Content and Dietary Exposure Assessment of Toxic Elements in Infant Formulas from the Chinese Market
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Sample Analysis
2.3. Risk Assessment
2.3.1. Exposure Assessment
2.3.2. Target Hazard Quotient (THQ)
2.3.3. Health Risks of Multiple Toxic Elements
2.4. Statistical Analysis
3. Results and Discussion
3.1. Concentrations of Toxic Elements in Infant Formula
3.2. Risk Assessment of Toxic Elements Infant Formula
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Breastfeeding. Available online: https://www.who.int/health-topics/breastfeeding#tab=tab_1 (accessed on 10 October 2020).
- Yang, Z.; Lai, J.; Yu, D.; Duan, Y.; Pang, X.; Jiang, S.; Bi, Y.; Wang, J.; Zhao, L.; Yin, S. Breastfeeding rates in China: A cross-sectional survey and estimate of benefits of improvement. Lancet 2016, 388, S47. [Google Scholar] [CrossRef]
- Navarro-Blasco, I.; Alvarez-Galindo, J.I. Lead levels in retall samples infant formulae and their contribution to dietary intake of infants. Food Addit. Contam. 2005, 22, 726–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinese Nutrition Society. Dietary Guidelines for Chinese Women and Children (2016); People’s Sanitary Publishing Press: Beijing, China, 2018. [Google Scholar]
- Editorial Board Member of China Dairy Yearbook. China Dairy Industry Yearbook; Agricultural Press of China: Beijing, China, 2019. [Google Scholar]
- World Health Organization(WHO). IARC Monographs on the Identification of Carcinnogenic Hazards to Humans; Agents Classified by the IARC Monographs; IARC Scientific Publication: Lyon, France, 2020; pp. 1–128. Available online: https://monographs.iarc.fr/agents-classified-by-the-iarc/ (accessed on 30 November 2020).
- Pandya, C.D.; Pillai, P.P.; Gupta, S.S. Lead and cadmium co-exposure mediated toxic insults on hepatic steroid metabolism and antioxidant system of adult male rats. Biol. Trace Elem. Res. 2010, 134, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Norwood, W.P.; Borgmann, U.; Dixon, D.G.; Wallace, A. Effects of metal mixtures on aquatic biota: A review of observations and methods. Hum. Ecol. Risk Assess. 2003, 9, 795–811. [Google Scholar] [CrossRef]
- Kortenkamp, A. Ten years of mixing cocktails: A review of combination effects of endocrine-disrupting chemicals. Environ. Health Perspect. 2007, 115, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Li, Z.; Kenston, S.S.F.; Shi, H.; Wang, Y.; Song, X.; Gu, Y.; Barber, T.; Aldinger, J.; Zou, B.; et al. Joint toxicity of different heavy metal mixtures after a short-term oral repeated-administration in rats. Int. J. Environ. Res. Public Health 2017, 14, 1164. [Google Scholar] [CrossRef] [Green Version]
- Daneman, R.; Rescigno, M. The Gut Immune Barrier and the Blood-Brain Barrier: Are They So Different? Immunity 2009, 31, 722–735. [Google Scholar] [CrossRef] [Green Version]
- Weström, B.; Arévalo Sureda, E.; Pierzynowska, K.; Pierzynowski, S.G.; Pérez-Cano, F.J. The Immature Gut Barrier and Its Importance in Establishing Immunity in Newborn Mammals. Front. Immunol. 2020, 11. [Google Scholar] [CrossRef]
- Martins, C.; Vasco, E.; Paixão, E.; Alvito, P. Total mercury in infant food, occurrence and exposure assessment in Portugal. Food Addit. Contam. Part B Surveill. 2013, 6, 151–157. [Google Scholar] [CrossRef]
- Castro-González, N.P.; Calderón-Sánchez, F.; Pérez-Sato, M.; Soní-Guillermo, E.; Reyes-Cervantes, E. Health risk due to chronic heavy metal consumption via cow’s milk produced in Puebla, Mexico, in irrigated wastewater areas. Food Addit. Contam. Part B Surveill. 2019, 12, 38–44. [Google Scholar] [CrossRef]
- Norouzirad, R.; González-Montaña, J.R.; Martínez-Pastor, F.; Hosseini, H.; Shahrouzian, A.; Khabazkhoob, M.; Ali Malayeri, F.; Moallem Bandani, H.; Paknejad, M.; Foroughi-nia, B.; et al. Lead and cadmium levels in raw bovine milk and dietary risk assessment in areas near petroleum extraction industries. Sci. Total Environ. 2018, 635, 308–314. [Google Scholar] [CrossRef]
- National Health and Family Planning Commission. National Medical Products Administration of China National Food Safety Standard—Limits of Contaminants in Food. GB 2762-2017. 2017, pp. 1–19. Available online: https://www.cfsa.net.cn/Standard.aspx (accessed on 10 October 2020).
- Codex Alimentarius Commission. General Standard for Contaminants and Toxins in Food and Feed. CXS193-1995 amended in 2019. 2019, pp. 1–66. Available online: http://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/ (accessed on 10 October 2020).
- EC. Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, L364, 1–35. [Google Scholar]
- ATSDR. The Agency for Toxic Substances and Disease Registry’s 2019 Substance Priority List; ATSDR: Atlanta, GA, USA. Available online: https://www.atsdr.cdc.gov/spl/ (accessed on 10 October 2020).
- State Administration for Markt Regulation. Food Safety Supervision and Sampling Plan in 2019 in China. 2019. Available online: http://www.samr.gov.cn/spcjs/cjjc/qtwj/201902/t20190226_291363.html (accessed on 10 October 2020).
- Sager, M.; McCulloch, C.R.; Schoder, D. Heavy metal content and element analysis of infant formula and milk powder samples purchased on the Tanzanian market: International branded versus black market products. Food Chem. 2018, 255, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Ljung, K.; Palm, B.; Grandér, M.; Vahter, M. High concentrations of essential and toxic elements in infant formula and infant foods—A matter of concern. Food Chem. 2011, 127, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Schilmann, K. The toxicological extimation of the heavy metal content (Cd, Hg, Pb) in food for infants and small children. Z. Ernahr. 1990, 29, 54–73. [Google Scholar]
- Salah, F.A.A.E.; Esmat, I.A.; Bayoumi, M.A. Heavy metals residues and trace elements in milk powder marketed in Dakahlia Governorate. Int. Food Res. J. 2013, 20, 1807–1812. [Google Scholar]
- Ikem, A.; Nwankwoala, A.; Odueyungbo, S.; Nyavor, K.; Egiebor, N. Levels of 26 elements in infant formula from USA, UK, and Nigeria by microwave digestion and ICP-OES. Food Chem. 2002, 77, 439–447. [Google Scholar] [CrossRef]
- Bargellini, A.; Venturelli, F.; Casali, E.; Ferrari, A.; Marchesi, I.; Borella, P. Trace elements in starter infant formula: Dietary intake and safety assessment. Environ. Sci. Pollut. Res. 2018, 25, 2035–2044. [Google Scholar] [CrossRef]
- Iwegbue, C.M.A.; Nwozo, S.O.; Overah, L.C.; Nwajei, G.E. Survey of trace element composition of commercial infant formulas in the nigerian market. Food Addit. Contam. Part. B Surveill. 2010, 3, 163–171. [Google Scholar] [CrossRef]
- Sipahi, H.; Eken, A.; Aydın, A.; Şahin, G.; Baydar, T. Safety assessment of essential and toxic metals in infant formulas. Turk. J. Pediatr. 2015, 56, 385–391. [Google Scholar]
- Eticha, T.; Afrasa, M.; Kahsay, G.; Gebretsadik, H. Infant Exposure to Metals through Consumption of Formula Feeding in Mekelle, Ethiopia. Int. J. Anal. Chem. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Castro Gonzalez, N.P.; Moreno-Rojas, R.; Calderón Sánchez, F.; Moreno Ortega, A.; Juarez Meneses, M. Assessment risk to children’s health due to consumption of cow’s milk in polluted areas in Puebla and Tlaxcala, Mexico. Food Addit. Contam. Part. B Surveill. 2017, 10, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.Y.; Zheng, N.; Zhou, X.W.; Li, S.L.; Wang, J.Q.; Zhang, W.J. Analysis and Risk Assessment of Seven Toxic Element Residues in Raw Bovine Milk in China. Biol. Trace Elem. Res. 2018, 183, 92–101. [Google Scholar] [CrossRef]
- US EPA. Reference Dose (RfD): Description and Use in Health Risk Assessments. 1993. Available online: https://www.epa.gov/iris/reference-dose-rfd-description-and-use-health-risk-assessments (accessed on 10 October 2020).
- US EPA. Chromium (VI); US EPA: Washington, DC, USA, 1998. Available online: https://iris.epa.gov/ChemicalLanding/&substance_nmbr=144 (accessed on 10 October 2020).
- US EPA. Arsenic (Inorganic); US EPA: Washington, DC, USA, 1991. Available online: https://iris.epa.gov/ChemicalLanding/&substance_nmbr=278 (accessed on 10 October 2020).
- Human Health Evaluation Manual (Part A). In EPA Risk Assessment Guidance for Superfund; 1989; Volume I, p. 289. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-volume-i-human-health-evaluation-manual-supplemental (accessed on 10 October 2020).
- Khan, K.; Khan, H.; Lu, Y.; Ihsanullah, I.; Nawab, J.; Khan, S.; Shah, N.S.; Shamshad, I.; Maryam, A. Evaluation of toxicological risk of foodstuffs contaminated with heavy metals in Swat, Pakistan. Ecotoxicol. Environ. Saf. 2014, 108, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Min, L.; Wang, P.; Zhang, Y.; Zheng, N.; Wang, J. Occurrence of aflatoxin M1 in pasteurized and UHT milks in China in 2014–2015. Food Control 2017, 78, 94–99. [Google Scholar] [CrossRef]
- Al Khalifa, A.S.; Ahmad, D. Determination of key elements by ICP-OES in commercially available infant formulae and baby foods in Saudi Arabia. Afr. J. Food Sci. 2010, 4, 464–468. [Google Scholar]
- Chajduk, E.; Pyszynska, M.; Polkowska-Motrenko, H. Determination of trace elements in infant formulas available on polish market. Biol. Trace Elem. Res. 2018, 186, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Dabeka, R.; Fouquet, A.; Belisle, S.; Turcotte, S. Lead, cadmium and aluminum in Canadian infant formulae, oral electrolytes and glucose solutions. Food Addit. Contam. Part A 2011, 28, 744–753. [Google Scholar] [CrossRef]
- Kunter, İ.; Hürer, N.; Gülcan, H.O.; Öztürk, B.; Doğan, İ.; Şahin, G. Assessment of Aflatoxin M1 and Heavy Metal Levels in Mothers Breast Milk in Famagusta, Cyprus. Biol. Trace Elem. Res. 2017, 175, 42–49. [Google Scholar] [CrossRef]
- Koller, K.; Brown, T.; Spurgeon, A.; Levy, L. Recent developments in low-level lead exposure and intellectual impairment in children. Environ. Health Perspect. 2004, 112, 987–994. [Google Scholar] [CrossRef] [Green Version]
- Chance, G.W. Environmental contaminants and children’s health: Cause for concern, time for action. Paediatr. Child Health 2001, 6, 731–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pohl, H.R.; Hibbs, B.F. Breast-feeding exposure of infants to environmental contaminants—A public health risk assessment viewpoint: Chlorinated dibenzodioxins and chlorinated dibenzofurans. Toxicol. Ind. Health 1996, 12, 593–611. [Google Scholar] [CrossRef] [PubMed]
- JECFA. Lead. In Safety Evaluation of Certain Food Additives and Contaminants. Seventy-Third Meeting of the Joint FAO/WHO Expert Committee on Food Additives; WHO Food Additives Series: 64; WHO: Geneva, Switzerland, 2011; pp. 381–497. [Google Scholar]
- JECFA. Cadmium. In Safety Evaluation of Certain food Additives and Contaminants. Seventy-Third Meeting of the Joint FAO/WHO Expert Committee on Food Additives; WHO Food Additives Series: 64; WHO: Geneva, Switzerland, 2011; pp. 305–380. [Google Scholar]
- EFSA. Dietary exposure to inorganic arsenic in the European population. EFSA J. 2014, 12. [Google Scholar] [CrossRef]
- World Health Organization. Evaluation of Certain Contaminants in Food; Technical Report Series; World Health Organization: Geneva, Switzerland, 2011; pp. 153–316. [Google Scholar]
- IPCS. Principles and methods for the risk assessment of chemicals in food. International Programme on Chemical Safety. Environ. Health Criteria 2009, 240, 1–34. [Google Scholar]
- Hashemi, M.; Sadeghi, A.; Saghi, M.; Aminzare, M.; Raeisi, M.; Rezayi, M.; Sany, S.B.T. Health Risk Assessment for Human Exposure to Trace Metals and Arsenic via Consumption of Hen Egg Collected from Largest Poultry Industry in Iran. Biol. Trace Elem. Res. 2019, 188, 485–493. [Google Scholar] [CrossRef]
- Bortey-Sam, N.; Nakayama, S.M.M.; Ikenaka, Y.; Akoto, O.; Baidoo, E.; Yohannes, Y.B.; Mizukawa, H.; Ishizuka, M. Human health risks from metals and metalloid via consumption of food animals near gold mines in Tarkwa, Ghana: Estimation of the daily intakes and target hazard quotients (THQs). Ecotoxicol. Environ. Saf. 2015, 111, 160–167. [Google Scholar] [CrossRef] [Green Version]
- WHO. Lengthheight-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age Methods and development. In WHO Child Growth Standards WHO; WHO: Geneva, Switzerland, 2006. [Google Scholar]
Country | Stage | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
China | 8 | 8 | 8 | 3 |
Ireland | 2 | 2 | 2 | 2 |
Denmark | 2 | 2 | 1 | 0 |
Germany | 2 | 2 | 1 | 0 |
France | 1 | 1 | 1 | 0 |
Netherlands | 9 | 9 | 8 | 9 |
Switzerland | 1 | 1 | 1 | 0 |
New Zealand | 3 | 3 | 2 | 0 |
Total | 28 | 27 | 24 | 14 |
Temperature (°C) | Gradient Temperature Time (min) | Holding Time (min) |
---|---|---|
90 | 10 | 5 |
140 | 10 | 10 |
190 | 10 | 20 |
Toxic Elements | Certified Reference Material | ||
---|---|---|---|
Certified Values (μg/kg) | Observed Values (μg/kg) | Recovery (%) | |
Cr | 1900 | 1753.70 | 92.3 |
As | 200 | 192.40 | 96.2 |
Cd | 111 | 115.77 | 104.3 |
Pb | 416 | 397.28 | 95.5 |
Stage | N | Cr | As | Cd | Pb | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | Range | Mean | Range | Mean | Range | Mean | Range | ||
1 | 28 | 27.09 | 2.51–67.70 | 3.00 | 0.89–7.87 | 0.88 | 0.16–3.53 | 1.61 | 0.42–4.82 |
2 | 27 | 26.71 | 8.12–58.33 | 3.57 | 1.09–6.34 | 1.01 | 0.18–2.62 | 2.19 | 0.81–5.45 |
3 | 24 | 27.39 | 4.81–83.80 | 3.39 | 1.29–5.53 | 1.03 | 0.23–3.58 | 2.09 | 0.36–3.60 |
4 | 14 | 30.62 | 5.68–56.15 | 3.37 | 1.35–5.54 | 1.04 | 0.13–3.17 | 2.55 | 0.62–5.75 |
Total | 93 | 27.38 | 2.51–83.80 | 3.32 | 0.89–7.87 | 0.98 | 0.13–3.58 | 2.03 | 0.36–5.75 |
Toxic Elements | Domestic (n = 27) | Imported (n = 66) | Maximum Level [16,17,18] | ||||
---|---|---|---|---|---|---|---|
Mean ± SD | Range | Mean ± SD | Range | China | EU | CAC | |
Cr | 28.77 ± 14.69 | 4.48–58.33 | 26.71 ± 16.43 | 2.51–83.80 | — a | — a | — a |
As | 3.48 ± 1.41 | 0.89–5.19 | 3.24 ± 1.57 | 0.98–7.87 | — a | — a | — a |
Cd | 0.77 ± 0.75 | 0.13–3.17 | 1.08 ± 0.77 | 0.16–3.58 | — a | 10 | — a |
Pb | 2.13 ± 0.96 | 0.63–4.08 | 1.99 ± 1.33 | 0.36–5.75 | 150 | 50 | 10 |
Year | Country | N | Toxic Elements | Mean (μg/kg) | Range (μg/kg) | Reference |
---|---|---|---|---|---|---|
— a | Tanzania | 8 | Cr | — a | <7–53 | [21] |
Cd | — a | <1–7 | ||||
Pb | — a | <10–50 | ||||
— a | Egypt | 50 | Pb | 791 ± 57 | 450–1850 | [24] |
Cr | 322 ± 39 | 100–1450 | ||||
2009 | Saudi Arabia | 19 | Cd | 7 ± 5 | — a | [38] |
Cr | 37 ± 55 | — a | ||||
Pb | 18 ± 2 | — a | ||||
Cd | <10 | — a | ||||
Cr | <100 | — a | ||||
Pb | <5 | — a | ||||
1999 | Canada | 57 | Pb | 0.9 | 0.14–2.46 | [40] |
Cd | 0.23 | 0.03–1.26 | ||||
2017 | Ethiopia | — a | Cd | ND b | — a | [29] |
Pb | 46 | — a | ||||
2000 | Nigeria | 6 | Cd | ND b | — a | [25] |
Cr | 6 ± 3 | — a | ||||
Pb | 0.4 ± 1.0 | — a | ||||
UK | 21 | Cd | ND b | — a | ||
Cr | 5 ± 5 | — a | ||||
Pb | 0.8 ± 1.7 | — a | ||||
USA | 15 | Cd | ND b | — a | ||
Cr | 7 ± 9 | — a | ||||
Pb | ND b | — a | ||||
2007–2008 | Portugal | 19 | Hg | 0.64 | 0.15–0.85 | [13] |
— a | Spain | 7 | Pb | 2570 ± 6210 | <LOD c–17240 | [3] |
2019 | China | 93 | Cr | 27.38 | 2.51–83.80 | This study |
As | 3.32 | 0.89–7.87 | ||||
Cd | 0.98 | 0.13–3.58 | ||||
Pb | 2.03 | 0.36–5.75 |
Age | Gender | Body Weight (kg) [52] | EDI | THQ | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Cr | As | Cd | Pb | Cr | As | Cd | Pb | |||
0.50 | Girl | 7.30 | 0.278 | 0.031 | 0.0090 | 0.0165 | 0.093 | 0.103 | 0.0090 | 0.0041 |
Boy | 7.93 | 0.256 | 0.028 | 0.0083 | 0.0152 | 0.085 | 0.095 | 0.0083 | 0.0038 | |
1 | Girl | 8.95 | 0.224 | 0.030 | 0.0085 | 0.0184 | 0.075 | 0.100 | 0.0085 | 0.0046 |
Boy | 9.65 | 0.208 | 0.028 | 0.0078 | 0.0170 | 0.069 | 0.092 | 0.0078 | 0.0043 | |
2 | Girl | 11.48 | 0.150 | 0.019 | 0.0057 | 0.0115 | 0.050 | 0.062 | 0.0057 | 0.0029 |
Boy | 12.15 | 0.142 | 0.018 | 0.0053 | 0.0108 | 0.047 | 0.059 | 0.0053 | 0.0027 | |
3 | Girl | 13.85 | 0.087 | 0.011 | 0.0033 | 0.0066 | 0.029 | 0.036 | 0.0033 | 0.0017 |
Boy | 14.34 | 0.084 | 0.010 | 0.0032 | 0.0064 | 0.028 | 0.035 | 0.0032 | 0.0016 | |
4 | Girl | 16.07 | 0.084 | 0.009 | 0.0028 | 0.0070 | 0.028 | 0.031 | 0.0028 | 0.0017 |
Boy | 16.34 | 0.082 | 0.009 | 0.0028 | 0.0069 | 0.027 | 0.030 | 0.0028 | 0.0017 | |
5 | Girl | 18.22 | 0.074 | 0.008 | 0.0025 | 0.0062 | 0.025 | 0.027 | 0.0025 | 0.0015 |
Boy | 18.34 | 0.073 | 0.008 | 0.0025 | 0.0061 | 0.024 | 0.027 | 0.0028 | 0.0015 |
Country | Milk Style | Metal | Stage | EDI (μg/kg bodyweight/day) | THQ | Reference |
---|---|---|---|---|---|---|
Italy | Infant formula | Cr | Infant | 0.51 | — a | [26] |
Cd | 0.02 | — a | ||||
Pb | 0.01 | — a | ||||
Nigerian | Infant formula | Cd | Infant | 0.2 | — a | [27] |
Pb | 1.3 | — a | ||||
Cr | 20.6 | — a | ||||
Turkey | Infant formula | Pb | Infant | 0.10–0.15 | — a | [28] |
Cd | Infant | 0.06–0.10 | — a | |||
Cr | Infant | 0.56–0.98 | — a | |||
UK | Infant formula | Cr | Infant | 5.7 b | — a | [25] |
USA | Cr | Infant | 7.7 b | — a | ||
Nigeria | Cr | Infant | 7.35 b | — a | ||
Ethiopia | Infant formula | Pb | Infant | 0.614–1.064 | — a | [29] |
Egypt | Powder | Pb | Adult | 2.26 | — a | [24] |
Cd | 0.91 | — a | ||||
Mexico | Raw milk | Pb | Children | — a | 0.024–0.034 | [27] |
Cd | — a | 0.041–0.046 | ||||
Cr | — a | 0.024–0.025 | ||||
As | — a | 2.93–3.05 | ||||
Iran | Raw milk | Pb | Adult | 0.11 | — a | [15] |
Cd | 0.01 | — a | ||||
China | Infant formula | As | Infant | 0.008–0.031 | 0.027–0.103 | This study |
Pb | 0.0061–0.0170 | 0.0015–0.0046 | ||||
Cr | 0.073–0.256 | 0.024–0.093 | ||||
Cd | 0.0025–0.0090 | 0.0025–0.0090 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, C.; Zheng, N.; Gao, Y.; Huang, S.; Yang, X.; Wang, Z.; Yang, H.; Wang, J. Content and Dietary Exposure Assessment of Toxic Elements in Infant Formulas from the Chinese Market. Foods 2020, 9, 1839. https://doi.org/10.3390/foods9121839
Su C, Zheng N, Gao Y, Huang S, Yang X, Wang Z, Yang H, Wang J. Content and Dietary Exposure Assessment of Toxic Elements in Infant Formulas from the Chinese Market. Foods. 2020; 9(12):1839. https://doi.org/10.3390/foods9121839
Chicago/Turabian StyleSu, Chuanyou, Nan Zheng, Yanan Gao, Shengnan Huang, Xue Yang, Ziwei Wang, Hongjian Yang, and Jiaqi Wang. 2020. "Content and Dietary Exposure Assessment of Toxic Elements in Infant Formulas from the Chinese Market" Foods 9, no. 12: 1839. https://doi.org/10.3390/foods9121839
APA StyleSu, C., Zheng, N., Gao, Y., Huang, S., Yang, X., Wang, Z., Yang, H., & Wang, J. (2020). Content and Dietary Exposure Assessment of Toxic Elements in Infant Formulas from the Chinese Market. Foods, 9(12), 1839. https://doi.org/10.3390/foods9121839