Combined Effect of Chia, Quinoa and Amaranth Incorporation on the Physico-Chemical, Nutritional and Functional Quality of Fresh Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bread-Making Procedure
2.3. Composition of Flours and Bread
2.4. Technological Parameters
2.5. Fatty Acid Profile
2.6. Mineral Composition
2.7. Determination of Myo-Inositol Hexakisphosphate
2.8. Amino Acids Profile
2.9. In Vitro Protein Digestibility, Essential Amino Acids, and Nutritional Index
2.10. In Vitro Glycaemic Index Estimation
2.11. Preliminary Sensory Evaluation
2.12. Factorial Design
2.13. Statistical Analysis
3. Results and Discussion
3.1. Flour Composition
3.2. Effect of the Independent Variables on Bread Nutritional Properties
3.3. Effect of the Independent Variables on Bread Technological Characteristics
3.4. Preliminary Sensorial Evaluation
3.5. Optimising Bread Formulation
3.5.1. Evaluating the Quality Parameters of the Optimised Bread
3.5.2. Nutritional Properties of the Optimised Bread
Contribution of Bread Minerals to Diet
Fatty Acid Quality of Bread
In Vitro Protein Digestibility (IVPD), Protein Digestibility Corrected Amino Acid Score (PDCAAS), and Nutritional Index of Bread
Dietary Fibre Content in Bread
In Vitro Starch Digestion Analysis
3.6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Parenti, O.; Guerrini, L.; Cavallini, B.; Baldi, F.; Zanoni, B. Breadmaking with an old wholewheat flour: Optimization of ingredients to improve bread quality. LWT 2020, 121, 108980. [Google Scholar] [CrossRef]
- Ye, E.Q.; Chacko, S.A.; Chou, E.L.; Kugizaki, M.; Liu, S. Greater Whole-Grain Intake Is Associated with Lower Risk of Type 2 Diabetes, Cardiovascular Disease, and Weight Gain. J. Nutr. 2012, 142, 1304–1313. [Google Scholar] [CrossRef]
- Rebellato, A.P.; Bussi, J.; Silva, J.G.S.; Greiner, R.; Steel, C.J.; Pallone, J.A.L. Effect of different iron compounds on rheological and technological parameters as well as bioaccessibility of minerals in whole wheat bread. Food Res. Int. 2017, 94, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Penella, J.M.; Laparra, J.M.; Haros, M. Impact of α-Amylase During Breadmaking on In Vitro Kinetics of Starch Hydrolysis and Glycaemic Index of Enriched Bread with Bran. Plant Foods Hum. Nutr. 2014, 69, 216–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bin, Q.; Peterson, D.G. Identification of bitter compounds in whole wheat bread crumb. Food Chem. 2016, 203, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Ghodki, B.M.; Dadlani, G.; Ghodki, D.M.; Chakraborty, S. Functional whole wheat breads: Compelling internal architecture. LWT 2019, 108, 301–309. [Google Scholar] [CrossRef]
- Protonotariou, S.; Stergiou, P.; Christaki, M.; Mandala, I. Physical properties and sensory evaluation of bread containing micronized whole wheat flour. Food Chem. 2020, 318, 126497. [Google Scholar] [CrossRef]
- Bedrníček, J.; Jirotková, D.; Kadlec, J.; Laknerová, I.; Vrchotová, N.; Tříska, J.; Samková, E.; Smetana, P. Thermal stability and bioavailability of bioactive compounds after baking of bread enriched with different onion by-products. Food Chem. 2020, 319, 126562. [Google Scholar] [CrossRef]
- Fendri, L.B.; Chaari, F.; Maaloul, M.; Kallel, F.; Abdelkafi, L.; Ellouz-Chaabouni, S.; Ghribi-Aydi, D. Wheat bread enrichment by pea and broad bean pods fibers: Effect on dough rheology and bread quality. LWT 2016, 73, 584–591. [Google Scholar] [CrossRef]
- Guardado-Félix, D.; Lazo-Vélez, M.A.; Pérez-Carrillo, E.; Panata-Saquicili, D.E.; Saldivar, S.O.S. Effect of partial replacement of wheat flour with sprouted chickpea flours with or without selenium on physicochemical, sensory, antioxidant and protein quality of yeast-leavened breads. LWT 2020, 129, 109517. [Google Scholar] [CrossRef]
- Iglesias-Puig, E.; Haros, M. Evaluation of performance of dough and bread incorporating chia (Salvia hispanica L.). Eur. Food Res. Technol. 2013, 237, 865–874. [Google Scholar] [CrossRef] [Green Version]
- Miranda-Ramos, K.; Millan-Linares, M.C.; Haros, M. Effect of Chia as Breadmaking Ingredient on Nutritional Quality, Mineral Availability, and Glycemic Index of Bread. Foods 2020, 9, 663. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, B.S.; Talou, T.; Straumite, E.; Sabovics, M.; Kruma, Z.; Saad, Z.; Hijazi, A.; Merah, O. Evaluation of Nutritional and Technological Attributes of Whole Wheat Based Bread Fortified with Chia Flour. Foods 2018, 7, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballester-Sánchez, J.; Millan-Linares, M.C.; Fernández-Espinar, M.T.; Haros, M. Development of Healthy, Nutritious Bakery Products by Incorporation of Quinoa. Foods 2019, 8, 379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iglesias-Puig, E.; Monedero, V.; Haros, M. Bread with whole quinoa flour and bifidobacterial phytases increases dietary mineral intake and bioavailability. LWT 2015, 60, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Miranda, K.; Sanz-Ponce, N.; Haros, M. Evaluation of technological and nutritional quality of bread enriched with amaranth flour. LWT 2019, 114, 108418. [Google Scholar] [CrossRef]
- Karaman, K.; Sagdic, O.; Durak, M.Z. Use of phytase active yeasts and lactic acid bacteria isolated from sourdough in the production of whole wheat bread. LWT 2018, 91, 557–567. [Google Scholar] [CrossRef]
- Sanz-Penella, J.M.; Laparra, J.M.; Sanz, Y.; Haros, M. Bread Supplemented with Amaranth (Amaranthus cruentus): Effect of Phytates on In Vitro Iron Absorption. Plant Foods Hum. Nutr. 2012, 67, 50–56. [Google Scholar] [CrossRef]
- Liu, W.; Brennan, C.; Serventi, L.; Brennan, C. Erratum to: Buckwheat flour inclusion in Chinese steamed bread: Potential reduction in glycemic response and effects on dough quality. Eur. Food Res. Technol. 2017, 243, 1105–1106. [Google Scholar] [CrossRef] [Green Version]
- Haros, C.M.; Schoenlechner, R. (Eds.) Pseudocereals: Chemistry and Technology; Wiley and Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Penella, J.M.S.; Wronkowska, M.; Soral-Śmietana, M.; Haros, M. Effect of whole amaranth flour on bread properties and nutritive value. LWT 2013, 50, 679–685. [Google Scholar] [CrossRef] [Green Version]
- Zettel, V.; Hitzmann, B. Applications of chia (Salvia hispanica L.) in food products. Trends Food Sci. Technol. 2018, 80, 43–50. [Google Scholar] [CrossRef]
- De Lamo, B.; Gómez, M. Bread Enrichment with Oilseeds. A Review. Foods 2018, 7, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gostin, A.-I. Effects of substituting refined wheat flour with wholemeal and quinoa flour on the technological and sensory characteristics of salt-reduced breads. LWT 2019, 114, 108412. [Google Scholar] [CrossRef]
- Xu, X.; Luo, Z.-G.; Yang, Q.; Xiao, Z.; Lu, X. Effect of quinoa flour on baking performance, antioxidant properties and digestibility of wheat bread. Food Chem. 2019, 294, 87–95. [Google Scholar] [CrossRef]
- EFSA. Commission Implementing Regulation (EU) 2020/24 of 13 January 2020 Authorising an Extension of Use of Chia Seeds (Salvia hispanica) as a Novel Food and the Change of the Conditions of Use and the Specific Labelling Requirements of Chia Seeds (Salvia hispanica) under Regulation (EU) 2015/2283 of the European Parliament and of the Council and Amending Commission Implementing Regulation (EU) 2017/2470; L8/12-L8/17; Official Journal of the European Union: Brussels, Belgium, 2020. [Google Scholar]
- AOAC. Method 925.09, 991.43, 996.11, 986.11. In Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1996. [Google Scholar]
- ISO/TS. Food Products—Determination of the Total Nitrogen Content by Combustion According to the Dumas Principle and Calculation of the Crude Protein Content—Part 1 and 2: Cereals, Pulses and Milled Cereal Products (ISO/TS 16634-1 and ISO/TS 16634-2); International Organization for Standardization (ISO): Geneva, Switzerland, 2016. [Google Scholar]
- AACC. Approved Methods of AACC. Method 08-03, 30-10, 9th ed.; The American Association of Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar]
- Firestone, D. (Ed.) AOCS Official Method Ce-1b-89, Fatty Acid Composition by GLC: Marine Oils; AOCS Press: Champaign, IL, USA, 1992. [Google Scholar]
- IUPAC. Fats and Derivatives. In Standard Methods for the Analysis of Oils; Blackwell Scientific: Oxford, UK, 1992. [Google Scholar]
- McKie, V.A.; McCleary, B.V. A Novel and Rapid Colorimetric Method for Measuring Total Phosphorus and Phytic Acid in Foods and Animal Feeds. J. AOAC Int. 2019, 99, 738–743. [Google Scholar] [CrossRef] [Green Version]
- Alaiz, M.; Navarro, J.L.; Girón, J.; Vioque, E. Amino acid analysis by high-performance liquid chromatography after derivatization with diethyl ethoxymethylenemalonate. J. Chromatogr. A 1992, 591, 181–186. [Google Scholar] [CrossRef]
- Motta, C.; Castanheira, I.; Gonzales, G.B.; Delgado, I.; Torres, D.; Santos, M.; Matos, A.S. Impact of cooking methods and malting on amino acids content in amaranth, buckwheat and quinoa. J. Food Compos. Anal. 2019, 76, 58–65. [Google Scholar] [CrossRef]
- FAO/WHO/UNU. Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint FAO/WHO/UNU Expert Consultation. 2007. Available online: https://apps.who.int/iris/handle/10665/43411 (accessed on 26 October 2020).
- Crisan, E.V.; Sands, A. Nutritional value of edible mushroom. In Biology and Cultivation of Edible Mushrooms; Chang, S.T., Hayer, W.A., Eds.; Academic Press: New York, NY, USA, 1978; pp. 137–168. [Google Scholar]
- Goni, I.; Garcia Alonso, A.; Saura Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
- Wolter, A.; Hager, A.-S.; Zannini, E.; Arendt, E.K. Influence of sourdough on in vitro starch digestibility and predicted glycemic indices of gluten-free breads. Food Funct. 2014, 5, 564–572. [Google Scholar] [CrossRef]
- Marineli, R.D.; Moraes, E.A.; Lenquiste, S.A.; Godoy, A.T.; Eberlin, M.N.; Marostica, M.R. Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). LWT 2014, 59, 1304–1310. [Google Scholar] [CrossRef]
- Martínez-Villaluenga, C.; Peñas, E.; Hernández-Ledesma, B. Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem. Toxicol. 2020, 137, 111178. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, M.; Pontonio, E.; Rizzello, C.G. Quinoa Flour as an Ingredient to Enhance the Nutritional and Functional Features of Cereal-Based Foods. In Flour and Breads and Their Fortification in Health and Disease Prevention, 2nd ed.; Preedy, V.R., Watson, R.R., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 453–464. [Google Scholar]
- Reguera, M.; Haros, C.M. Structure and Composition of Kernels. In Pseudocereals: Chemistry and Technology; Haros, C.M., Schoenlechner, R., Eds.; John Wiley & Sons, Ltd.: Oxford, UK, 2017; pp. 28–48. [Google Scholar]
- Grancieri, M.; Martino, H.S.D.; De Mejia, E.G. Chia Seed (Salvia hispanica L.) as a Source of Proteins and Bioactive Peptides with Health Benefits: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 480–499. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Singh, P.; Shevkani, K.; Virdi, A.S. Amaranth: Potential Source for Flour Enrichment. In Flour and Breads and Their Fortification in Health and Disease Prevention, 2nd ed.; Preedy, V.R., Watson, R.R., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 123–135. [Google Scholar]
- Martinez-Lopez, A.; Millan-Linares, M.C.; Rodriguez-Martin, N.M.; Millan, F.; Montserrat-de la Paz, S. Nutraceutical value of kiwicha (Amaranthus caudatus L.). J. Funct. Foods 2020, 65, 103735. [Google Scholar] [CrossRef]
- Bressiani, J.; Oro, T.; Santetti, G.S.; Almeida, J.L.; Bertolin, T.E.; Gómez, M.; Gutkoski, L.C. Properties of whole grain wheat flour and performance in bakery products as a function of particle size. J. Cereal Sci. 2017, 75, 269–277. [Google Scholar] [CrossRef]
- Valdivia-López, M.Á.; Tecante, A. Chapter Two—Chia (Salvia hispanica): A Review of Native Mexican Seed and its Nutritional and Functional Properties. In Advances in Food and Nutrition Research; Henry, J., Ed.; Academic Press: Cambridge, MA, USA, 2015; Volume 75, pp. 53–75. [Google Scholar]
- Solah, V.A.; Fenton, H.K.; Crosbie, G.B. Wheat: Grain Structure of Wheat and Wheat-based Products. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 470–477. [Google Scholar]
- Martínez, S.E.V.; Zuleta, Á.; Maldonado-Alvarado, P.; Nájera, J.R.; Melito, C.; Bello-Pérez, L.A.; Agama-Acevedo, E. Papel de los Cereales y los Pseudocereales en la Seguridad Alimentaria; Bermúdez, A.S., Ed.; Instituto Internacional de Ciencias de la Vida (ILSI, International Life Sciences Institute): Bogota, Colombia, 2018. [Google Scholar]
- Kulczyński, B.; Kobus-Cisowska, J.; Taczanowski, M.; Kmiecik, D.; Gramza-Michałowska, A. The Chemical Composition and Nutritional Value of Chia Seeds—Current State of Knowledge. Nutrients 2019, 11, 1242. [Google Scholar] [CrossRef] [Green Version]
- D’Amico, S.; Schoenlechner, R. Amaranth: Its Unique Nutritional and Health-Promoting Attributes. In Gluten-Free Ancient Grains; Taylor, J.R.N., Awika, J.M., Eds.; Woodhead Publishing: Duxford, UK, 2017; pp. 131–159. [Google Scholar]
- Bodoira, R.M.; Penci, M.C.; Ribotta, P.D.; Martínez, M.L. Chia (Salvia hispanica L.) oil stability: Study of the effect of natural antioxidants. LWT 2017, 75, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, M.D.; Lobo, M.; Irigaray, B.; Grompone, M.A.; Sammán, N. Oxidative stability of baby dehydrated purees formulated with different oils and germinated grain flours of quinoa and amaranth. LWT 2020, 127, 109229. [Google Scholar] [CrossRef]
- Peressini, D.; Sensidoni, A. Effect of soluble dietary fibre addition on rheological and breadmaking properties of wheat doughs. J. Cereal Sci. 2009, 49, 190–201. [Google Scholar] [CrossRef]
- Quiles, A.; Llorca, E.; Schmidt, C.; Reißner, A.-M.; Struck, S.; Rohm, H.; Hernando, I. Use of berry pomace to replace flour, fat or sugar in cakes. Int. J. Food Sci. Technol. 2018, 53, 1579–1587. [Google Scholar] [CrossRef]
- Martínez, M.; Oliete, B.; Gómez, M. Effect of the addition of extruded wheat flours on dough rheology and bread quality. J. Cereal Sci. 2013, 57, 424–429. [Google Scholar] [CrossRef]
- Mohammadi, M.; Sadeghnia, N.; Azizi, M.-H.; Neyestani, T.-R.; Mortazavian, A.M. Development of gluten-free flat bread using hydrocolloids: Xanthan and CMC. J. Ind. Eng. Chem. 2014, 20, 1812–1818. [Google Scholar] [CrossRef]
- Cai, Y.-Z.; Sun, M.; Corke, H. Characterization and application of betalain pigments from plants of the Amaranthaceae. Trends Food Sci. Technol. 2005, 16, 370–376. [Google Scholar] [CrossRef]
- Escribano, J.; Cabanes, J.; Jiménez-Atiénzar, M.; Ibañez-Tremolada, M.; Gómez-Pando, L.R.; García-Carmona, F.; Gandía-Herrero, F. Characterization of betalains, saponins and antioxidant power in differently colored quinoa (Chenopodium quinoa) varieties. Food Chem. 2017, 234, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Coy-Barrera, E. Analysis of betalains (betacyanins and betaxanthins). In Recent Advances in Natural Products Analysis; Sanches Silva, A., Nabavi, S.F., Saeedi, M., Nabavi, S.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 593–619. [Google Scholar]
- Zhou, W.; Therdthai, N.; Hui, Y.H. Bakery Products Science and Technology; Wiley-Blackwell: Oxford, UK, 2014; Volume 2. [Google Scholar]
- Angioloni, A.; Collar, C. Bread crumb quality assessment: A plural physical approach. Eur. Food Res. Technol. 2009, 229, 21–30. [Google Scholar] [CrossRef]
- Ma, G.; Jin, Y.; Piao, J.; Kok, F.; Guusje, B.; Jacobsen, E. Phytate, Calcium, Iron, and Zinc Contents and Their Molar Ratios in Foods Commonly Consumed in China. J. Agric. Food Chem. 2005, 53, 10285–10290. [Google Scholar] [CrossRef] [PubMed]
- Laparra, J.M.; Tako, E.; Glahn, R.P.; Miller, D.D. Inulin Affects Iron Dialyzability from FeSO4and FeEDTA Solutions but Does Not Alter Fe Uptake by Caco-2 Cells. J. Agric. Food Chem. 2008, 56, 2846–2851. [Google Scholar] [CrossRef]
- Penella, J.S.; Collar, C.; Haros, M. Effect of wheat bran and enzyme addition on dough functional performance and phytic acid levels in bread. J. Cereal Sci. 2008, 48, 715–721. [Google Scholar] [CrossRef]
- FAO/WHO. Human Vitamin and Mineral Requirements. Report of a Joint FAO/WHO Expert Consultation. 2001. Available online: www.fao.org/3/a-y2809e.pdf (accessed on 26 October 2020).
- WHO/FAO. Fats and Fatty Acids in Human Nutrition. 2010. Available online: https://www.who.int/nutrition/publications/nutrientrequirements/fatsandfattyacids_humannutrition/en/ (accessed on 26 October 2020).
- Coelho, M.S.; Salas-Mellado, M.D.L.M. Effects of substituting chia (Salvia hispanica L.) flour or seeds for wheat flour on the quality of the bread. LWT 2015, 60, 729–736. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Dietary Reference Values for nutrients Summary report. EFSA Support. Publ. 2017, 14, 15121. [Google Scholar] [CrossRef] [Green Version]
- Jaime, L.; Mollá, E.; Fernández, A.; Martín-Cabrejas, M.A.; López-Andréu, F.J.; Esteban, R.M. Structural carbohydrate differences and potential source of dietary fiber of onion (Allium cepa L.) tissues. J. Agric. Food Chem. 2002, 50, 122–128. [Google Scholar] [CrossRef]
- Bresson, J.; Flynn, A.; Heinonen, M.; Hulshof, K.; Korhonen, H.; Lagiou, P.; Løvik, M.; Marchelli, R.; Martin, A.; Moseley, B.; et al. Review of Labelling Reference Intake Values—Scientific Opinion of the Panel on Dietetic Products, Nutrition and Allergies on a Request from the Commission Related to the Review of Labelling Reference Intake Values for Selected Nutritional Elements. EFSA J. 2009, 1008, 1–14. [Google Scholar]
- FAO. Joint FAO/WHO Expert Consultation on Fats and Fatty Acids in Human Nutrition; WHO: Geneva, Italy, 2008. [Google Scholar]
- Desai, A.; Beibeia, T.; Brennan, C.S.; Guo, X.; Zeng, X.-A.; Brennan, C.S. Protein, Amino Acid, Fatty Acid Composition, and in Vitro Digestibility of Bread Fortified with Oncorhynchus tschawytscha Powder. Nutrients 2018, 10, 1923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilani, G.S.; Cockell, A.K.; Sepehr, E. Effects of Antinutritional Factors on Protein Digestibility and Amino Acid Availability in Foods. J. AOAC Int. 2005, 88, 967–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorusso, A.; Verni, M.; Montemurro, M.; Coda, R.; Gobbetti, M.; Rizzello, C.G. Use of fermented quinoa flour for pasta making and evaluation of the technological and nutritional features. LWT 2017, 78, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Jubete, L.; Arendt, E.K.; Gallagher, E. Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Int. J. Food Sci. Nutr. 2009, 60, 240–257. [Google Scholar] [CrossRef]
- Lazaro, H.; Puente, L.; Zúñiga, M.C.; Muñoz, L.A. Assessment of rheological and microstructural changes of soluble fiber from chia seeds during an in vitro micro-digestion. LWT 2018, 95, 58–64. [Google Scholar] [CrossRef]
- Torbica, A.; Škrobot, D.; Kos, J.; Belović, M.M.; Zhang, N. Sensory and physico-chemical properties of wholegrain wheat bread prepared with selected food by-products. LWT 2019, 114, 108414. [Google Scholar] [CrossRef]
- Repo-Carrasco-Valencia, R.; Valdez, J. Carbohydrates of kernels. In Pseudocereals: Chemistry and Technology; Haros, C.M., Schoenlechner, R., Eds.; John Wiley & Sons, Ltd.: Oxford, UK, 2017; pp. 49–61. [Google Scholar]
- Laparra-Llopis, J.M.; Haros, M. Inclusion of Whole Flour from Latin-American Crops into Bread Formulations as Substitute of Wheat Delays Glucose Release and Uptake. Plant Foods Hum. Nutr. 2018, 73, 13–17. [Google Scholar] [CrossRef]
- Schuchardt, J.P.; Wonik, J.; Bindrich, U.; Heinemann, M.; Kohrs, H.; Schneider, I.; Möller, K.; Hahn, A. Glycemic index and microstructure analysis of a newly developed fiber enriched cookie. Food Funct. 2016, 7, 464–474. [Google Scholar] [CrossRef] [Green Version]
- Capriles, V.D.; Arêas, J.A.G. Approaches to reduce the glycemic response of gluten-free products: In vivo and in vitro studies. Food Funct. 2016, 7, 1266–1272. [Google Scholar] [CrossRef]
- Li, G.; Zhu, F. Physicochemical properties of quinoa flour as affected by starch interactions. Food Chem. 2017, 221, 1560–1568. [Google Scholar] [CrossRef] [PubMed]
Trial | Name | % of Substitution in Flour Basis | Variables Codes | ||||
---|---|---|---|---|---|---|---|
Chia Flour | Quinoa Flour | Amaranth Flour | Chia x1 | Quinoa x2 | Amaranth x3 | ||
1 | CB | 0 | 0 | 0 | −1 | −1 | −1 |
2 | Ch10 | 10 | 0 | 0 | 0 | −1 | −1 |
3 | Ch20 | 20 | 0 | 0 | 1 | −1 | −1 |
4 | Q20 | 0 | 20 | 0 | −1 | 0 | −1 |
5 | Ch10Q20 | 10 | 20 | 0 | 0 | 0 | −1 |
6 | Ch20Q20 | 20 | 20 | 0 | 1 | 0 | −1 |
7 | Q40 | 0 | 40 | 0 | −1 | 1 | −1 |
8 | Ch10Q40 | 10 | 40 | 0 | 0 | 1 | −1 |
9 | Ch20Q40 | 20 | 40 | 0 | 1 | 1 | −1 |
10 | A20 | 0 | 0 | 20 | −1 | −1 | 0 |
11 | Ch10A20 | 10 | 0 | 20 | 0 | −1 | 0 |
12 | Ch20A20 | 20 | 0 | 20 | 1 | −1 | 0 |
13 | Q20A20 | 0 | 20 | 20 | −1 | 0 | 0 |
14 | Q20A20Ch10 | 10 | 20 | 20 | 0 | 0 | 0 |
15 | Q20A20Ch20 | 20 | 20 | 20 | 1 | 0 | 0 |
16 | Q40A20 | 0 | 40 | 20 | −1 | 1 | 0 |
17 | Q40A20Ch10 | 10 | 40 | 20 | 0 | 1 | 0 |
18 | Q40A20Ch20 | 20 | 40 | 20 | 1 | 1 | 0 |
19 | A40 | 0 | 0 | 40 | −1 | −1 | 1 |
20 | A40Ch10 | 10 | 0 | 40 | 0 | −1 | 1 |
21 | A40Ch20 | 20 | 0 | 40 | 1 | −1 | 1 |
22 | Q20A40 | 0 | 20 | 40 | −1 | 0 | 1 |
23 | Q20A40Ch10 | 10 | 20 | 40 | 0 | 0 | 1 |
24 | Q20A40Ch20 | 20 | 20 | 40 | 1 | 0 | 1 |
25 | Q40A40 | 0 | 40 | 40 | −1 | 1 | 1 |
26 | Q40A40Ch10 | 10 | 40 | 40 | 0 | 1 | 1 |
27 | Q40A40Ch20 | 20 | 40 | 40 | 1 | 1 | 1 |
Parameters a | Units | Whole Wheat Flour | Wheat Flour | Whole Amaranth Flour | Whole Quinoa Flour | Whole Chia Flour |
---|---|---|---|---|---|---|
Moisture | % | 13.25 ± 0.011 e | 11.38 ± 0.09 b | 12.41 ± 0.04 c | 12.62 ± 0.04 d | 7.95 ± 0.01 a |
Protein | % d.m. | 11.76 ± 0.07 a | 12.54 ± 0.1 b | 17.02 ± 0.10 c | 17.51 ± 0.50 c | 19.63 ± 0.3 d |
Lipids | % d.m. | 1.45 ± 0.03 b | 1.00 ± 0.02 a | 6.60 ± 0.20 d | 6.45 ± 0.02 c | 34.2 ± 0.4 e |
Ash | % d.m. | 1.43 ± 0.02 b | 0.58 ± 0.01 a | 2.65 ± 0.04 d | 2.82 ± 0.05 c | 4.69 ± 0.05 e |
Starch | % d.m. | 73.3 ± 3.00 b | 68.9 ± 2.90 b | 55.0 ± 0.30 a | 54.30 ± 1.70 a | ND |
Total fibre | % d.m. | 6.58 ± 0.06 b | 3.90 ± 0.10 a | 15.6 ± 2.90 c | 14.20 ± 0.60 c | 39.0 ± 0.1 d |
Soluble dietary fibre | % d.m. | 0.88 ± 0.07 a | 1.06 ± 0.46 b | 3.08 ± 1.50 b | 4.10 ± 1.20 b | 6.60 ± 1.30 c |
Insoluble dietary fibre | % d.m. | 5.70 ± 0.05 b | 2.81 ± 0.35 a | 12.6 ± 1.4 d | 10.2 ± 0.5 c | 32.4 ± 1.3 e |
Physicochemical Properties | Technological Properties | Sensory Evaluation | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source | Lipids | Ash | Protein | Caloric Value | Specific Volume | Crumb Colour, ∆E * | Crust Colour, ∆E * | Crumb Firmness | Shape Ratio | Appearance | Texture | Taste | Overall Acceptability |
Units | % d.m. | % d.m. | % d.m. | kcal/100 g | mL/g | — | — | N | cm/cm | — | — | — | — |
a0 | −0.227 | 0.900 | 14.877 | 250.345 | 5.691 | 2.100 | 0,345 | 1.287 | 2.144 | 7.711 | 7.423 | 8.090 | 8.008 |
a1 | 0.214 ** | 0.041 ** | 0.070 ** | 0.906 ** | −0.039 ** | 0.721 ** | 0.815 ** | 0.381 ** | −0.037 ** | 0.005 ** | |||
a2 | 0.061 ** | 0.035 ** | 0.047 ** | 0.129 ** | −0.059 ** | 0.349 ** | 0.656 ** | −0.129 ** | −0.014 ** | −0.051 ** | −0.0001 ** | −0.053 ** | −0.055 ** |
a3 | 0.059 ** | 0.027 ** | 0.048 ** | 0.307 ** | −0.087 ** | 0.144 ** | 0.165 * | −0.254 ** | 0.037 ** | 0.042 ** | |||
a11 | 0.005 * | 0.033 ** | 0.001 * | −0.009 * | |||||||||
a12 | −0.007 ** | −0.006 * | |||||||||||
a13 | 0.002 * | 0.001 * | −0.001 ** | 0.003 * | 0.003 ** | 0.003 * | 0.004 ** | ||||||
a22 | −0.007 ** | 0.001 ** | |||||||||||
a23 | 0.001 * | −0.006 ** | 0.011 ** | −0.0003 ** | |||||||||
a33 | −0.0004 ** | 0.008 ** | −0.002 ** | −0.003 ** | −0.001 ** | ||||||||
R-SQ | 0.985 | 0.967 | 0.979 | 0.982 | 0.931 | 0.933 | 0.925 | 0.931 | 0.936 | 0.789 | 0.789 | 0.653 | 0.703 |
Parameters | Units | Bread Formulation | ||||
---|---|---|---|---|---|---|
Whole Wheat | Control | Optimal Formulation | Predicted Value | Δ% | ||
Physico-chemical parameters a | ||||||
Lipids | % d.m. | 3.6 ± 0.6 b | 0.23 ± 0.03 a | 3.4 ± 0.1 b | 3.500 | −2.941 |
Ash | % d.m. | 2.3 ± 0.5 b | 0.91 ± 0.10 a | 2.6 ± 0.1 b | 2.500 | 3.846 |
Protein | % d.m. | 12.3 ± 1.6 a | 14.3 ± 0.04 ab | 15.8 ± 0.1 b | 16.400 | −3.145 |
Soluble dietary fibre | % d.m. | 1.6 ± 0.1 a | 1.07 ± 0.04 a | 4.1 ± 0.7 b | n.i. | -- |
Insoluble dietary fibre | % d.m. | 5.4 ± 0.4 a | 4.4 ± 0.3 a | 10.9 ± 0.6 b | n.i. | -- |
Total dietary fibre | % d.m. | 7.0 ± 0.5 a | 5.4 ± 0.4 a | 15.0 ± 1.3 b | n.i. | -- |
Caloric values | Kcal/100 g | 279 ± 1.2 b | 250 ± 4 a | 259 ± 4 a | 268 | −3.520 |
InsP6 | mg/100 g | 10.7 ± 1.8 b | 1.5 ± 0.6 a | 3.4 ± 0.4 a | n.i. | -- |
Technological parameters a | ||||||
Specific volume | mL/g | 3.03 ± 0.03 a | 4.5 ± 0.3 b | 3.6 ± 0.4 ab | 3.690 | −2500 |
Shape ratio | cm/cm | 1.6 ± 0.1 a | 2.13 ± 0.02 a | 1.7 ± 0.2 a | 1.840 | −8.235 |
Crumb textural parameters (TPA) a | ||||||
Firmness | N | 2.26 ± 0.02 c | 0.96 ± 0.03 a | 1.95 ± 0.03 b | 1.991 | 2.513 |
Springiness | mm | 1.00 ± 0.00 a | 1.70 ± 0.11 a | 1.01 ± 0.26 a | 1.000 | 1.478 |
Cohesiveness | m/m | 0.79 ± 0.00 ab | 0.84 ± 0.00 b | 0.73 ± 0.03 a | 0.750 | −2.740 |
Chewiness | N | 1.90 ± 0.01 a | 1.46 ± 0.61 a | 2.06 ± 0.96 a | 2.020 | 1942 |
Crust colour parameters b | ||||||
L* | — | 49.7 ± 1.0 a | 61.2 ± 2.0 b | 51.7 ± 1.9 a | 51.390 | 0.523 |
C* | — | 31.99 ± 0.02 b | 34.4 ± 1.08 c | 27.4 ± 0.4 a | 28.860 | −5.175 |
hab | — | 60.7 ± 0.5 a | 74.0 ± 2.0 b | 71.8± 0.4 a | 68.870 | 4.081 |
∆E* | — | 17.9 ± 0.2 b | — | 10.5 ± 0.5 a | 10.030 | 4.111 |
Crumb colour parameters b | ||||||
L* | — | 57.6 ± 1.3 b | 61.5 ± 1.2 b | 52.6 ± 0.1 a | 52.140 | 0.875 |
C* | — | 20.7 ± 0.9 b | 13.3 ± 0.8 a | 15.0 ± 0.2 a | 15.280 | −1.867 |
hab | — | 78.5 ± 1.2 a | 95.1 ± 0.8 c | 85.9 ± 0.1 b | 86.670 | −0.896 |
∆E* | — | 18.5 ± 2.1 b | — | 9.35 ± 0.08 a | 9.980 | −6.738 |
Crumb structure a | ||||||
Cell area/total area | cm2/cm2 | 0.40 ± 0.10 a | 0.24 ± 0.00 a | 0.21 ± 0.00 a | n.i. | -- |
Wall area/total area | cm2/cm2 | 0.60 ± 0.00 a | 0.76 ± 0.00 b | 0.79 ± 0.00 c | n.i. | -- |
Cells/cm2 | — | 402 ± 6 b | 85 ± 7 a | 109 ± 6 a | n.i. | -- |
Mean cell area | mm2 | 0.41 ± 0.02 c | 0.28 ± 0.02 b | 0.19 ± 0.01 a | n.i. | -- |
Sensory analysis (hedonic scale) c | ||||||
Aspect | — | n.d. | 8.5 ± 0.7 a | 8.8 ± 0.8 a | 8.540 | 2.955 |
Texture | — | n.d. | 8.5 ± 0.7 a | 8.5 ± 0.8 a | 7.100 | 16.471 |
Taste | — | n.d. | 8.7 ± 0.5 a | 7.9 ± 0.7 a | 7.460 | 5.570 |
Overall acceptability | — | 8.1 ± 0.9 a | 8.4 ± 0.2 a | 8.7 ± 0.8 a | 7.170 | 17.586 |
Parameters | Reference Values (Male/Female) | Units | Control Bread | Optimised Bread | |
---|---|---|---|---|---|
Average requirement (AR) contribution of minerals a | |||||
Ca | 1000 mg/d | % | 3 | 9 | |
Fe | 14/29 mg/d | % | 5/2.4 | 12/6 | |
Zn | High bioavailability | 4.2/3 mg/d | % | 14/20 | 29/41 |
Moderate bioavailability | 7/4.9 mg/d | % | 9/12 | 18/25 | |
Low bioavailability | 14/9.8 mg/d | % | 4/6 | 9/13 | |
InsP6/Ca | <0.24 | mol/mol | 0.061 | 0.041 | |
InsP6/Fe | <1.0 | mol/mol | 2.123 | 2.014 | |
InsP6/Zn | <15.0 | mol/mol | 2.453 | 2.742 | |
Fatty acids quality b | |||||
PUFA/SFA ratio | 0.661 | 5.802 | |||
% of contribution of AILA E% for linoleic acid | 2.5–9%E | % | 5.998 | 9.210 | |
% of contribution of AIALA E% for α-linolenic acid | >0.5%E | % | 7.009 | 116,000 | |
Ratio ω-6/ω-3 | 5:1 | 17:1 | 0.6:1 | ||
Protein quality c | |||||
In vitro protein digestibility (IVPD) | % | 77.1 ± 0.3 b | 72.8 ± 0.7 a | ||
Protein digestibility corrected amino acid score (PDCAAS) | 0.15 ± 0.01 a | 0.44 ± 0.01 b | |||
Essential amino acid index (EAAI) | 2.4 ± 0.14 a | 2.73 ± 0.09 b | |||
Nutritional index (NI) | 0.34 ± 0.02 a | 0.43 ± 0.02 b | |||
Adequate intake of dietary fibre d | |||||
Soluble/insoluble dietary fibre ratio | 1:2 | g/g | 1:4.1 | 1:2.7 | |
Adequate intake (AIF) contribution | 25 g/d | % | 21.673 | 60.026 | |
In vitro starch digestibility e | |||||
Starch | % d.m. | 66.5 ± 0.7 b | 63.3 ± 0.1 a | ||
TSH90: total starch hydrolysed at 90 min | % | 84.6 ± 0.1 b | 68.1 ± 2.0 a | ||
AUC: area under the curve of starch digestion | 5934 ± 83 b | 4903 ± 81 a | |||
GI: glycaemic index | 95.0 ± 0.8 b | 85.0 ± 0.8 a | |||
pGL: predicted glycaemic load | % | 28.3 ± 1.2 b | 21.9 ± 0.6 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda-Ramos, K.C.; Haros, C.M. Combined Effect of Chia, Quinoa and Amaranth Incorporation on the Physico-Chemical, Nutritional and Functional Quality of Fresh Bread. Foods 2020, 9, 1859. https://doi.org/10.3390/foods9121859
Miranda-Ramos KC, Haros CM. Combined Effect of Chia, Quinoa and Amaranth Incorporation on the Physico-Chemical, Nutritional and Functional Quality of Fresh Bread. Foods. 2020; 9(12):1859. https://doi.org/10.3390/foods9121859
Chicago/Turabian StyleMiranda-Ramos, Karla Carmen, and Claudia Monika Haros. 2020. "Combined Effect of Chia, Quinoa and Amaranth Incorporation on the Physico-Chemical, Nutritional and Functional Quality of Fresh Bread" Foods 9, no. 12: 1859. https://doi.org/10.3390/foods9121859
APA StyleMiranda-Ramos, K. C., & Haros, C. M. (2020). Combined Effect of Chia, Quinoa and Amaranth Incorporation on the Physico-Chemical, Nutritional and Functional Quality of Fresh Bread. Foods, 9(12), 1859. https://doi.org/10.3390/foods9121859