331 type cultures | 21 days at 4 °C | - | Polystyrene plastic cups | Güler and Gürsoy-Balci [63] | |
Sudan | CaM and EM | Pure CaM, 2.33CaM:1EM and 1CaM:2.33EM (v/v) | - | YC-X11 Thermophilic Yoghurt and CH-1 Thermophilic Yoghurt Cultures | 29 days at 4 °C | - | - | Ibrahem and El Zubeir [64] | |
Greece | GM and EM | Pure GM (Alpine), pure GM (Thiva), pure EM (Lacaune), 1GM(ALacaune):1EM(Alpine) and 2.33GM(Thiva):1EM(Lacaune) | Ovine (Lacaune) Caprine (Thiva and Alpine) | Starter cultures of Streptococcus thermophilus and Lactobacillus bulgaricus | 1 day at 5 °C | 250 mL | Cups | Kaminarides and Anifantakis [65] | |
Brazil | CM and EM | Pure CM, pure EM, 3CM:1EM, 1CM:1EM and 1CM:3EM | - | Starter (Yo-Flex, Chr Hansen, Valin-hos, SP, Brazil) and Lb. acidophilus cultures were inoculated at concentration of 1% (v/v) and 5% (v/v), respectively | 28 days at 4 °C | 200 mL | Sterile flask | Vianna et al. [66] | |
Pakistan | GM and EM | Pure GM, pure EM, 3GM:1EM, 1GM:1EM and 1GM:3EM | - | Starter culture CSK Y104 | 28 days at 4 °C | - | Polypropylene cups | Bano et al. [67] | |
Bioghurt | Turkey | CM and GM | Pure GM, 1CM:1GM and 1CM:2.33GM (v/v) | - | Streptococcus salivarius ssp. thermophilus and Lb. acidophilus starter cultures | 1, 7, and 14 days at 4 °C | - | - | Kavas et al. [68] |
Concentrated yoghurt (lebneh) | Lebanese | CM and GM | Pure CM, pure GM, 1CM:1GM, 1.5CM:1GM, 1.33CM:1GM, 4CM:4GM and 9CM:1GM | Cow (local breed); Goat (local breed) | 2% starter culture (Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus in equal proportions, Yo-Mix 505 LYO 200 DCU lyophilized powder) | 4 °C | 500 g | Disinfected labelled PVC containers (500 g), closed with an aluminium foil | Serhan et al. [69] |
Product | Principal Conclusion | Reference |
---|---|---|
Set type yoghurt |
| Kaminarides and Anifantakis [65] |
| Bano et al. [67] | |
| Vianna et al. [66] | |
| Ibrahem and El Zubeir [64] | |
| Uysal et al. [62] | |
| Bernacka et al. [70] | |
Concentrated yoghurt (Labneh) |
| Serhan et al. [69] |
Stirred yoghurt |
| Vargas et al. [60] |
| Kucukcetin et al. [61] |
Products | Principal Conclusion | Reference |
---|---|---|
Set Type Yoghurt |
| Vianna et al. [66] |
| Kucukcetin et al. [61] | |
| Uysal et al. [62] |
Yogurt Samples | Bacterial Population Exhibited (cfu/g) |
---|---|
pure CM | 8.2, 12.2 and 8.6 |
3CM:1EM | 7.0, 12.6 and 9.0 |
1CM:1EM | 9.2, 12.5 and 8.3 |
1CM:3EM | 7.0, 13.2 and 9.5 |
pure EM | 7.0, 10.5 and 9.0 |
Products | Principal Conclusion | Reference |
---|---|---|
Set type yoghurt |
| Kaminarides and Anifantakis [65] |
| Bano et al. [67] | |
| Vianna et al. [66] | |
| Ibrahem and El Zubeir [64] | |
| Uysal et al. [62] | |
| Bernacka et al. [70] | |
Concentrated yoghurt (Labneh) |
| Serhan et al. [69] |
Stirred yoghurt |
| Vargas et al. [60] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boukria, O.; El Hadrami, E.M.; Sameen, A.; Sahar, A.; Khan, S.; Safarov, J.; Sultanova, S.; Leriche, F.; Aït-Kaddour, A. Biochemical, Physicochemical and Sensory Properties of Yoghurts Made from Mixing Milks of Different Mammalian Species. Foods 2020, 9, 1722. https://doi.org/10.3390/foods9111722
Boukria O, El Hadrami EM, Sameen A, Sahar A, Khan S, Safarov J, Sultanova S, Leriche F, Aït-Kaddour A. Biochemical, Physicochemical and Sensory Properties of Yoghurts Made from Mixing Milks of Different Mammalian Species. Foods. 2020; 9(11):1722. https://doi.org/10.3390/foods9111722
Chicago/Turabian StyleBoukria, Oumayma, El Mestafa El Hadrami, Aysha Sameen, Amna Sahar, Sipper Khan, Jasur Safarov, Shakhnoza Sultanova, Françoise Leriche, and Abderrahmane Aït-Kaddour. 2020. "Biochemical, Physicochemical and Sensory Properties of Yoghurts Made from Mixing Milks of Different Mammalian Species" Foods 9, no. 11: 1722. https://doi.org/10.3390/foods9111722
APA StyleBoukria, O., El Hadrami, E. M., Sameen, A., Sahar, A., Khan, S., Safarov, J., Sultanova, S., Leriche, F., & Aït-Kaddour, A. (2020). Biochemical, Physicochemical and Sensory Properties of Yoghurts Made from Mixing Milks of Different Mammalian Species. Foods, 9(11), 1722. https://doi.org/10.3390/foods9111722