Proximate Composition, Cyanide Content, and Carotenoid Retention after Boiling of Provitamin A-Rich Cassava Grown in Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Varieties, Field Trials and Sample Preparation
2.2. Sample Analysis
2.3. Data Analysis
3. Results
3.1. Moisture Content
3.2. Carbohydrate Content
3.3. Protein and Fat Contents
3.4. Crude Fibre and Ash Content
3.5. Hydrogen Cyanide Content
3.6. Total Carotenoid Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ferraro, V.; Piccirillo, C.; Tomlins, K.; Pintado, M.E. Cassava (Manihot esculenta Crantz) and Yam (Dioscorera spp.) crops and their derived foodstuffs: Safety, security and nutritional value. Crit. Rev. Food Sci. Nutr. 2015, 56, 2714–2727. [Google Scholar] [CrossRef]
- Hamer, D.H.; Keusch, G.T. Vitamin A deficiency: Slow progress towards elimination. Lancet 2015, 3, e502–e503. [Google Scholar] [CrossRef] [Green Version]
- Saltzman, A.; Andersson, M.S.; Asare-Marfo, D.; Lividini, K.; De Moura, F.F.; Moursi, M.; Oparinde, A.; Taleon, V. Biofortification techniques to improve food security. Ref. Mod. Food Sci. 2016, 1, 1–9. [Google Scholar]
- United Nations. The Sustainable Development Goals Report. 2018. Available online: https://unstats.un.org/sdgs/files/report/2018/TheSustainableDevelopmentGoalsReport2018-EN.pd (accessed on 1 July 2020).
- Wheatley, C.C. Preservation of Cassava Roots in Polyethylene Bags; Centro Internacional de Agricultura Tropical: Cali, Colombia, 1987; Series 045c-07-06. [Google Scholar]
- Harris, M.A.; Koomson, C.K. Moisture-pressure combination treatments for cyanide reduction in grated cassava. J. Food Sci. 2011, 76, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Padonou, W.; Mestres, C.; Nago, M.C. The quality of boiled cassava roots: Instrumental characterization and relationship with physicochemical properties and sensorial properties. Food Chem. 2005, 89, 261–270. [Google Scholar] [CrossRef]
- Charles, A.L.; Sriroth, K.; Huang, T.C. Proximate composition, mineral contents, hydrogen cyanide and phytic acid of 5 cassava genotypes. Food Chem. 2005, 92, 615–620. [Google Scholar] [CrossRef]
- Shittu, T.A.; Sanni, L.O.; Awonorin, S.O.; Maziya-Dixon, B.; Dixon, A. Use of multivariate techniques in studying the flour making properties of some CMD resistant cassava clones. Food Chem. 2007, 101, 1606–1615. [Google Scholar] [CrossRef]
- Padonou, S.W.; Nielsen, D.S.; Akissoe, N.H.; Hounhouigan, J.D.; Nago, M.C.; Jakobsen, M. Development of starter culture for improved processing of Lafun, an African fermented cassava food product. J. Appl. Microbiol. 2010, 109, 1402–1410. [Google Scholar] [CrossRef]
- Bradbury, J.H.; Holloway, W.D. Chemistry of Tropical Root Crops: Significance for Nutrition and Agriculture in the Pacific; Australian Centre for International Agricultural Research: Canberra, Australia, 1988; pp. 76–104. [Google Scholar]
- Montagnac, J.A.; Davis, C.R.; Tanumihardjo, S.A. Nutritional value of cassava for use as a staple food and recent advances for improvement. Compr. Rev. Food Sci. Food Saf. 2009, 8, 181–188. [Google Scholar] [CrossRef]
- Zvinavashe, E.; Elbersen, H.W.; Slingerland, M.; Kolijn, S.; Sanders, J.P.M. Cassava for food and energy: Exploring potential benefits of processing of cassava into cassava flour and bioenergy at farmstead and community levels in rural Mozambique. Biofuels Bioprod. Bioref. 2011, 5, 151–164. [Google Scholar] [CrossRef]
- Boy, E.; Miloff, A. Provitamin A carotenoid retention in orange sweet potato. A review of the literature. Sight Life Mag. 2009, 3, 27–33. [Google Scholar]
- Maziya-Dixon, B.; Awoyale, W.; Dixon, A. Effect of processing on the retention of total carotenoid, iron and zinc contents of yellow-fleshed cassava roots. J. Food Nutr. Res. 2015, 3, 483–488. [Google Scholar]
- Jaramillo, A.M.; Londono, F.L.; Orozco, C.J.; Patino, G.; Belalcazar, J.; Davrieux, F.; Talsma, E.F. A comparison study of five different methods to measure carotenoids in biofortified yellow cassava (Manihot esculenta). PLoS ONE 2018, 13, e0209702. [Google Scholar] [CrossRef] [PubMed]
- Saltzman, A.; Birol, E.; Bouis, H.; Boy, E.; De Moura, F.; Islam, Y.; Pfeiffer, W. Biofortification: Progress toward a more nourishing future. Glob. Food Sec. 2013, 2, 9–17. [Google Scholar] [CrossRef]
- Anderson, M.E.; Saltzman, A.; Virk, P.S.; Pfeiffer, W.H. Progress update: Crop development of biofortified staple food crops under Harvest-Plus. Afr. J. Food Agric. Nutr. Devel. 2017, 17, 11905–11935. [Google Scholar] [CrossRef]
- Chavez, A.L.; Sanchez, T.; Ceballos, H.; Rodriguez-Amaya, D.D.; Nestel, P.; Tohme, J.; Ishitani, M. Retention of carotenes in cassava roots submitted to different processing methods. J. Sci. Food Agric. 2007, 87, 388–393. [Google Scholar] [CrossRef]
- De Moura, F.; Milo, A.; Boy, E. Retention of provitamin A carotenoids in staple crops targeted for biofortification in Africa: Cassava, maize and sweet potato. Crit. Rev. Food Sci. Nutr. 2015, 55, 1246–1269. [Google Scholar] [CrossRef] [Green Version]
- Talsma, E.F.; Brouwe, I.D.; Verhoef, H.; Mbera, G.N.K.; Mwangi, A.M.; Demir, A.Y.; Maziya-Dixon, B.; Boy, E.; Zimmermann, M.B.; Melse-Boonstra, A. Biofortified yellow cassava and vitamin A status of Kenyan children: A randomized controlled trail. Am. J. Clin. Nutr. 2016, 103, 258–267. [Google Scholar] [CrossRef]
- Avouampo, E.; Gallon, G.; Treche, S. Influence de la variété et de l’ordre de réalization de l’épluchage et du rouissage sur l’aptitude à la transformation des raciness de manioc. In Transformation Alimentaire du Manioc; Egbe, T.A., Brauman, A., Griffon, D., Treche, S., Eds.; ORSTOM Editions: Paris, France, 1995; pp. 429–447. [Google Scholar]
- Humpal, D.; Musangu, B.; Tunieka, M. Cassava Value Chain Assessment: Bas-Congo, Kinshasa, and Bandundu Provinces; US Agency for International Development: Washington, DC, USA, 2012. Available online: http://pdf.usaid.gov/pdf_docs/pnady673.pdf (accessed on 2 July 2020).
- Omodamiro, R.M.; Oti, E.; Etudaiye, H.A.; Egesi, C.; Olasanmi, B.; Ukpabi, U.J. Production of fufu from yellow cassava roots using the odourless flour technique and the traditional method: Evaluation of carotenoids retention in the fufu. Adv. Appl. Sci. Res. 2012, 3, 2566–2572. [Google Scholar]
- FAO. Défendre La Cause Du Manioc. Food and Agriculture Organization. 2000. Available online: http://www.fao.org/nouvelle/2000/000405-f.htm (accessed on 2 July 2020).
- Omotioma, M.; Mbah, G.O. Kinetics of natural detoxification of hydrogen cyanide contained in retted cassava roots. Int. J. Expr. Res. 2013, 1, 9. [Google Scholar]
- Orjiekwe, C.L.; Solola, A.; Iyen, E.; Imade, S. Determination of cyanogenic glycosides in cassava products sold in Okada, Edo State, Nigeria. Afr. J. Food Sci. 2013, 7, 468–472. [Google Scholar]
- Ubwa, S.T.; Otache, M.A.; Igbum, G.O.; Shambe, T. Determination of cyanide content in three sweet cassava cultivars in three local government areas of Benue State, Nigeria. J. Food Nutr. Sci. 2015, 6, 1078–1085. [Google Scholar] [CrossRef] [Green Version]
- FAO. Cyanide Poisoning and Cassava Food: Safety Focus. Committee on World Food Security 34th Session Number 19. 2008. Available online: http://www.fao.org/unfao/bodies/cfs/cfs34/index_en.htm (accessed on 2 July 2020).
- Emurotu, J.E.; Balehdeen, U.M.; Ayeni, O.M. Assessment of heavy metals level in cassava flour sold in Ayigba market Kogi state, Nigeria. Adv. Appl. Sci. Res. 2012, 3, 2544–2548. [Google Scholar]
- Cardoso, A.R.; Mirione, E.; Ernesto, M.; Massaza, F.; Cliff, J.; Haque, M.R.; Bradbury, H.J. Processing of cassava roots to remove cyanogens. J. Food Comp. Anal. 2005, 18, 451–460. [Google Scholar] [CrossRef]
- Emmanuel, O.A.; Clement, A.; Agnes, S.B.; Chiwona-Karltun, L.; Drinah, B.N. Chemical composition and cyanogenic potential of traditional and high yielding CMD resistant cassava (Manihot esculenta Crantz) varieties. Int. Food J. 2012, 19, 175–181. [Google Scholar]
- Abraham, K.; Buhrke, T.; Lampen, A. Bioavailability of cyanide after consumption of a single meal of foods containing high levels of cyanogenic glycosides: A cross over study in humans. Arch. Toxic. 2016, 90, 559–574. [Google Scholar] [CrossRef] [Green Version]
- Mburu, F.W.; Swaleh, S.; Njue, W. Potential toxic levels of cyanide in cassava (Manihot esculenta Crantz) grown in Kenya. Afr. J. Food Sci. 2013, 6, 416–420. [Google Scholar] [CrossRef]
- Ndam, Y.N.; Mounjouenpou, P.; Kansci, G.; Kenfack, M.J.; Meguia, M.P.F.; Natacha, N.S.; Eyenga, N.; Akhobakoh, M.M.; Nyegue, A. Influence of cultivars and processing methods on the cyanide contents of cassava (Manihot esculenta Crantz) and its traditional food products. Sci. Afr. 2019, 5, e00119. [Google Scholar]
- Ifeabunike, O.B.; Nwaedozie, J.M.; Aghanwa, C.I. Proximate analysis, hydrogen cyanide and some essential mineral content of sweet cassava variety (Manihot utilisima) and bitter cassava variety (Manihot palmata) cultivated in Kachia Local Government Area of Kaduna State, Nigeria. Int. J. Biochem. Res. Rev. 2017, 19, 1–12. [Google Scholar] [CrossRef]
- Ojo, R.T.; Nobi, N.P.; Akintayo, C.O.; Adebayo-Gege, G.I. Evaluation of cyanogen contents of cassava and cassava-based food products in Karu, Nasarawa state, North-Central Nigeria. IOSR J. Env. Sci. Toxic. Food Techn. 2013, 6, 47–50. [Google Scholar]
- Sriroth, K.; Piyachomkwan, K.; Santisopasri, V.; Oates, C.G. Environmental conditions during root development: Drought constraint on cassava starch quality. Euphytica 2001, 120, 95–101. [Google Scholar] [CrossRef]
- Bradbury, J.H. Simple wetting method to reduce cyanogens content of cassava flour. J. Food Comp. Anal. 2006, 19, 388–393. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th Ed. ed; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000; Volume 1. [Google Scholar]
- Onyeike, E.N.; Oguike, J.U. Influence of heat processing methods on the nutrient composition and lipid characterization of groundnut (Arachis hypogaea) seed pastes. Biokemistri 2003, 15, 43. [Google Scholar]
- Tivana, L.D.; Francisco, J.D.C.; Zelder, F.; Bergenståhl, B.; Dejmek, P. Straightforward rapid spectrophotometric quantification of total cyanogenic glycosides in fresh and processed cassava products. Food Chem. 2014, 158, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Hidayat, A.; Zuraida, N.; Hanarida, I. The cyanogenic potential of roots and leaves of ninety nine cassava cultivars. Indon. J. Agric. Sci. 2016, 3, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Amaya, D.B.; Kimura, M. HarvestPlus Handbook for Carotenoid Analysis; HarvestPlus Technical Monograph 2, HarvestPlus: Washington, DC, USA, 2004. [Google Scholar]
- Otache, M.A.; Ubwa, S.T.; Godwin, A.K. Proximate anlysis and mineral composition of peels of three sweet cassava cultivars. Asian J. Phys. Chem. Sci. 2017, 3, 1–10. [Google Scholar]
- Rajapaksha, K.D.S.C.N.; Somendrika, M.A.D.; Wickramasinghe, I. Nutritional and toxicological composition analysis of selected cassava processed products. Slovak J. Food Sci. 2017, 11, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Eleazu, C.O.; Eleazu, K.C. Determination of the proximate composition, total carotenoid, reducing sugars and residual cyanide levels of flours of 6 new yellow and white cassava (Manihot esculenta Crantz) varieties. Am. J. Food Technnol. 2012, 7, 642–649. [Google Scholar] [CrossRef] [Green Version]
- Okpako, C.E.; Ntui, V.O.; Osuagwu, A.N.; Obasi, F.I. Proximate composition and cyanide content of cassava peels fermented with Aspergillus niger and Lactobacillus rhamnosus. Food Agric. Env. 2008, 6, 251–255. [Google Scholar]
- Christopher, I.N.; Enyinnaya, C.O.; Okolie, J.I.; Nkwoada, A. The proximate analysis and biochemical composition of the waste peels of three cassava cultivars. Int. J. Scient. Eng. Appl. Sci. 2016, 2, 64–71. [Google Scholar]
- Idugboe, O.D.; Nwokoro, S.O.; Imasuen, J.A. Chemical composition of cassava peels collected from four locations (Koko, Warri, Okada and Benin City), Brewers’ spent yeast and three grades os caspeyeast. Int. J. Sci. Res. 2015, 6, 1439–1442. [Google Scholar]
- Oluwole, O.S.A.; Onabolu, A.O.; Mtunda, K.; Mlingi, N. Characterization of cassava (Manihot esculenta Crantz) varieties in Nigeria and Tanzania and farmers perception of toxicity of cassava. J. Food Comp. Anal. 2007, 20, 559–567. [Google Scholar] [CrossRef]
- Oliveira, R.G.A.; de Carvalho, M.J.L.; Nutti, R.M.; de Carvalho, L.V.J.; Fukuda, W.G. Assessment and degradation study of total carotenoid and ß-carotene in bitter yellow cassava (Manihot esculenta Crantz) varieties. Afr. J. Food Sci. 2010, 4, 148–155. [Google Scholar]
- Ayetigbo, O.; Latif, S.; Abass, A.; Müller, J. Comparing characteristics of root, flour and starch of biofortified yellow-flesh and white-flesh cassava variants, and sustainability considerations: A review. Sustainability 2018, 10, 3089. [Google Scholar] [CrossRef] [Green Version]
- Van Jaarsveld, P.J.; Marais, D.W.; Harmse, E.; Nestel, P.; Rodriguez-Amaya, D.B. Retention of β-carotene in boiled, mashed orange-fleshed sweet potato. J. Food Comp. Anal. 2006, 19, 321–329. [Google Scholar] [CrossRef]
- Ceballos, H.; Luna, J.; Escobar, A.F.; Ortiz, D.; Pérez, J.C.; Sánchez, T.; Pachón, H.; Dufour, D. Spatial distribution of dry matter in yellow fleshed cassava roots and its influence on carotenoid retention upon boiling. Food Res. Int. 2012, 45, 52–59. [Google Scholar] [CrossRef]
- Vimala, B.; Thushara, R.; Nambisan, B.; Sreekumar, J. Effect of processing on the retention of carotenoids in yellow-fleshed cassava (Manihot esculenta Crantz) roots. Int. J. Food Sci. Techn. 2011, 46, 166–169. [Google Scholar] [CrossRef]
- Thakkar, S.K.; Huo, T.; Maziya-Dixon, B.; Failla, M.L. Impact of style of processing on retention and bioaccessibility of ß-carotene in Cassava (Manihot esculenta Crantz). J. Agric. Food Chem. 2009, 57, 1344–1348. [Google Scholar] [CrossRef] [PubMed]
- Eyinla, E.T.; Maziya-Dixon, B.; Alamu, E.O.; Sanusi, A.R. Retention of pro-vitamin A content in products from new biofortified cassava varieties. Foods 2019, 8, 177. [Google Scholar] [CrossRef] [Green Version]
- Bendich, A. Biological functions of dietary carotenoids. Ann. N.Y. Acad. Sci. 1993, 691, 61–67. [Google Scholar] [CrossRef]
- Bechoff, A.; Tomlins, K.I.; Chijioke, U.; Ilona, P.; Westby, A.; Boy, E. Physical losses could partially explain modest carotenoid retention in dried food products from biofortified cassava. PLoS ONE 2018, 13, e0194402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taleon, V.; Sumbu, D.; Muzhingi, T.; Bidiaka, S. Carotenoids retention in biofortified yellow cassava processed with traditional African methods. J. Sci. Food Agric. 2019, 99, 1434–1441. [Google Scholar] [CrossRef] [PubMed]
- Edoh, N.L.; Adiele, J.; Ndukwe, I.; Ogbokiri, A.; Njoku, D.N.; Egesi, C.N. Evaluation of high beta carotene cassava genotypes at advanced trial in Nigeria. Open Conf. Proc. J. 2016, 7, 144–148. [Google Scholar] [CrossRef]
- Czygan, F.Z. Pigments in Plants; Gustav Fischer Verlag: Stuttgart, Germany, 1980. [Google Scholar]
Genotype | Code | Status | Source | Pulp Color |
---|---|---|---|---|
IBA090090 | G1 | Improved | IITA | Yellow |
IBA090151 | G2 | Improved | IITA | Yellow |
IBA070557 | G3 | Improved | IITA | Yellow |
IBA085392 | G4 | Improved | IITA | Yellow |
Husivi | G5 | Landrace | Farmer | White |
IBA083774 | G6 | Improved | IITA | Yellow |
IBA070593 | G7 | Improved | IITA | Yellow |
IBA070539 | G8 | Improved | IITA | Yellow |
Cape Vars | G9 | Released | CSIR-CRI | White |
IBA083724 | G10 | Improved | IITA | Yellow |
Moisture Content (%) | Carbohydrate Content (%) | |||||
---|---|---|---|---|---|---|
Variety | Cape-Coast | Fumesua | Ohawu | Cape Coast | Fumesua | Ohawu |
I090090 | 70.40 ± 13.10 abcd | 76.60 ± 0.20 c | 70.30 ± 1.00 bc | 26.90 ± 13.10 abc | 20.10 ± 0.10 ab | 25.80 ± 0.80 de |
I090151 | 79.50 ± 10.30 cd | 66.90 ± 0.30 ab | 64.80 ± 2.00 b | 17.90 ± 9.80 ab | 29.00 ± 0.10 cd | 6.90 ± 1.90 ef |
I070557 | 66.90 ± 0.78 abcd | 62.20 ± 3.70 a | 66.90 ± 0.20 b | 30.70 ± 0.40 bcd | 34.20 ± 0.20 d | 27.30 ± 1.70 de |
I085392 | 83.80 ± 4.45 d | 64.70 ± 7.00 a | 69.70 ± 0.90 bc | 12.90 ± 4.40 a | 30.20 ± 9.50 cd | 27.20 ± 1.00 de |
I083724 | 58.20 ± 11.70 ab | 67.30 ± 0.30 ab | 76.60 ± 6.30 cd | 38.90 ± 11.80 cd | 28.50 ± 0.60 bcd | 19.90 ± 6.20 bcd |
I083774 | 66.20 ± 0.26 ab | 62.20 ± 3.70 a | 67.50 ± 5.00 b | 34.40 ± 0.10 bcd | 34.90 ± 1.30 d | 24.50 ± 10.90 cde |
I070593 | 66.80 ± 3.10 abcd | 73.30 ± 5.10 bc | 82.80 ± 3.50 de | 29.00 ± 5.70 abcd | 24.50 ± 5.10 bc | 15.00 ± 3.40 abc |
I070539 | 50.70 ± 2.00 a | 80.10 ± 0.50 c | 83.70 ± 4.30 cde | 45.60 ± 2.10 d | 14.90 ± 1.90 a | 13.00 ± 4.40 ab |
Cape Vars | 50.40 ± 11.80 a | 54.80 ± 1.10 ab | 56.30 ± 5.70 ab | 45.80 ± 11.60 d | 40.40 ± 0.80 bcd | 38.80 ± 5.40 f |
Husivi | 66.20 ± 2.60 abc | 63.10 ± 0.20 a | 90.40 ± 2.00 a | 30.70 ± 2.60 bcd | 34.30 ± 0.20 d | 33.00 ± 2.60 a |
Mean | 65.91 | 67.12 | 72.90 | 31.28 | 29.10 | 23.14 |
p-value | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Protein Content (%) | Fat Content (%) | |||||
---|---|---|---|---|---|---|
Variety | Cape-Coast | Fumesua | Ohawu | Cape Coast | Fumesua | Ohawu |
I090090 | 0.24 ± 0.01 d | 0.28 ± 0.01 d | 0.45 ± 0.01 e | 0.92 ± 0.10 cd | 0.07 ± 0.04 a | 0.74 ± 0.10 cd |
I090151 | 0.32 ± 0.01 f | 1.32 ± 0.01 a | 1.26 ± 0.01 c | 0.72 ± 0.10 ab | 0.87 ± 0.30 cd | 0.05 ± 0.00 a |
I070557 | 1.45 ± 0.01 a | 0.58 ± 0.01 f | 0.85 ± 0.01 g | 0.94 ± 0.20 cd | 1.16 ± 0.04 d | 1.14 ± 0.50 d |
I085392 | 0.01 ± 0.01 a | 0.37 ± 0.01 a | 1.12 ± 0.01 h | 0.96 ± 0.10 cd | 0.27 ± 0.30 ab | 0.12 ± 0.03 ab |
I083724 | 0.31 ± 0.01 f | 0.25 ± 0.01 c | 0.67 ± 0.01 f | 1.05 ± 0.04 de | 0.12 ± 0.10 a | 0.47 ± 0.24 bc |
I083774 | 0.19 ± 0.01 c | 0.17 ± 0.01 a | 0.84 ± 0.01 g | 0.96 ± 0.03 cd | 0.74 ± 0.10 bcd | 0.84 ± 0.10 cd |
I070593 | 0.08 ± 0.01 b | 0.18 ± 0.01 b | 0.27 ± 0.01 c | 0.67 ± 0.03 ab | 0.40 ± 0.40 abc | 0.07 ± 0.03 a |
I070539 | 0.27 ± 0.01 f | 0.26 ± 0.01 c | 0.37 ± 0.01 d | 1.24 ± 0.10 e | 1.22 ± 0.02 d | 0.30 ± 0.10 ab |
Cape Vars | 0.02 ± 0.01 a | 0.10 ± 0.01 a | 0.23 ± 0.01 b | 0.54 ± 0.00 a | 0.45 ± 0.30 c | 0.27 ± 0.10 ab |
Husivi | 0.03 ± 0.01 a | 0.18 ± 0.01 b | 0.13 ± 0.01 a | 0.82 ± 0.03 bc | 0.17 ± 0.20 a | 0.05 ± 0.00 a |
Mean | 0.29 | 0.37 | 0.62 | 0.88 | 0.55 | 0.41 |
p-value | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Crude Fiber (%) | Ash Content (%) | |||||
---|---|---|---|---|---|---|
Variety | Cape-Coast | Fumesua | Ohawu | Cape Coast | Fumesua | Ohawu |
I090090 | 0.75 ± 0.10 ab | 2.53 ± 0.20 c | 2.07 ± 0.03 d | 0.72 ± 0.10 ab | 0.42 ± 0.10 a | 0.62 ± 0.30 ab |
I090151 | 1.04 ± 0.20 abc | 2.48 ± 0.10 c | 1.33 ± 0.20 ab | 1.02 ± 0.30 ab | 0.60 ± 0.40 a | 0.65 ± 0.40 ab |
I070557 | 0.47 ± 0.30 a | 1.24 ± 0.10 ab | 1.72 ± 0.04 c | 1.02 ± 0.70 ab | 0.59 ± 0.08 a | 2.11 ± 2.00 ab |
I085392 | 0.94 ± 0.21 abc | 2.57 ± 0.20 c | 1.49 ± 0.01 bc | 1.39 ± 0.10 ab | 1.94 ± 2.00 a | 0.37 ± 0.04 ab |
I083724 | 1.04 ± 0.50 abc | 2.62 ± 0.04 c | 2.23 ± 0.10 de | 0.82 ± 0.30 ab | 1.17 ± 0.30 a | 0.02 ± 0.00 a |
I083774 | 1.02 ± 0.10 abc | 2.57 ± 0.20 c | 1.47 ± 0.04 bc | 1.22 ± 0.30 ab | 0.47 ± 0.04 a | 2.34 ± 2.30 b |
I070593 | 1.34 ± 0.60 bc | 1.16 ± 0.40 a | 1.03 ± 0.04 a | 2.09 ± 1.90 b | 0.42 ± 0.10 a | 0.77 ± 0.04 ab |
I070539 | 1.42 ± 0.03 c | 2.53 ± 0.20 c | 1.72 ± 0.04 c | 0.72 ± 0.10 ab | 2.07 ± 2.40 a | 0.90 ± 0.00 ab |
Cape Vars | 1.02 ± 00 abc | 1.74 ± 0.30 b | 2.54 ± 0.40 a | 0.72 ± 0.04 ab | 0.69 ± 0.30 a | 0.79 ± 0.00 ab |
Husivi | 1.04 ± 0.50 abc | 1.65 ± 0.30 b | 2.10 ± 0.01 d | 0.52 ± 0.40 ab | 0.57 ± 0.04 a | 0.45 ± 0.10 ab |
Mean | 1.01 | 2.11 | 1.77 | 1.02 | 0.89 | 0.90 |
p-value | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Variety | Cape-Coast | Ohawu | Fumesua | Mean ± SD |
---|---|---|---|---|
I090090 | 36.90 | 23.90 | 30.10 | 30.30 ± 6.50 |
I090151 | 32.20 | 26.00 | 36.30 | 31.50 ± 5.19 |
I070557 | 28.00 | 36.90 | 43.10 | 36.00 ± 7.59 |
I085392 | 26.00 | 47.80 | 9.90 | 27.90 ± 19.02 |
I083724 | 30.10 | 28.00 | 19.20 | 25.77 ± 5.78 |
I083774 | 23.90 | 37.40 | 26.00 | 29.10 ± 7.26 |
I070593 | 26.00 | 41.00 | 43.10 | 36.70 ± 9.33 |
I070539 | 28.00 | 41.00 | - | 34.50 ± 9.19 |
Cape Vars | 47.80 | 41.00 | 30.10 | 39.63 ± 8.93 |
Local | 28.00 | 41.00 | 30.10 | 33.03 ± 6.98 |
Mean ± SD | 30.69 ± 7.04 | 36.40 ± 7.82 | 29.77 ± 10.72 |
Fresh | Boiled | |||||
---|---|---|---|---|---|---|
Variety | Cape-Coast | Fumesua | Ohawu | Cape Coast | Fumesua | Ohawu |
I090090 | 6.11 ± 004 | 14.56 ± 0.04 | 10.00 ± 0.04 | 5.09 ± 0.04 (16.69) | 11.29 ± 0.04 (22.46) | 8.43 ± 0.04 (15.70) |
I090151 | 5.98 ± 0.04 | 11.44 ± 0.04 | 8.52 ± 0.04 | 5.98 ± 0.04 (0.00) | 10.64 ± 0.04 (6.99) | 7.08 ± 0.04 (16.90) |
I070557 | 11.99 ± 0.2 | 11.78 ± 0.07 | 9.87 ± 0.05 | 5.22 ± 0.09 (56.46) | 11.49 ± 0.06 (2.46) | 6.44 ± 0.04 (34.78) |
I085392 | 4.80 ± 0.04 | 14.05 ± 0.04 | 11.51 ± 0.04 | 4.64 ± 0.04 (3.33) | 10.51 ± 0.04 (25.20) | 8.70 ± 0.04 (24.41) |
I083724 | 4.63 ± 0.08 | 14.52 ± 0.04 | 11.70 ± 0.07 | 3.42 ± 0.04 (26.13) | 13.86 ± 0.07 (4.55) | 11.50 ± 0.04 (1.71) |
I083774 | 6.81 ± 0.04 | 13.84 ± 0.04 | 9.89 ± 0.04 | 5.22 ± 0.04 (23.35) | 11.81 ± 0.04 (14.67) | 7.63 ± 0.04 (22.85) |
I070593 | 8.15 ± 0.04 | 10.11 ± 0.04 | 18.81 ± 0.08 | 7.20 ± 0.04 (11.66) | 9.21 ± 0.04 (8.90) | 16.91 ± 0.06 (10.10) |
I070539 | 7.81 ± 0.04 | 14.06 ± 0.04 | 15.74 ± 0.04 | 4.71 ± 0.2 (39.69) | 12.38 ± 0.04 (11.96) | 12.08 ± 0.04 (23.25) |
Cape Vars | 1.18 ± 0.04 | 1.34 ± 0.04 | 5.14 ± 0.08 | 1.01 ± 0.04 (14.41) | 1.00 ± 0.04 (25.37) | 4.74 ± 0.04 (7.78) |
Local | 1.49 ± 0.04 | 1.36 ± 0.04 | 4.90 ± 0.04 | 1.04 ± 0.04 (30.20) | 1.02 ± 0.04 (25.00) | 4.56 ± 0.08 (6.94) |
Mean ± SD | 5.87 ± 3.16 | 10.71+5.15 | 10.61 ± 4.27 | 4.27 ± 2.0 (27.26) | 9.10 ± 8.85 (15.03) | 8.85 ± 3.78 (16.59) |
LSD (0.05) variety 2.52 | p (variety) | <0.01 | ||||
LSD (0.05) treatment (fresh vs cooked) 1.13 | p (treatment) | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boakye Peprah, B.; Parkes, E.Y.; Harrison, O.A.; van Biljon, A.; Steiner-Asiedu, M.; Labuschagne, M.T. Proximate Composition, Cyanide Content, and Carotenoid Retention after Boiling of Provitamin A-Rich Cassava Grown in Ghana. Foods 2020, 9, 1800. https://doi.org/10.3390/foods9121800
Boakye Peprah B, Parkes EY, Harrison OA, van Biljon A, Steiner-Asiedu M, Labuschagne MT. Proximate Composition, Cyanide Content, and Carotenoid Retention after Boiling of Provitamin A-Rich Cassava Grown in Ghana. Foods. 2020; 9(12):1800. https://doi.org/10.3390/foods9121800
Chicago/Turabian StyleBoakye Peprah, Bright, Elizabeth Y. Parkes, Obed A. Harrison, Angeline van Biljon, Matilda Steiner-Asiedu, and Maryke T. Labuschagne. 2020. "Proximate Composition, Cyanide Content, and Carotenoid Retention after Boiling of Provitamin A-Rich Cassava Grown in Ghana" Foods 9, no. 12: 1800. https://doi.org/10.3390/foods9121800
APA StyleBoakye Peprah, B., Parkes, E. Y., Harrison, O. A., van Biljon, A., Steiner-Asiedu, M., & Labuschagne, M. T. (2020). Proximate Composition, Cyanide Content, and Carotenoid Retention after Boiling of Provitamin A-Rich Cassava Grown in Ghana. Foods, 9(12), 1800. https://doi.org/10.3390/foods9121800