High Glucosinolate Content in Rocket Leaves (Diplotaxis tenuifolia and Eruca sativa) after Multiple Harvests Is Associated with Increased Bitterness, Pungency, and Reduced Consumer Liking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Temperature Data
2.3. Sensory Analysis
2.4. Consumer Analysis
2.5. Phytochemical Analyses
2.5.1. Preparation of Samples
2.5.2. Glucosinolate Analysis
2.5.3. Sugar Analysis
2.6. Statistical Analysis
2.6.1. Panellist Performance
2.6.2. Analysis of Variance
2.6.3. Agglomerative Hierarchical Clustering
2.6.4. Principal Component and Correlation Analysis
3. Results and Discussion
3.1. Monthly Differences in Rocket Agronomic Practices
3.2. Monthly Variation in Rocket Growth Temperature
3.3. Phytochemical Composition and Monthly Variability
3.3.1. Glucosinolates
3.3.2. Sugars
3.4. Sensory Profiling Monthly Variability
3.4.1. Appearance Traits
3.4.2. Odour Traits
3.4.3. Taste and Flavour Traits
3.4.4. Mouthfeel Traits
3.4.5. Aftereffect Traits
3.5. Correlation Analysis of Sensory Attributes
3.5.1. Growing Temperature
3.5.2. Cultivation Practice
3.5.3. Glucosinolates
3.5.4. Sugars
3.6. Consumer Acceptability and Perception
3.6.1. Liking of Taste
3.6.2. Overall Liking
3.7. Principal Component Analysis
3.7.1. Relationships between Consumer Liking and Perceptions
3.7.2. Influence of Growing Temperatures on Consumer Preference and Perceptions
3.7.3. Influence of Cultivation Practice on Consumer Liking and Perceptions
3.7.4. Influence of Glucosinolate Contents on Consumer Liking and Perceptions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
GSL | glucosinolate |
ITC | isothiocyanate |
GSV | glucosativin |
DMB | dimeric 4-mercaptobutyl glucosinolate |
SAT | sativin |
GRA | glucoraphanin |
GER | glucoerucin |
gLMS | general Labelled Magnitude Scale |
LC–MS | liquid chromatography mass spectrometry |
CE | capillary electrophoresis |
PCA | Principal Component Analysis |
ANOVA | analysis of variance |
AHC | agglomerative hierarchical clustering |
SF | sulforaphane |
ERU | erucin |
References
- Hall, M.K.D.; Jobling, J.J.; Rogers, G.S. Factors affecting growth of perennial wall rocket and annual garden rocket. Int. J. Veg. Sci. 2012, 18, 393–411. [Google Scholar] [CrossRef]
- Spence, C. Gastrophysics: Nudging consumers toward eating more leafy (salad) greens. Food Qual. Prefer. 2020, 80, 103800. [Google Scholar] [CrossRef]
- D’Antuono, L.F.; Elementi, S.; Neri, R. Exploring new potential health-promoting vegetables: Glucosinolates and sensory attributes of rocket salads and related Diplotaxis and Eruca species. J. Sci. Food Agric. 2009, 89, 713–722. [Google Scholar] [CrossRef]
- Bell, L.; Methven, L.; Signore, A.; Oruna-Concha, M.J.; Wagstaff, C. Analysis of seven salad rocket (Eruca sativa) Accessions: The relationships between sensory attributes and volatile and non-volatile compounds. Food Chem. 2017, 218, 181–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Løkke, M.M.; Seefeldt, H.F.; Skov, T.; Edelenbos, M. Color and textural quality of packaged wild rocket measured by multispectral imaging. Postharvest Biol. Technol. 2013, 75, 86–95. [Google Scholar] [CrossRef]
- Lokke, M.M.; Seefeldt, H.F.; Edelenbos, M. Freshness and sensory quality of packaged wild rocket. Postharvest Biol. Technol. 2012, 73, 99–106. [Google Scholar] [CrossRef]
- Martínez-Sánchez, A.; Allende, A.; Bennett, R.N.; Ferreres, F.; Gil, M.I. Microbial, nutritional and sensory quality of rocket leaves as affected by different sanitizers. Postharvest Biol. Technol. 2006, 42, 86–97. [Google Scholar] [CrossRef]
- Pasini, F.; Verardo, V.; Cerretani, L.; Caboni, M.F.; D’Antuono, L.F. Rocket salad (Diplotaxis and Eruca spp.) sensory analysis and relation with glucosinolate and phenolic content. J. Sci. Food Agric. 2011, 91, 2858–2864. [Google Scholar] [CrossRef]
- Bell, L.; Methven, L.; Wagstaff, C. The influence of phytochemical composition and resulting sensory attributes on preference for salad rocket (Eruca sativa) accessions by consumers of varying TAS2R38 diplotype. Food Chem. 2017, 222, 6–17. [Google Scholar] [CrossRef]
- Hall, M.; Jobling, J.J.; Rogers, G.S. Fundamental differences between perennial wall rocket and annual garden rocket influence the commercial year-round supply of these crops. J. Agric. Sci. 2015, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Gil, M.I. Preharvest factors and fresh-cut quality of leafy vegetables. Acta Hortic. 2016, 57–64. [Google Scholar] [CrossRef]
- Hall, M.K.D.; Jobling, J.J.; Rogers, G.S. Influence of storage temperature on the seasonal shelf life of perennial wall rocket and annual garden rocket. Int. J. Veg. Sci. 2013, 19, 83–95. [Google Scholar] [CrossRef]
- Coogan, R.C.; Wills, R.B.H.; Nguyen, V.Q. Pungency levels of white radish (Raphanus sativus L.) grown in different seasons in Australia. Food Chem. 2001, 72, 1–3. [Google Scholar] [CrossRef]
- Johansen, T.J.; Hagen, S.F.; Bengtsson, G.B.; Mølmann, J.A.B. Growth temperature affects sensory quality and contents of glucosinolates, vitamin C and sugars in swede roots (Brassica napus L. ssp. rapifera Metzg.). Food Chem. 2016, 196, 228–235. [Google Scholar] [CrossRef]
- Fechner, J.; Kaufmann, M.; Herz, C.; Eisenschmidt, D.; Lamy, E.; Kroh, L.W.; Hanschen, F.S. The major glucosinolate hydrolysis product in rocket (Eruca sativa L.), sativin, is 1,3-thiazepane-2-thione: Elucidation of structure, bioactivity, and stability compared to other rocket isothiocyanates. Food Chem. 2018, 261, 57–65. [Google Scholar] [CrossRef]
- Raffo, A.; Masci, M.; Moneta, E.; Nicoli, S.; del Pulgar, J.S.; Paoletti, F.; Pulgar, D. Characterization of volatiles and identification of odor-active compounds of rocket leaves. Food Chem. 2018, 240, 1161–1170. [Google Scholar] [CrossRef]
- Jasper, J.; Wagstaff, C.; Bell, L. Growth temperature influences postharvest glucosinolate concentrations and hydrolysis product formation in first and second cuts of rocket salad. Postharvest Biol. Technol. 2020, 163, 111157. [Google Scholar] [CrossRef]
- Metallo, R.M.; Kopsell, D.A.; Sams, C.E.; Bumgarner, N.R. Influence of blue/red vs. white LED light treatments on biomass, shoot morphology, and quality parameters of hydroponically grown kale. Sci. Hortic. (Amsterdam) 2018, 235, 189–197. [Google Scholar] [CrossRef]
- Bartoshuk, L.M.; Duffy, V.B.; Fast, K.; Green, B.G.; Prutkin, J.; Snyder, D.J. Labeled scales (e.g., category, Likert, VAS) and invalid across-group comparisons: What we have learned from genetic variation in taste. Food Qual. Prefer. 2003, 14, 125–138. [Google Scholar] [CrossRef]
- Bell, L.; Oruna-Concha, M.J.; Wagstaff, C. Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC-MS: Highlighting the potential for improving nutritional value of rocket crops. Food Chem. 2015, 172, 852–861. [Google Scholar] [CrossRef] [Green Version]
- Torres-Contreras, A.M.; Senés-Guerrero, C.; Pacheco, A.; González-Agüero, M.; Ramos-Parra, P.A.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Genes differentially expressed in broccoli as an early and late response to wounding stress. Postharvest Biol. Technol. 2018, 145, 172–182. [Google Scholar] [CrossRef]
- Pereira, F.M.V.; Rosa, E.; Fahey, J.W.; Stephenson, K.K.; Carvalho, R.; Aires, A. Influence of temperature and ontogeny on the levels of glucosinolates in broccoli (Brassica oleracea var. italica) sprouts and their effect on the induction of mammalian phase 2 enzymes. J. Agric. Food Chem. 2002, 50, 6239–6244. [Google Scholar] [CrossRef] [PubMed]
- Houghton, C.A.; Fassett, R.G.; Coombes, J.S. Sulforaphane: Translational research from laboratory bench to clinic. Nutr. Rev. 2013, 71, 709–726. [Google Scholar] [CrossRef] [PubMed]
- Cartea, M.E.; Velasco, P. Glucosinolates in Brassica foods: Bioavailability in food and significance for human health. Phytochem. Rev. 2008, 7, 213–229. [Google Scholar] [CrossRef]
- Steindal, A.L.H.; Mølmann, J.; Bengtsson, G.B.; Johansen, T.J. Influence of day length and temperature on the content of health-related compounds in Broccoli (Brassica oleracea L. var. italica). J. Agric. Food Chem. 2013, 61, 10779–10786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balasubramanian, S.; Schwartz, C.; Singh, A.; Warthmann, N.; Kim, M.C.; Maloof, J.N.; Loudet, O.; Trainer, G.T.; Dabi, T.; Borevitz, J.O.; et al. QTL mapping in new Arabidopsis thaliana Advanced Intercross-recombinant inbred lines. PLoS ONE 2009, 4, e4318. [Google Scholar] [CrossRef] [Green Version]
- Lytou, A.E.; Panagou, E.Z.; Nychas, G.-J.E. Volatilomics for food quality and authentication. Curr. Opin. Food Sci. 2019, 28, 88–95. [Google Scholar] [CrossRef]
- Sami, F.; Yusuf, M.; Faizan, M.; Faraz, A.; Hayat, S. Role of sugars under abiotic stress. Plant Physiol. Biochem. 2016, 109, 54–61. [Google Scholar] [CrossRef]
- Drewnowski, A.; Gomez-Carneros, C. Bitter taste, phytonutrients, and the consumer: A review. Am. J. Clin. Nutr. 2000, 72, 1424–1435. [Google Scholar] [CrossRef]
- Ancillotti, C.; Bogani, P.; Biricolti, S.; Calistri, E.; Checchini, L.; Ciofi, L.; Gonnelli, C.; Bubba, M. Changes in polyphenol and sugar concentrations in wild type and genetically modified Nicotiana langsdorffii Weinmann in response to water and heat stress. Plant Physiol. Biochem. 2015, 97, 52–61. [Google Scholar] [CrossRef]
- Bell, L.; Oloyede, O.O.; Lignou, S.; Wagstaff, C.; Methven, L. Taste and flavour perceptions of glucosinolates, isothiocyanates, and related compounds. Mol. Nutr. Food Res. 2018, 62, 1700990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toscano, S.; Trivellini, A.; Cocetta, G.; Bulgari, R.; Francini, A.; Romano, D.; Ferrante, A. Effect of pre-harvest abiotic stresses on the accumulation of bioactive compounds in horticultural produce. Front. Plant Sci. 2019, 10, 1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroener, E.-M.; Buettner, A. Unravelling important odorants in horseradish (Armoracia rusticana). Food Chem. 2017, 232, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Wu, L.; Henke, M.; Ali, B.; Zhou, W.; Buck-Sorlin, G. Modeling allometric relationships in leaves of young rapeseed (Brassica napus L.) grown at different temperature treatments. Front. Plant Sci. 2017, 8, 313. [Google Scholar] [CrossRef] [Green Version]
- Reed, D.R.; Tanaka, T.; McDaniel, A.H. Diverse tastes: Genetics of sweet and bitter perception. Physiol. Behav. 2006, 88, 215–226. [Google Scholar] [CrossRef] [Green Version]
Month | Cultivar | Symbol Code | Species | Country of Origin | Growth Environment | Cut Number | Crop Cycle Length (Days) | Dry Matter (%) |
---|---|---|---|---|---|---|---|---|
January | Yeti | ◆🟄 | D. tenuifolia | Italy | Polytunnel | 2nd | 60 | 8.1 |
Yeti | ◆★ | D. tenuifolia | Italy | Polytunnel | 2nd | 71 | 8.3 | |
Tricia | ◆🟀 | D. tenuifolia | Italy | Polytunnel | 2nd | 24 | 9.5 | |
Wildfire | ◼🟄 | D. tenuifolia | Italy | Polytunnel | 1st | 51 | 8.7 | |
Fast Grow | ❖★ | D. tenuifolia | Italy | - | 2nd+ | 70 | 8.1 | |
55.2 | 8.5 | |||||||
February | Venere | ❖🟀 | D. tenuifolia | Italy | Polytunnel | 2nd+ | 27 | 8.9 |
Wildfire | ❖🟀 | D. tenuifolia | Italy | Polytunnel | 2nd+ | 23 | 13.4 | |
Selezione Enza | ❖✶ | D. tenuifolia | Italy | Polytunnel | 2nd+ | 124 | 8.8 | |
Tricia | ❖🟀 | D. tenuifolia | Italy | Polytunnel | 2nd+ | 24 | 7.9 | |
Fast Grow | ◆★ | D. tenuifolia | Italy | - | 2nd | 85 | 9.4 | |
56.6 | 9.7 | |||||||
March | Yeti | ❖✶ | D. tenuifolia | Italy | Polytunnel | 2nd+ | 137 | - |
Wildfire | ◼🟄 | D. tenuifolia | USA | Open field | 1st | 31 | 7.9 | |
Fast Grow | ◼- | D. tenuifolia | Italy | Polytunnel | 1st | - | - | |
Voyager | ❖★ | D. tenuifolia | India | Open field | 2nd+ | 85 | - | |
Fast Grow | ❖✶ | D. tenuifolia | Italy | - | 2nd+ | 132 | - | |
96.3 | - | |||||||
April | Wildfire | ❖✶ | D. tenuifolia | Italy | Polytunnel | 2nd+ | 180 | 9.3 |
Venere | ◆🟄 | D. tenuifolia | Italy | Polytunnel | 2nd | 35 | 7.8 | |
Standard | ❖🟄 | D. tenuifolia | Spain | Polytunnel | 2nd+ | 40 | 8.1 | |
Giove | ❖- | D. tenuifolia | Italy | Polytunnel | 2nd+ | - | 9.3 | |
Quaggio | ◆🟄 | D. tenuifolia | Italy | Polytunnel | 2nd | 43 | 7.7 | |
74.5 | 8.4 | |||||||
June | Giove | ◆🟀 | D. tenuifolia | Italy | Polytunnel | 2nd | 30 | 6.7 |
Giove | ◼🟀 | D. tenuifolia | Italy | Polytunnel | 1st | 23 | 5.9 | |
Torino | ◼🟄 | D. tenuifolia | UK | Open field | 1st | 40 | 12.3 | |
Giove | ◼🟀 | D. tenuifolia | Italy | Polytunnel | 1st | 23 | 7.5 | |
Extrema | ◆🟄 | D. tenuifolia | Italy | Polytunnel | 2nd | 39 | 6.4 | |
31.0 | 7.8 | |||||||
July | Giove | ◼🟀 | D. tenuifolia | Italy | Polytunnel | 1st | 20 | 8.0 |
Giove | ◼🟀 | D. tenuifolia | Italy | Polytunnel | 1st | 20 | 6.6 | |
Napoli | ◼🟀 | D. tenuifolia | UK | Open field | 1st | 24 | 6.1 | |
Voyager | ◼🟄 | D. tenuifolia | UK | Open field | 1st | 44 | 14.8 | |
Giove | ◆🟀 | D. tenuifolia | Italy | Polytunnel | 2nd | 28 | 7.3 | |
27.2 | 8.6 | |||||||
August | Giove | ◼🟀 | D. tenuifolia | Italy | Polytunnel | 1st | 24 | 9.7 |
Extrema | ◆🟄 | D. tenuifolia | Italy | Polytunnel | 2nd | 33 | 8.5 | |
Voyager | ◼🟀 | D. tenuifolia | UK | Glasshouse | 1st | 24 | 6.6 | |
27.0 | 8.3 | |||||||
September | Voyager | ◼🟄 | D. tenuifolia | UK | Glasshouse | 1st | 35 | 8.7 |
Shamrock | ◼🟄 | D. tenuifolia | UK | Open field | 1st | 38 | 9.6 | |
Extrema | ◆🟄 | D. tenuifolia | Italy | Polytunnel | 2nd | 31 | 7.0 | |
Extrema | ◆🟄 | D. tenuifolia | Italy | Polytunnel | 2nd | 31 | 9.7 | |
Giove | ◼🟀 | D. tenuifolia | Italy | Polytunnel | 1st | 22 | 5.7 | |
31.4 | 8.1 | |||||||
October | Selezione Enza | ◼🟀 | D. tenuifolia | Italy | Polytunnel | 1st | 25 | 5.8 |
Selezione Enza | ◆🟄 | D. tenuifolia | Italy | Polytunnel | 2nd | 33 | 6.5 | |
Venere | ◼🟀 | D. tenuifolia | Italy | Polytunnel | 1st | 23 | 6.3 | |
Multi | ◆🟀 | D. tenuifolia | Italy | Polytunnel | 2nd | 30 | 6.2 | |
Napoli | ◆- | D. tenuifolia | UK | Glasshouse | 2nd | - | 8.1 | |
27.8 | 6.6 | |||||||
November | Yeti | ◼🟄 | D. tenuifolia | Italy | Polytunnel | 1st | 31 | 6.3 |
Yeti | ◼🟄 | D. tenuifolia | Italy | Polytunnel | 1st | 32 | 6.5 | |
Selezione Enza | ◆🟄 | D. tenuifolia | Italy | Polytunnel | 2nd | 60 | 6.4 | |
Tokita | ◼🟀 | E. sativa | Italy | Polytunnel | 1st | 24 | 10.4 | |
Tokita | ◼🟀 | E. sativa | Italy | Polytunnel | 1st | 24 | 7.2 | |
34.2 | 7.4 |
Attribute | Month | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
January | February | March | April | June | July | August | September | October | November | p-Value | |
Appearance | |||||||||||
Leaf size | a | ab | ab | b | b | ab | b | ab | b | ab | 0.005 |
Uniformity of size | a | ab | b | b | b | b | b | b | b | b | <0.0001 |
Odour | |||||||||||
Green | b | ab | a | ab | a | a | ab | ab | ab | a | 0.013 |
Stalky | bc | abc | bc | ab | a | ab | ab | c | abc | ab | <0.0001 |
Earthy | c | ab | ab | abc | a | abc | ab | ab | bc | abc | <0.0001 |
Peppery | b | a | a | a | a | a | ab | a | a | a | <0.0001 |
Sweet | a | a | ab | ab | ab | b | b | ab | ab | b | <0.0001 |
Mustard | a | a | a | a | a | a | a | a | a | a | 0.029 |
Mouthfeel | |||||||||||
Crisp | a | abc | bc | c | c | c | c | c | c | ab | <0.0001 |
Drying | ab | ab | a | a | a | ab | ab | b | b | a | <0.0001 |
Taste | |||||||||||
Sour | c | abc | a | bc | ab | abc | c | abc | abc | a | <0.0001 |
Savoury | d | ab | bcd | abcd | a | abc | cd | bcd | abcd | d | <0.0001 |
Flavour | |||||||||||
Stalky | ab | a | ab | ab | a | ab | a | b | ab | a | 0.001 |
Peppery | b | ab | a | a | a | a | ab | ab | a | a | 0.001 |
Earthy | c | ab | abc | abc | a | bc | abc | abc | abc | abc | 0.005 |
Aftereffects | |||||||||||
Sweet | ab | a | ab | ab | ab | b | ab | ab | ab | ab | 0.024 |
Sour | b | ab | a | ab | ab | ab | ab | ab | ab | a | 0.006 |
Savoury | cd | ab | cd | ab | a | abc | bcd | bcd | bcd | d | <0.0001 |
Peppery | b | ab | ab | ab | ab | ab | ab | ab | ab | a | 0.014 |
Green | ab | a | ab | a | a | ab | ab | ab | b | ab | 0.008 |
Earthy | a | a | a | a | a | a | a | a | a | a | 0.031 |
Month | Cluster | Cultivar | Average | ||||
---|---|---|---|---|---|---|---|
Tricia ◆🟀 | Yeti ◆🟄 | Wildfire ◼🟄 | Fast Grow ❖★ | Yeti ◆★ | |||
January | 1 (n = 15) | 3.9 | 5.8 | 4.1 | 4.0 | 5.3 | 4.6 |
2 (n = 6) | 7.5 | 6.8 | 2.8 | 7.8 | 7.2 | 6.4 | |
3 (n = 18) | 6.2 | 3.6 | 6.9 | 6.6 | 6.5 | 6.0 | |
4 (n = 43) | 7.6 | 7.0 | 7.3 | 6.7 | 7.0 | 7.1 | |
5 (n = 19) | 4.8 | 7.2 | 6.2 | 6.5 | 6.9 | 6.3 | |
All | 6.3 ns | 6.7 ns | 6.3 ns | 6.3 ns | 6.3 ns | 6.4 D | |
March | Yeti ❖✶ | Wildfire ◼🟄 | Fast Grow ◼- | Fast Grow ❖✶ | Voyager ❖★ | Average | |
1 (n = 29) | 6.8 | 6.3 | 7.0 | 6.3 | 5.3 | 6.3 | |
2 (n = 20) | 2.8 | 4.6 | 7.3 | 5.7 | 5.1 | 5.1 | |
3 (n = 6) | 4.0 | 2.2 | 4.2 | 2.7 | 3.8 | 3.4 | |
All | 5.0 a | 5.2 a | 6.8 b | 5.7 a | 5.1 a | 5.6 A | |
April/May | Venere ◆🟄 | Wildfire ❖✶ | Standard ❖🟄 | Giove ❖- | Quaggio ◆🟄 | Average | |
1 (n = 10) | 5.3 | 5.1 | 6.0 | 4.6 | 2.0 | 4.6 | |
2 (n = 39) | 6.7 | 4.2 | 6.1 | 3.6 | 6.8 | 5.5 | |
3 (n = 41) | 5.9 | 6.1 | 5.7 | 7.0 | 7.1 | 6.4 | |
All | 6.2 b | 5.2 a | 5.9 ab | 5.3 a | 6.4 b | 5.8 AB | |
July | Giove ◼🟀 | Giove ◼🟀 | Giove ◼🟀 | Napoli ◼🟀 | Voyager ◼🟄 | Average | |
1 (n = 43) | 6.2 | 6.2 | 3.9 | 5.4 | 5.2 | 5.4 | |
2 (n = 12) | 3.5 | 3.8 | 6.3 | 6.0 | 5.3 | 5.0 | |
3 (n = 45) | 6.2 | 6.6 | 7.2 | 6.8 | 7.4 | 6.8 | |
All | 5.9 ns | 6.1 ns | 5.7 ns | 6.1 ns | 6.2 ns | 6.0 BC | |
September | Voyager ◼🟄 | Shamrock ◼🟄 | Extrema ◆🟄 | Extrema ◆🟄 | Giove ◼🟀 | Average | |
1 (n = 65) | 6.8 | 7.0 | 6.9 | 7.2 | 6.1 | 6.8 | |
2 (n = 9) | 4.6 | 4.8 | 4.0 | 6.6 | 2.6 | 4.5 | |
3 (n = 15) | 5.3 | 5.9 | 4.6 | 3.3 | 6.6 | 5.1 | |
All | 6.3 ab | 6.6 b | 6.2 ab | 6.4 ab | 5.8 a | 6.3 CD | |
November | Yeti ◼🟄 | Yeti ◼🟄 | Selezione Enza ◆🟄 | Tokita ◼🟀 | Tokita ◼🟀 | Average | |
1 (n = 40) | 7.2 | 6.8 | 7.3 | 6.6 | 7.4 | 7.1 | |
2 (n = 19) | 5.2 | 5.1 | 6.3 | 4.3 | 4.1 | 5.0 | |
3 (n = 27) | 7.0 | 6.4 | 3.7 | 6.0 | 6.0 | 5.8 | |
All | 6.7 b | 6.3 ab | 5.9 a | 5.9 a | 6.2 ab | 6.2 CD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bell, L.; Lignou, S.; Wagstaff, C. High Glucosinolate Content in Rocket Leaves (Diplotaxis tenuifolia and Eruca sativa) after Multiple Harvests Is Associated with Increased Bitterness, Pungency, and Reduced Consumer Liking. Foods 2020, 9, 1799. https://doi.org/10.3390/foods9121799
Bell L, Lignou S, Wagstaff C. High Glucosinolate Content in Rocket Leaves (Diplotaxis tenuifolia and Eruca sativa) after Multiple Harvests Is Associated with Increased Bitterness, Pungency, and Reduced Consumer Liking. Foods. 2020; 9(12):1799. https://doi.org/10.3390/foods9121799
Chicago/Turabian StyleBell, Luke, Stella Lignou, and Carol Wagstaff. 2020. "High Glucosinolate Content in Rocket Leaves (Diplotaxis tenuifolia and Eruca sativa) after Multiple Harvests Is Associated with Increased Bitterness, Pungency, and Reduced Consumer Liking" Foods 9, no. 12: 1799. https://doi.org/10.3390/foods9121799
APA StyleBell, L., Lignou, S., & Wagstaff, C. (2020). High Glucosinolate Content in Rocket Leaves (Diplotaxis tenuifolia and Eruca sativa) after Multiple Harvests Is Associated with Increased Bitterness, Pungency, and Reduced Consumer Liking. Foods, 9(12), 1799. https://doi.org/10.3390/foods9121799