Determination of the Geographical Origin of Walnuts (Juglans regia L.) Using Near-Infrared Spectroscopy and Chemometrics †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Walnut Sample Acquisition
2.2. Sample Preparation
2.3. Fourier Transform Near-Infrared (FT-NIR) Analysis
2.4. Spectra Pre-Processing
- Wavenumber reduction: In order to reduce e.g., noise, the wavenumber range used can be restricted. In addition, areas with unusable or result distorting signals—particularly water—are excludable and could affect the NIR screening results. Even if the samples are freeze-dried, small differences in water absorbance (bands at about 6900 cm−1 and 5155 cm−1 [28,29,30]) could have a major impact on the classification. The exclusion of the aforementioned wavenumber range was included in the shown optimization only based of the potentially negative influence of the water bands. Thus, the selection does not correspond to a classical variable selection approach. If more than one wavenumber range was used (e.g., 11,550–5500 cm−1 and 5000–3950 cm−1) the following pre-processing steps were applied separately for each wavenumber section to avoid artifacts. These individual sections were assembled together for classification after they had been fully processed [27,31,32].
- Smoothing: Smoothing by a Savitzky–Golay filter can improve the signal-to-noise ratio (S/N ratio) and can be applied after the wavenumber reduction or later. If smoothing was applied at the second position of the pre-processing flow, an additional smoothing was omitted. In general, a second-order smoothing was performed with a frame size of three.
- Multiplicative scatter correction: Multiplicative scatter correction (MSC) is a helpful and in many cases necessary pre-processing strategy to reduce additive and multiplicative effects caused e.g., by different particle sizes. If the data were corrected by MSC [33], the mean spectrum of all samples was used as a reference. Since all wavenumbers have an effect on the mean spectrum, MSC should be performed after wavenumber reduction.
- Detrending: This (polynomial order = 2) was performed to reduce potential baseline shifts.
- Derivative: Another pre-processing strategy for minoring baseline effects is the use of derivatives. The first derivative can reduce offsets and other additive effects, whereas baseline slopes and multiplicative effects can be diminished calculating the second derivative. In the scope of our research, we used gap-segment derivative with a window size of 11 and a filter length of 11.
- Binning: This is an effective tool to reduce the computing time and noise. Since adjacent wavelengths are usually highly correlated in spectroscopic data, it is possible to average them depending on the window size without loss of information. As part of the optimization, binning windows from 1–20 (1, 5, 7, 10, 15, 20) were evaluated (see Figure 1).
- Averaging: This procedure is an indispensable basis for classification. Only in this way reliable classification accuracies can be achieved. In addition to the arithmetic mean, the median can also be applied. The latter is more robust against outliers. An alternative, commonly used in NMR spectroscopy [34], is the selection of a median spectrum.
- Centering: Various methods were applied: mean centering (mean = 0), median centering (median = 0) or none.
2.5. Multivariate Data Analysis
3. Results
3.1. Spectra Interpretation
3.2. Principal Component Analysis
3.3. Optimization of Data Pre-Processing
3.4. Classification of the Geographical Origin
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Food and Agriculture Organization of the United Nations. Statistic Divison. Available online: http://faostat3.fao.org/browse/Q/QC/E (accessed on 4 October 2020).
- Yi, J.; Sun, Y.; Zhu, Z.; Liu, N.; Lu, J. Near-infrared reflectance spectroscopy for the prediction of chemical composition in walnut kernel. Int. J. Food Prop. 2017, 20, 1633–1642. [Google Scholar] [CrossRef]
- Damasceno, N.R.; Pérez-Heras, A.; Serra, M.; Cofán, M.; Sala-Vila, A.; Salas-Salvadó, J.; Ros, E. Crossover study of diets enriched with virgin olive oil, walnuts or almonds. Effects on lipids and other cardiovascular risk markers. Nutr. Metab. Cardiovasc. Dis. 2011, 21 (Suppl. 1), S14–S20. [Google Scholar] [CrossRef]
- Taylor, S.E. Qualified Health Claims: Letter of Enforcement Discretion—Walnuts and Coronary Heart Disease; Docket No 02P-0292; US Food and Drug Administration: Silver Spring, MD, USA, 2004.
- Steven, H.M. The cultivation of walnut. J. For. Comm. 1927, 6, 16–18. [Google Scholar]
- Evans, J. Silviculture of Broadleaved Woodland; Forestry Commission Bulletin 62; Her Majesty’s Stationery Office: London, UK, 1984.
- Savill, P.S. The Silviculture of Trees Used in British Forestry; CABI: Oxfordshire, UK, 2019.
- Europäische Kommission. DOOR—Database of Origin & Registration. Available online: http://ec.europa.eu/agriculture/quality/door/list.html (accessed on 29 September 2020).
- Interpol; Europol. Operation OPSON VII; Analysis Report; Interpol: Lyon, France, 2018.
- UN Comtrade Database. Walnut (in Shell) Export Trade Value and Netweight. Available online: https://comtrade.un.org/data/ (accessed on 3 October 2020).
- Esteki, M.; Farajmand, B.; Amanifar, S.; Barkhordari, R.; Ahadiyan, Z.; Dashtaki, E.; Mohammadlou, M.; Heyden, Y.V. Classification and authentication of Iranian walnuts according to their geographical origin based on gas chromatographic fatty acid fingerprint analysis using pattern recognition methods. Chemom. Intell. Lab. Syst. 2017, 171, 251–258. [Google Scholar] [CrossRef]
- Lavedrine, F.; Ravel, A.; Poupard, A.; Alary, J. Effect of geographic origin, variety and storage on tocopherol concentrations in walnuts by HPLC. Food Chem. 1997, 58, 135–140. [Google Scholar] [CrossRef]
- Popescu, R.; Ionete, R.E.; Botoran, O.R.; Costinel, D.; Bucura, F.; Geana, E.I.; Alabedallat, Y.F.J.; Botu, M. 1H-NMR Profiling and Carbon Isotope Discrimination as Tools for the Comparative Assessment of Walnut (Juglans regia L.) Cultivars with Various Geographical and Genetic Origins—A Preliminary Study. Molecules 2019, 24, 1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krauß, S.; Vieweg, A.; Vetter, W. Stable isotope signatures (δ2H-, δ13C-, δ15N-values) of walnuts (Juglans regia L.) from different regions in Germany. J. Sci. Food Agric. 2020, 100, 1625–1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, X.; Zhang, L.; Li, L.; Ma, N.; Tu, K.; Song, L.; Pan, L. Multisource fingerprinting for region identification of walnuts in Xinjiang combined with chemometrics. J. Food Process Eng. 2018, 41, e12687. [Google Scholar] [CrossRef]
- Jensen, P.N.; Sørensen, G.; Engelsen, S.B.; Bertelsen, G. Evaluation of quality changes in walnut kernels (Juglans regia L.) by Vis/NIR spectroscopy. J. Agric. Food Chem. 2001, 49, 5790–5796. [Google Scholar] [CrossRef] [PubMed]
- Nogales-Bueno, J.; Feliz, L.; Baca-Bocanegra, B.; Hernández-Hierro, J.M.; Heredia, F.J.; Barroso, J.M.; Rato, A.E. Comparative study on the use of three different near infrared spectroscopy recording methodologies for varietal discrimination of walnuts. Talanta 2020, 206, 120189. [Google Scholar] [CrossRef] [PubMed]
- Gałuszka, A.; Konieczka, P.; Migaszewski, Z.M.; Namiesnik, J. Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends Anal. Chem. 2012, 37, 61–72. [Google Scholar] [CrossRef]
- Kramer, J.K.; Azizian, H. FT-NIR the method of choice to verify the authenticity of extra virgin olive oils. NIR News 2017, 28, 6–9. [Google Scholar] [CrossRef]
- Lerma-García, M.; Ramis-Ramos, G.; Herrero-Martínez, J.; Simó-Alfonso, E. Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy. Food Chem. 2010, 118, 78–83. [Google Scholar] [CrossRef]
- Moscetti, R.; Radicetti, E.; Monarca, D.; Cecchini, M.; Massantini, R. Near infrared spectroscopy is suitable for the classification of hazelnuts according to Protected Designation of Origin. J. Sci. Food Agric. 2015, 95, 2619–2625. [Google Scholar] [CrossRef] [PubMed]
- Engel, J.; Gerretzen, J.; Szymańska, E.; Jansen, J.J.; Downey, G.; Blanchet, L.; Buydens, L.M. Breaking with trends in pre-processing? TrAC Trends Anal. Chem. 2013, 50, 96–106. [Google Scholar] [CrossRef]
- Rinnan, Å.; Van Den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Zhao, H.; Guo, B.; Wei, Y.; Zhang, B. Effects of grown origin, genotype, harvest year, and their interactions of wheat kernels on near infrared spectral fingerprints for geographical traceability. Food Chem. 2014, 152, 316–322. [Google Scholar] [CrossRef]
- Richter, B.; Rurik, M.; Gurk, S.; Kohlbacher, O.; Fischer, M. Food monitoring: Screening of the geographical origin of white asparagus using FT-NIR and machine learning. Food Control 2019, 104, 318–325. [Google Scholar] [CrossRef]
- León, L.; Garrido-Varo, A.; Downey, G. Parent and harvest year effects on near-infrared reflectance spectroscopic analysis of olive (Olea europaea L.) fruit traits. J. Agric. Food Chem. 2004, 52, 4957–4962. [Google Scholar] [CrossRef]
- Arndt, M.; Rurik, M.; Drees, A.; Bigdowski, K.; Kohlbacher, O.; Fischer, M. Comparison of different sample preparation techniques for NIR screening and their influence on the geographical origin determination of almonds (Prunus dulcis MILL.). Food Control 2020, 115, 107302. [Google Scholar] [CrossRef]
- Weyer, L.; Workman, J.J., Jr. Practical Guide and Spectral Atlas for Interpretive Near-Infrared Spectroscopy; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Büning-Pfaue, H. Analysis of water in food by near infrared spectroscopy. Food Chem. 2003, 82, 107–115. [Google Scholar] [CrossRef]
- Buijs, K.; Choppin, G. Near-infrared studies of the structure of water. I. Pure Water. J. Chem. Phys. 1963, 39, 2035–2041. [Google Scholar] [CrossRef] [Green Version]
- Teye, E.; Huang, X.; Dai, H.; Chen, Q. Rapid differentiation of Ghana cocoa beans by FT-NIR spectroscopy coupled with multivariate classification. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 114, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Moscetti, R.; Monarca, D.; Cecchini, M.; Haff, R.P.; Contini, M.; Massantini, R. Detection of mold-damaged chestnuts by near-infrared spectroscopy. Postharvest Biol. Technol. 2014, 93, 83–90. [Google Scholar] [CrossRef]
- Dhanoa, M.; Lister, S.; Sanderson, R.; Barnes, R. The link between multiplicative scatter correction (MSC) and standard normal variate (SNV) transformations of NIR spectra. J. Near Infrared Spectrosc. 1994, 2, 43–47. [Google Scholar] [CrossRef]
- Cannistraci, C.V.; Abbas, A.; Gao, X. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra. Sci. Rep. 2015, 5, 8017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Fukunaga, K. Introduction to Statistical Pattern Recognition; Academic Press: San Diego, CA, USA, 2013. [Google Scholar]
- Varma, S.; Simon, R. Bias in error estimation when using cross-validation for model selection. BMC Bioinform. 2006, 7, 91. [Google Scholar] [CrossRef] [Green Version]
- Krstajic, D.; Buturovic, L.J.; Leahy, D.E.; Thomas, S. Cross-validation pitfalls when selecting and assessing regression and classification models. J. Cheminform. 2014, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Wold, H. Soft modelling by latent variables: The non-linear iterative partial least squares (NIPALS) approach. J. Appl. Probab. 1975, 12, 117–142. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Shenk, J.S.; Workman, J.J., Jr.; Westerhaus, M.O. Application of NIR spectroscopy to agricultural products. In Handbook of Near-Infrared Analysis; Practical Spectroscopy Series; CRC Press: Boca Raton, FL, USA, 2001; Volume 35, pp. 347–387. [Google Scholar]
- Pannico, A.; Schouten, R.; Basile, B.; Romano, R.; Woltering, E.; Cirillo, C. Non-destructive detection of flawed hazelnut kernels and lipid oxidation assessment using NIR spectroscopy. J. Food Eng. 2015, 160, 42–48. [Google Scholar] [CrossRef]
- Upchurch, R.G. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett. 2008, 30, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Ufer, G.; Bartels, D. Lipid signalling in plant responses to abiotic stress. Plant Cell Environ. 2016, 39, 1029–1048. [Google Scholar] [CrossRef] [PubMed]
- Dogan, M.; Akgul, A. Fatty acid composition of some walnut (Juglans regia L.) cultivars from east Anatolia. Grasas Aceites 2005, 56, 328–331. [Google Scholar] [CrossRef] [Green Version]
- Greve, L.C.; McGranahan, G.; Hasey, J.; Snyder, R.; Kelly, K.; Goldhamer, D.; Labavitch, J.M. Variation in polyunsaturated fatty acids composition of Persian walnut. J. Am. Soc. Hortic. Sci. 1992, 117, 518–522. [Google Scholar] [CrossRef]
- Zwarts, G.S.; McNeil, D.L. Fatty acid content of New Zealand-grown walnuts (Juglans regia L.). Int. J. Food Sci. Nutr. 1999, 50, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, P.; Spizzichino, A. The scattering of electromagnetic waves from rough surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 1987, 26, 639–647. [Google Scholar]
- Mahoney, N.; Molyneux, R.; McKenna, J.; Leslie, C.; McGranahan, G. Resistance of ‘Tulare’ walnut (Juglans regia cv. Tulare) to aflatoxigenesis. J. Food Sci. 2003, 68, 619–621. [Google Scholar] [CrossRef]
- Arndt, M.; Rurik, M.; Drees, A.; Ahlers, C.; Feldmann, S.; Kohlbacher, O.; Fischer, M. Food Authentication: Determination of the geographical origin of almonds (Prunus dulcis MILL.) via near-infrared spectroscopy. Microchem. J. 2020, 160, 105702. [Google Scholar]
- Wu, G.; Liu, Q.; Da Silva, J.T. Ultrastructure of pericarp and seed capsule cells in the developing walnut (Juglans regia L.) fruit. S. Afr. J. Bot. 2009, 75, 128–136. [Google Scholar] [CrossRef]
- Hawker, J.S.; Buttrose, M.S. Development of the almond nut (Prunus dulcis (Mill.) DA Webb). Anatomy and chemical composition of fruit parts from anthesis to maturity. Ann. Bot. 1980, 46, 313–321. [Google Scholar] [CrossRef]
- Segelke, T.; Schelm, S.; Ahlers, C.; Fischer, M. Food authentication: Truffle (Tuber spp.) species differentiation by FT-NIR and chemometrics. Foods 2020, 9, 922. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Cavinato, A.G.; Mayes, D.M.; Smiley, S.; Huang, Y.; Al-Holy, M.; Rasco, B.A. Bruise detection in Pacific pink salmon (Oncorhynchus gorbuscha) by visible and short-wavelength near-infrared (SW-NIR) spectroscopy (600−1100 nm). J. Agric. Food Chem. 2003, 51, 6404–6408. [Google Scholar] [CrossRef] [PubMed]
- Biancolillo, A.; De Luca, S.; Bassi, S.; Roudier, L.; Bucci, R.; Magrì, A.D.; Marini, F. Authentication of an Italian PDO Hazelnut (“Nocciola Romana”) by NIR spectroscopy. Environ. Sci. Pollut. Res. 2018, 28780–28786. [Google Scholar] [CrossRef]
- Firmani, P.; Bucci, R.; Marini, F.; Biancolillo, A. Authentication of “Avola Almonds” by Near Infrared (NIR) Spectroscopy and chemometrics. J. Food Compos. Anal. 2019, 82, 103235. [Google Scholar] [CrossRef]
- Segelke, T.; von Wuthenau, K.; Kuschnereit, A.; Müller, M.-S.; Fischer, M. Origin determination of walnuts (Juglans regia L.) on a worldwide and regional level by inductively coupled plasma mass spectrometry and chemometrics. Foods 2020, 9, 1708. [Google Scholar] [CrossRef]
- Fatahi, R.; Ebrahimi, A.; Zamani, Z. Characterization of some Iranians and foreign walnut genotypes using morphological traits and RAPD markers. Hortic. Environ. Biotechnol. 2010, 51, 51–60. [Google Scholar]
- Valdebenito, D.; Farías, D.; Oyanedel, E.; Castro, M.; Lampinen, B.; Tixier, A.; Saa, S. The morphology of a Walnut (Juglans regia L.) shoot is affected by its position in the canopy and correlated to the number and size of its fruits. Sci. Hortic. 2017, 220, 303–309. [Google Scholar] [CrossRef]
- Borràs, E.; Ferré, J.; Boqué, R.; Mestres, M.; Aceña, L.; Busto, O. Data fusion methodologies for food and beverage authentication and quality assessment—A review. Anal. Chim. Acta 2015, 891, 1–14. [Google Scholar] [CrossRef]
- Schwolow, S.; Gerhardt, N.; Rohn, S.; Weller, P. Data fusion of GC-IMS data and FT-MIR spectra for the authentication of olive oils and honeys—Is it worth to go the extra mile? Anal. Bioanal. Chem. 2019, 411, 6005–6019. [Google Scholar] [CrossRef]
Country of Origin | Samples | Major Varieties |
---|---|---|
Switzerland | 31 | Various |
China | 13 | Chandler, Tulare |
France | 63 | Fernor, Franquette, Lara |
Italy | 33 | Chandler, Lara, Tulare |
Germany | 49 | Various |
Hungary | 11 | Various |
USA | 12 | Various |
H7 | H7-1 | H7-2 | H7-3 | H7-4 | |
---|---|---|---|---|---|
Wavenumber range [cm−1] | 8000–3950 | 11,000–3950 | 8000–3950 | 8000–3950 | 8000–3950 |
Smoothing | no | no | no | no | no |
MSC | yes | yes | yes | yes | yes |
Detrending | no | no | no | no | no |
Derivative | none | none | first | second | none |
Binning | 1 | 1 | 1 | 1 | 1 |
Averaging | mean | mean | mean | mean | median |
Centering | median | median | median | median | median |
Classification Accuracy [%] | 77.00 | 72.70 | 61.60 | 49.10 | 61.00 |
Standard Deviation [%] | 1.60 | 1.70 | 2.00 | 2.90 | 2.34 |
L1 | L2 | L3 | L4 | L5 | |
---|---|---|---|---|---|
Wavenumber range [cm−1] | 11,550–3950 | 11,550–6500 | |||
Smoothing | no | no | position 2 | position 6 | position 6 |
MSC | yes | yes | yes | no | yes |
Detrending | no | no | no | yes | no |
Derivative | second | second | second | none | second |
Binning | 20 | 20 | 20 | 20 | 7 |
Averaging | median spectrum | median | |||
Centering | mean | none | median | none | mean |
Classification Accuracy [%] | 13.58 | 13.77 | 13.87 | 14.25 | 14.43 |
Standard Deviation [%] | 2.34 | 2.93 | 2.55 | 1.61 | 2.13 |
H1 | H2 | H3 | H4 | H5 | |
---|---|---|---|---|---|
Wavenumber range [cm−1] | 8000–3950 | ||||
Smoothing | position 2 | no | position 2 | No | position 2 |
MSC | no | no | no | No | no |
Detrending | no | no | no | No | no |
Derivative | none | none | none | None | none |
Binning | 1 | 1 | 1 | 1 | 1 |
Averaging | mean | mean | mean | Mean | mean |
Centering | median | none | none | Median | mean |
Classification accuracy [%] | 79.02 | 78.32 | 77.99 | 77.87 | 77.48 |
Standard deviation [%] | 1.61 | 2.19 | 2.37 | 1.95 | 2.32 |
H6 | H7 | H8 | H9 | H10 | |
---|---|---|---|---|---|
Wavenumber range [cm−1] | 8000–3950 | 8000–3950 | 9000–3950 | 8000–3950 | 8000–3950 |
Smoothing | no | no | no | no | position 2 |
MSC | no | yes | no | yes | no |
Detrending | no | no | no | no | no |
Derivative | none | none | none | none | none |
Binning | 1 | 1 | 1 | 1 | 1 |
Averaging | mean | mean | mean | mean | mean |
Centering | mean | median | none | mean | median |
Classification accuracy [%] | 77.08 | 77.00 | 76.70 | 76.44 | 76.39 |
Standard deviation [%] | 1.68 | 1.60 | 2.17 | 1.57 | 2.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arndt, M.; Drees, A.; Ahlers, C.; Fischer, M. Determination of the Geographical Origin of Walnuts (Juglans regia L.) Using Near-Infrared Spectroscopy and Chemometrics. Foods 2020, 9, 1860. https://doi.org/10.3390/foods9121860
Arndt M, Drees A, Ahlers C, Fischer M. Determination of the Geographical Origin of Walnuts (Juglans regia L.) Using Near-Infrared Spectroscopy and Chemometrics. Foods. 2020; 9(12):1860. https://doi.org/10.3390/foods9121860
Chicago/Turabian StyleArndt, Maike, Alissa Drees, Christian Ahlers, and Markus Fischer. 2020. "Determination of the Geographical Origin of Walnuts (Juglans regia L.) Using Near-Infrared Spectroscopy and Chemometrics" Foods 9, no. 12: 1860. https://doi.org/10.3390/foods9121860
APA StyleArndt, M., Drees, A., Ahlers, C., & Fischer, M. (2020). Determination of the Geographical Origin of Walnuts (Juglans regia L.) Using Near-Infrared Spectroscopy and Chemometrics. Foods, 9(12), 1860. https://doi.org/10.3390/foods9121860