Gas Chromatography Olfactometry (GC-O) for the (Semi)Quantitative Screening of Wine Aroma
Abstract
:1. Wine Aroma
2. Gas Chromatography-Olfactometry as a Technique for Screening Odour-Active Molecules
- (1)
- To be concentrated enough to detect and identify all relevant odorant of the product
- (2)
- To be truly representative of the vapour phases emanated from the product
3. Sample Preparation Strategies
3.1. Preparation of “Total Extracts”
3.2. Preparation of Headspace-Extracts
- (1)
- Direct sampling of equilibrated headspace (static headspace)
- (2)
- SPME (or equivalent) sampling of headspace
- (3)
- Dynamic sampling of headspace (purge and trap)
4. Olfactometric Strategies
- (1)
- Based on the determination of thresholds (AEDA, Charm analysis)
- (2)
- Based on the distribution of thresholds among judges (detection frequency) (NIF, SNIF)
- (3)
- Based on the measurement of odour intensity (Posterior Intensity, OSME, Finger Span)
4.1. Strategies Based on Determination of Thresholds
4.2. Strategies Based on the Distribution of Odour Thresholds among Judges (Detection Frequency)
4.3. Strategies Based on the Measurement of Odour Intensity
4.4. Choosing the Most Adequate Olfactometric Strategy
5. Identification the Odorants Detected in Wine by GC-O
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saenz-Navajas, M.P.; Ballester, J.; Pecher, C.; Peyron, D.; Valentin, D. Sensory drivers of intrinsic quality of red wines Effect of culture and level of expertise. Food Res. Int. 2013, 54, 1506–1518. [Google Scholar] [CrossRef]
- Picard, M.; Tempere, S.; de Revel, G.; Marchand, S. A sensory study of the ageing bouquet of red Bordeaux wines: A three-step approach for exploring a complex olfactory concept. Food Qual. Prefer. 2015, 42, 110–122. [Google Scholar] [CrossRef]
- Parr, W.V.; Mouret, M.; Blackmore, S.; Pelquest-Hunt, T.; Urdapilleta, I. Representation of complexity in wine: Influence of expertise. Food Qual. Prefer. 2011, 22, 647–660. [Google Scholar] [CrossRef]
- Spence, C.; Wang, Q.J. What does the term ’complexity’ mean in the world of wine? Int. J. Gastron. Food Sci. 2018, 14, 45–54. [Google Scholar] [CrossRef]
- Lytra, G.; Tempere, S.; Marchand, S.; de Revel, G.; Barbe, J.C. How do esters and dimethyl sulphide concentrations affect fruity aroma perception of red wine? Demonstration by dynamic sensory profile evaluation. Food Chem. 2016, 194, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Lopez, R.; Ferreira, V. An automated gas chromatographic-mass spectrometric method for the quantitative analysis of the odor-active molecules present in the vapors emanated from wine. J. Chromatogr. A 2018. [Google Scholar] [CrossRef] [Green Version]
- Loscos, N.; Hernandez-Orte, P.; Cacho, J.; Ferreira, V. Release and formation of varietal aroma compounds during alcoholic fermentation from nonfloral grape odorless flavor precursors fractions. J. Agric. Food Chem. 2007, 55, 6674–6684. [Google Scholar] [CrossRef]
- De-la-Fuente-Blanco, A.; Sáenz-Navajas, M.-P.; Valentin, D.; Ferreira, V. Fourteen ethyl esters of wine can be replaced by simpler ester vectors without compromising quality but at the expense of increasing aroma concentration. Food Chem. 2020, 307, 125553. [Google Scholar] [CrossRef] [Green Version]
- De-la-Fuente-Blanco, A.; Sáenz-Navajas, M.-P.; Ferreira, V. On the effects of higher alcohols on red wine aroma. Food Chem. 2016, 210, 107–114. [Google Scholar] [CrossRef]
- Fuller, G.H.; Tisserand, G.A.; Steltenkamp, R. Gas Chromatograph with human sensor—Perfumer model. Ann. N. Y. Acad. Sci. 1964, 116, 711. [Google Scholar] [CrossRef]
- Wildenradt, H.L.; Christensen, E.N.; Stackler, B.; Caputi, A.; Slinkard, K.; Scutt, K. Volatile constituents of grape leaves. I. Vitis Vinifera variety Chenin blanc. Am. J. Enol. Vitic. 1975, 26, 148–153. [Google Scholar]
- Stern, D.J.; Guadagni, D.; Stevens, K.L. Aging of wine—Qualitative changes in volatiles of Zinfandel wine during 2 years. Am. J. Enol. Vitic. 1975, 26, 208–213. [Google Scholar]
- Rapp, A.; Knipser, W.; Engel, L.; Ullemeyer, H.; Heimann, W. Off-falvor compounds in the berry and wine aroma of grapevine hybrids. I. The strawberry-like flavor. Vitis 1980, 19, 13–23. [Google Scholar]
- Acree, T.; Barnard, J.; Cunningham, D. A procedure for the sensory analysis of gas chromatographic effluents. Food Chem. 1984, 14, 273–286. [Google Scholar] [CrossRef]
- Schieberle, P.; Grosch, W. Evaluation of the flavor of wheat and rye bread crusts by Aroma Extract Dilution Analysis. Zeitschrift Lebensmittel-Untersuchung Forschung 1987, 185, 111–113. [Google Scholar] [CrossRef]
- Guth, H. Identification of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3022–3026. [Google Scholar] [CrossRef]
- Guth, H. Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Abbott, N.; Etievant, P.; Langlois, D.; Lesschaeve, I.; Issanchou, S. Evaluation of the representativeness of the odor of beer extracts prior to analysis by GC eluate sniffing. J. Agric. Food Chem. 1993, 41, 777–780. [Google Scholar] [CrossRef]
- Moio, L.; Chambellant, E.; Lesschaeve, I.; Issanchou, S.; Schlich, P.; Etievant, P.X. Production of representative wine extracts for chemical and olfactory analysis. Ital. J. Food Sci. 1995, 7, 265–278. [Google Scholar]
- Priser, C.; Etievant, P.X.; Nicklaus, S.; Brun, O. Representative champagne wine extracts for gas chromatography olfactometry analysis. J. Agric. Food Chem. 1997, 45, 3511–3514. [Google Scholar] [CrossRef]
- Engel, W.; Bahr, W.; Schieberle, P. Solvent assisted flavour evaporation—A new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. Eur. Food Res. Technol. 1999, 209, 237–241. [Google Scholar] [CrossRef]
- Ferreira, V.; Ortega, L.; Escudero, A.; Cacho, J.F. A comparative study of the ability of different solvents and adsorbents to extract aroma compounds from alcoholic beverages. J. Chromatogr. Sci. 2000, 38, 469–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, V.; Jarauta, I.; Ortega, L.; Cacho, J. Simple strategy for the optimization of solid-phase extraction procedures through the use of solid–liquid distribution coefficients: Application to the determination of aliphatic lactones in wine. J. Chromatogr. A 2004, 1025, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Cullere, L.; Bueno, M.; Cacho, J.; Ferreira, V. Selectivity and efficiency of different reversed-phase and mixed-mode sorbents to preconcentrate and isolate aroma molecules. J. Chromatogr. A 2010, 1217, 1557–1566. [Google Scholar] [CrossRef]
- Ferreira, V.; Jarauta, I.; Lopez, R.; Cacho, J. Quantitative determination of sotolon, maltol and free furaneol in wine by solid-phase extraction and gas chromatography-ion-trap mass spectrometry. J. Chromatogr. A 2003, 1010, 95–103. [Google Scholar] [CrossRef]
- Saenz-Navajas, M.P.; Campo, E.; Cullere, L.; Fernandez-Zurbano, P.; Valentin, D.; Ferreira, V. Effects of the Nonvolatile Matrix on the Aroma Perception of Wine. J. Agric. Food Chem. 2010, 58, 5574–5585. [Google Scholar] [CrossRef]
- Cullere, L.; Escudero, A.; Cacho, J.; Ferreira, V. Gas Chromatography-Olfactometry and chemical quantitative study of the aroma of six premium quality Spanish aged red wines. J. Agric. Food Chem. 2004, 52, 1653–1660. [Google Scholar] [CrossRef]
- Escudero, A.; Gogorza, B.; Melus, M.A.; Ortin, N.; Cacho, J.; Ferreira, V. Characterization of the aroma of a wine from Maccabeo. Key role played by compounds with low odor activity values. J. Agric. Food Chem. 2004, 52, 3516–3524. [Google Scholar] [CrossRef]
- Lyu, J.; Ma, Y.; Xu, Y.; Nie, Y.; Tang, K. Characterization of the key aroma compounds in Marselan wine by Gas Chromatography-Olfactometry, quantitative measurements, aroma recombination, and omission tests. Molecules 2019, 24, 2978. [Google Scholar] [CrossRef] [Green Version]
- Lan, Y.-B.; Xiang, X.-F.; Qian, X.; Wang, J.-M.; Ling, M.-Q.; Zhu, B.-Q.; Liu, T.; Sun, L.-B.; Shi, Y.; Reynolds, A.G.; et al. Characterization and differentiation of key odor-active compounds of ’Beibinghong’ icewine and dry wine by gas chromatography-olfactometry and aroma reconstitution. Food Chem. 2019, 287, 186–196. [Google Scholar] [CrossRef]
- Arthur, C.L.; Pawliszyn, J. Solid-phase microextraction with thermal-desorption using fused-silica optical fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Ferreira, V.; Herrero, P.; Zapata, J.; Escudero, A. Coping with matrix effects in headspace solid phase microextraction gas chromatography using multivariate calibration strategies. J. Chromatogr. A 2015, 1407, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Siebert, T.E.; Barter, S.R.; de Barros Lopes, M.A.; Herderich, M.J.; Francis, I.L. Investigation of ’stone fruit’ aroma in Chardonnay, Viognier and botrytis Semillon wines. Food Chem. 2018, 256, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Ubeda, C.; Kania-Zelada, I.; del Barrio-Galán, R.; Medel-Marabolí, M.; Gil, M.; Peña-Neira, Á. Study of the changes in volatile compounds, aroma and sensory attributes during the production process of sparkling wine by traditional method. Food Res. Int. 2019, 119, 554–563. [Google Scholar] [CrossRef]
- Herrington, J.S.; Gomez-Rios, G.A.; Myers, C.; Stidsen, G.; Bell, D.S. Hunting Molecules in Complex Matrices with SPME Arrows: A Review. Separations 2020, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Bensafi, M.; Pouliot, S.; Sobel, N. Odorant-specific Patterns of Sniffing during Imagery Distinguish ’Bad ’ and ’Good’ Olfactory Imagers. Chem. Senses 2005, 30, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Sobel, N.; Khan, R.M.; Hartley, C.A.; Sullivan, E.V.; Gabrieli, J.D.E. Sniffing longer rather than stronger to maintain olfactory detection threshold. Chem. Senses 2000, 25, 1–8. [Google Scholar] [CrossRef]
- Escudero, A.; San-Juan, F.; Franco-Luesma, E.; Cacho, J.; Ferreira, V. Is orthonasal olfaction an equilibrium driven process? Design and validation of a dynamic purge and trap system for the study of orthonasal wine aroma. Flavour Fragr. J. 2014, 29, 296–304. [Google Scholar] [CrossRef]
- San-Juan, F.; Pet’ka, J.; Cacho, J.; Ferreira, V.; Escudero, A. Producing headspace extracts for the gas chromatography-olfactometric evaluation of wine aroma. Food Chem. 2010, 123, 188–195. [Google Scholar] [CrossRef]
- Lopez, P.; Batlle, R.; Nerin, C.; Cacho, J.; Ferreira, V. Use of new generation poly(styrene-divinylbenzene) resins for gas-phase trapping-thermal desorption—Application to the retention of seven volatile organic compounds. J. Chromatogr. A 2007, 1139, 36–44. [Google Scholar] [CrossRef]
- Luong, J.; Gras, R.; Jennings, W. An advanced solventless column test for capillary GC columns. J. Sep. Sci. 2007, 30, 2480–2492. [Google Scholar] [CrossRef]
- Wang, J.M.; Gambetta, J.M.; Jeffery, D.W. Comprehensive study of volatile compounds in two Australian Rose wines: Aroma Extract Dilution Analysis (AEDA) of extracts prepared using Solvent-Assisted Flavor Evaporation (SAFE) or Headspace Solid-Phase Extraction (HS-SPE). J. Agric. Food Chem. 2016, 64, 3838–3848. [Google Scholar] [CrossRef] [PubMed]
- Van Ruth, S.M. Methods for gas chromatography-olfactometry: A review. Biomol. Eng. 2001, 17, 121–128. [Google Scholar] [CrossRef]
- Plutowska, B.; Wardencki, W. Application of gas chromatography-olfactometry (GC-O) in analysis and quality assessment of alcoholic beverages—A review. Food Chem. 2008, 107, 449–463. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices; Springer: New York, NY, USA, 2010. [Google Scholar]
- Pollien, P.; Ott, A.; Montigon, F.; Baumgartner, M.; MunozBox, R.; Chaintreau, A. Hyphenated headspace gas chromatography sniffing technique: Screening of impact odorants and quantitative aromagram comparisons. J. Agric. Food Chem. 1997, 45, 2630–2637. [Google Scholar] [CrossRef]
- Van Ruth, S.M.; Roozen, J.P. Gas-Chromatography sniffing port analysis and sensory evaluation of commercially dried bell peppers (capsicum-annuum) after rehydration. Food Chem. 1994, 51, 165–170. [Google Scholar] [CrossRef]
- Delahunty, C.M.; Eyres, G.; Dufour, J.P. Gas chromatography-olfactometry. J. Sep. Sci. 2006, 29, 2107–2125. [Google Scholar] [CrossRef]
- Pollien, P.; Fay, L.B.; Baumgartner, M.; Chaintreau, A. First attempt of odorant quantitation using Gas Chromatography−Olfactometry. Anal. Chem. 1999, 71, 5391–5397. [Google Scholar] [CrossRef]
- McDaniel, M.R.; Miranda-Lopez, R.; Watson, B.T.; Micheals, N.J.; Libbey, L.M. Pinot noir aroma: A sensory/gas chromatographic approach. Dev. Food Sci. 1990, 24, 23–36. [Google Scholar]
- Etiévant, P.X.; Callement, G.; Langlois, D.; Issanchou, S.; Coquibus, N. Odor intensity evaluation in Gas Chromatography—Olfactometry by Finger Span method. J. Agric. Food Chem. 1999, 47, 1673–1680. [Google Scholar] [CrossRef]
- Stevens, S. Cross-modality matching. In Psychophysics; Transaction Publishers: Piscataway, NJ, USA, 1975; pp. 99–133. [Google Scholar]
- Stevens, S.; Stone, G. Finger span: Ratio scale, category scale, and JND scale. J. Exp. Psychol. 1959, 57, 91–95. [Google Scholar] [CrossRef]
- Pet’ka, J.; Ferreira, V.; Cacho, J. Posterior evaluation of odour intensity in gas chromatography-olfactometry: Comparison of methods for calculation of panel intensity and their consequences. Flavour Fragr. J. 2005, 20, 278–287. [Google Scholar] [CrossRef]
- Dravnieks, A. Atlas of Odor Character Profiles; American Society for Testing and Materials: West Conshohocken, PA, USA, 1985. [Google Scholar]
- Ferreira, V.; Pet’ka, J.; Aznar, M.; Cacho, J. Quantitative gas chromatography-olfactometry. Analytical characteristics of a panel of judges using a simple quantitative scale as gas chromatography detector. J. Chromatogr. A 2003, 1002, 169–178. [Google Scholar] [CrossRef]
- Ferreira, V.; Pet’ka, J.; Aznar, M. Aroma Extract Dilution Analysis. Precision and optimal experimental design. J. Agric Food Chem. 2002, 50, 1508–1514. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; Ortin, N.; Escudero, A.; Lopez, R.; Cacho, J. Chemical characterization of the aroma of Grenache rose wines: Aroma extract dilution analysis, quantitative determination, and sensory reconstitution studies. J. Agric. Food Chem. 2002, 50, 4048–4054. [Google Scholar] [CrossRef] [PubMed]
- Frijters, J.E.R. Critical analysis of odor unit number and its use. Chem. Senses Flavour 1978, 3, 227–233. [Google Scholar] [CrossRef]
- Stevens, S.S. To honor Fechner and repeal his law—A power function, not a LOG function, describes operating characteristics of a sensory system. Science 1961, 133, 80. [Google Scholar] [CrossRef]
- Etiévant, P.X. Odour intensity evaluation in GC-Olfactometry by Finger Span method. In Analysis of Taste and Aroma; Jackson, J.F., Linskens, H.F., Eds.; Springer Berlin Heidelberg: Berlin, Germany, 2002; pp. 223–237. [Google Scholar] [CrossRef]
- Campo, E.; Ferreira, V.; Escudero, A.; Cacho, J. Prediction of the wine sensory properties related to grape variety from dynamic-headspace gas chromatography-olfactometry data. J. Agric Food Chem. 2005, 53, 5682–5690. [Google Scholar] [CrossRef]
- Campo, E.; Cacho, J.; Ferreira, V. The chemical characterization of the aroma of dessert and sparkling white wines (Pedro Ximenez, Fino, Sauternes, and Cava) by gas chromatography-olfactometry and chemical quantitative analysis. J. Agric Food Chem. 2008, 56, 2477–2484. [Google Scholar] [CrossRef]
- Saenz-Navajas, M.P.; Alegre, Y.; de-la-Fuente, A.; Ferreira, V.; Garcia, D.; Eizaguirre, S.; Razquin, I.; Hernandez-Orte, P. Rapid sensory-directed methodology for the selection of high-quality aroma wines. J. Sci. Food Agric. 2016, 96, 4250–4262. [Google Scholar] [CrossRef] [Green Version]
- Alegre, Y.; Saenz-Navajas, M.P.; Ferreira, V.; Garcia, D.; Razquin, I.; Hernandez-Orte, P. Rapid strategies for the determination of sensory and chemical differences between a wealth of similar wines. Eur. Food Res. Technol. 2017, 243, 1295–1309. [Google Scholar] [CrossRef]
- Barata, A.; Campo, E.; Malfeito-Ferreira, M.; Loureiro, V.; Cacho, J.; Ferreira, V. Analytical and sensorial characterization of the aroma of wines produced with sour rotten grapes using GC-O and GC-MS: Identification of key aroma compounds. J. Agric. Food Chem. 2011, 59, 2543–2553. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; San Juan, F.; Escudero, A.; Cullere, L.; Fernandez-Zurbano, P.; Saenz-Navajas, M.P.; Cacho, J. Modeling quality of premium Spanish red wines from Gas Chromatography-Olfactometry data. J. Agric. Food Chem. 2009, 57, 7490–7498. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V. Identification of impact odorants of wines. In Wine Chemistry and Biochemistry; Moreno-Arribas, M.V., Polo, M.C., Eds.; Springer: New York, NY, USA, 2009; pp. 393–415. [Google Scholar] [CrossRef]
- Grob, K.; Grob, G. Testing capillary Gas-Chromatographic columns. J. Chromatogr. 1981, 219, 13–20. [Google Scholar] [CrossRef]
- Campo, E.; Ferreira, V.; Lopez, R.; Escudero, A.; Cacho, J. Identification of three novel compounds in wine by means of a laboratory-constructed multidimensional gas chromatographic system. J. Chromatogr. A 2006, 1122, 202–208. [Google Scholar] [CrossRef]
- Gerstel. Available online: https://www.gerstel.com/en/olfactory-detection-port.htm (accessed on 20 November 2020).
- Pubchem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 20 November 2020).
- Pherobase. Available online: https://www.pherobase.com/kovats/ (accessed on 20 November 2020).
- Flavornet. Available online: https://www.flavornet.org/f_kovats.html (accessed on 20 November 2020).
- Molyneux, R.J.; Schieberle, P. Compound identification: A Journal of agricultural and food chemistry perspective. J. Agric. Food Chem. 2007, 55, 4625–4629. [Google Scholar] [CrossRef]
- Molyneux, R.J.; Beck, J.J.; Colegate, S.M.; Edgar, J.A.; Gaffield, W.; Gilbert, J.; Hofmann, T.; McConnell, L.L.; Schieberle, P. Guidelines for unequivocal structural identification of compounds with biological activity of significance in food chemistry (IUPAC Technical Report). Pure Appl. Chem. 2019, 91, 1417–1437. [Google Scholar] [CrossRef] [Green Version]
Property | Vanillin | 2,4,6-Trichloroanisole (TCA) |
---|---|---|
Molecular weight (g mol−1) | 152.2 | 211.5 |
Boiling point (°C) | 285 | 241 |
Log P | 0.59 | 4.11 |
Water solubility (mg L−1) | 6875 | 10 |
Henry’s volatility constant (atm L mol−1 at 25 °C) | 2.5 × 10−9 | 1.3 × 10−4 |
Log Koa | 8.3 | 6.4 |
Odour threshold in air (µg L−1) | 0.008 | 0.004 |
Odour threshold in water (µg L−1) | 100 | 0.00003 |
Questions | Total-Extract Based | Representative Headspace-Extract Based |
---|---|---|
Goal. What do we rank in the GC-O screening operation? | All the odorants present in the product, regardless of differences in transference rates to vapour phases | The odorants responsible for the odours and flavours elicited by the product |
Emphasis | The odorants in the product | The odorants in the vapour phases emanated from the product |
Extract. What should it contain? | All the odorants present in the product (at 100%) | The odorants present in the vapour phases emanated from the product |
Result. What have we ranked? | Odorants attending to their olfactory importance in the extract | Odorants attending to their olfactory importance in the vapour phases |
How results of the GC-O relate to the aroma-related sensory properties of the product? | Poorly. Olfactometric scores overemphasize the importance of the odorants more retained in the food matrix. A valid hierarchy is obtained only after OAV determination | If the extract is really representative of product headspaces, olfactometric scores should be closely related to aroma-related sensory properties of the product |
Disadvantages/difficulties | Too much work. The hierarchy only will emerge after all OAVs have been estimated (all odorants have to be identified and quantified) | It is difficult to ensure that the extract is really representative of the vapor phases. Some odorants can be at too low levels in the extract for identification and quantification (a more concentrated extract may be necessary) |
Global assessment | Excruciatingly long but trustful | Economical and efficient if a good and representative headspace extract is obtained |
IR DBWax | IR DB5 | Compound | Main Aromas |
---|---|---|---|
910 | 2-Methybutyraldehyde | Bread crust, closed | |
930 | Pentanal | Aldehyde | |
934 | 730 | Acetal (1,1-diethoxyethane) | Sweet, strawberry, aniseed |
935 | Propyl acetate | Alcoholic, sweet, fruit | |
937 | 755 | Ethyl propanoate | Solvent, sweet, alcoholic |
953 | 752 | Ethyl isobutyrate (ethyl 2-methylpropanoate) | Lactic, strawberry, sweet |
958 | Diacetyl (2,3-butandione) | Butter, lactic | |
964 | 2,4,5-Trimethyl-1,3-dioxolane | Solvent, sweet | |
974 | Isopropyl acetate | Fruit | |
995 | Unknown | Plastic, adhesive | |
1005 | 833 | Methyl 2-methylbutyrate | Fruit, sweet |
1012 | 906 | Unknown | Alcoholic, solvent, orange peel |
1013 | 837 | Isobutyl acetate | Fruit, apple |
1020 | 943 | α-Pinene | Mango, tropical, green, citrus |
1025 | 803 | Methyl 3-methylbutyrate | Fruit, sweet, anise |
1037 | 801 | Ethyl butyrate | Strawberry, sweet, lactic, fruit |
1052 | 847 | Ethyl 2-methylbutyrate | Fruit, sweet, strawberry, anise |
1057 | 695 | 2,3-Pentanedione | Butter, cream |
1057 | 852 | 2-Ethoxy-3,5-hexadiene | Geranium, metallic |
1060 | Dimethyl disulphide | Garlic, sweet, sulphur | |
1070 | 853 | Ethyl 3-methylbutyrate (ethyl isovalerate) | Fruit, sweet, anise |
1091 | 800 | Hexanal | Herbaceous |
1095 | 2,5-Dimethyl-1,4-dioxane | Green, grass | |
1098 | Butyl acetate | Green, herbaceous | |
1102 | Isobutanol (2-methylpropanol) | Fusel, humidity, bitter | |
1106 | 1-Hexen-3-one | Almond, toasted | |
1112 | 904 | 3-Methyl-2-buten-thiol | Rubber, hop |
1127 | 875 | Isoamyl acetate | Banana, adhesive |
1135 | 4-Methyl-3-penten-2-one | Floral, green | |
1141 | 683 | 1-Penten-3-ol | Green, toasted |
1142 | 941 | Ethyl 2-methylpentanoate | Strawberry, fruit |
1147 | 800 | (Z)-3-hexenal | Green, grass |
1150 | 1017 | β-Pinene | Green, grass, green apple |
1171 | 1032 | 3-Carene | Green, vegetal, grass, geranium |
1185 | 960 | Ethyl 3-methylpentanoate | Fruit, strawberry |
1198 | 969 | Ethyl 4-methylpentanoate | Fruit, anise |
1200 | 857 | (E)-2-Hexenal | Toasted |
1218 | 753 | Isoamyl alcohol | Foot odour, solvent, sharp |
1223 | 1-Hepten-3-one | Mushroom | |
1245 | 996 | Ethyl hexanoate | Anise, fruit, ester |
1249 | Unknown | Green, floral | |
1250 | (E)-2-Heptenal | Green | |
1260 | Acetoin | Lactic, fatty | |
1286 | 1014 | Hexyl acetate | Banana |
1292 | 952 | Furfuryl ethyl ether | Solvent (Reflex) |
1293 | 1045 | Octanal | Citrus, rancid |
1305 | 975 | 1-Octen-3-one | Mushroom |
1310 | 2-Octanone | Rancid | |
1310 | Unknown | Ester, grass | |
1315 | 860 | 2-Methyl-3-furanthiol | Fried, toasted |
1320 | 2,5-Dimethylpyrazine | Spicy | |
1348 | 914 | 2,6-Dimethylpyrazine | Popcorn |
1349 | 987 | (Z)-2-Heptenal | Fried, rancid |
1354 | 1126 | cis-Rose oxide | Floral, rose, citrus |
1358 | Ethyl lactate | Synthetic, sharp | |
1366 | 872 | 1-Hexanol | Green, leaf, solvent |
1378 | 986 | (Z)-1,5-Octadien-3-one | Geranium, metallic |
1378 | 1064 | Unknown | Geranium, green |
1380 | 985 | Dimethyl trisulphide | Rubbish |
1383 | 4-Mercapto-4-methyl-2-pentanone | Boxwood, green, urine | |
1395 | 848 | (Z)-3-Hexen-1-ol | Green grass, grass |
1399 | 1026 | 2,4,5-Trimethylthiazole | Geranium |
1403 | 1114 | Nonanal | Aldehyde, soap |
1410 | 1080 | 1-Nonen-3-one | Mushroom |
1416 | Unknown | Strawberry | |
1425 | 1142 | Ethyl cyclohexanoate | Anise, fruit, sweet, ester |
1428 | 987 | Ethyl 2-hydroxy-3-methylbutyrate | Strawberry |
1429 | 2,3,5-Trimethylpyrazine | Earthy | |
1430 | 1201 | Ethyl octanoate | Fruit, ester, sweet |
1431 | 1015 | 2-Octanol | Rubbish |
1433 | 1012 | 1-Octen-3-ol | Dust, toasted, citrus, mushroom |
1434 | Dimethyl methoxypyrazine | Cork, humidity | |
1436 | 907 | Furfurylthiol | Toasted, coffee |
1440 | 1080 | (E)-2-Octenal | Citrus, bitter |
1446 | 1094 | 2-Isopropyl-3-methoxypyrazine | Pepper, earthy, green |
1453 | 909 | Methional | Boiled vegetables |
1455 | Acetic acid | Vinegar | |
1460 | Ethyl 2-hydroxy-3,3-dimethyl butyrate | Strawberry, fruit | |
1464 | 1070 | Linalool oxide | Citrus, floral |
1469 | 828 | Furfural | Sweet wood, nut |
1470 | 2,3-Diethyl-5-methylpyrazine | Meat | |
1473 | 1086 | 2-Ethyl-3, 5(or 6)-dimethylpyrazine | Green |
1483 | Citronellal | Lemon | |
1485 | Copaene | Sweet wood | |
1488 | Unknown | Rubber, new plastic | |
1489 | 1003 | (E, E)-2,4-Heptadienal | Rancid, cucumber |
1490 | 1209 | Decanal | Floral, soap |
1495 | Propionic acid | Vinegar, boiled potato | |
1502 | 1159 | Citronellal | Lemon, citrus, floral, mop |
1507 | 1156 | (Z)-2-Nonenal | Chlorine, rancid, aldehyde |
1511 | 1145 | 3-Nonen-2-one | Rancid, wet, fried potato |
1514 | 1172 | 3-sec-Butyl-2-methoxypyrazine | Pepper, earthy |
1515 | 1156 | 2,3-Diethyl-5-methylpyrazine | Rubbish, rotten |
1516 | 4-Vinylpyridine | Synthetic | |
1531 | 1060 | Ethyl 2-hydroxy-4-methylpentanoate | Strawberry, ester |
1533 | 1181 | 3-Isobutyl-2-methoxypyrazine | Pepper green |
1533 | Camphor | Mint, green | |
1538 | 1167 | (E)-2-Nonenal | Melon, paper |
1542 | Unknown | Sweet, medicinal | |
1543 | 1315 | Vitispirane | Floral, fruity |
1556 | Ethyl 3-hydroxybutyrate | Sweet | |
1561 | 796 | 2-Methylpropanoic acid (isobutyric acid) | Cheese |
1562 | 1100 | (R/S)-Linalool | Floral, citrus, muscatel |
1569 | Linalool acetate | Floral, fruity | |
1571 | 1154 | (E, Z)-2,6-Nonadienal | Green, cucumber |
1593 | 1158 | 2-Methylisoborneol | Mould, wet land |
1618 | 1270 | (Z)-2-Decenal | Chlorine, meat |
1622 | 1021 | 2-Acetylpyrazine | Toasted, burned, coffee |
1642 | 822 | Butyric acid | Vomit, cheese |
1655 | 1106 | 2 (3 or 4)-Methylbenzaldehyde | Burnt hair |
1656 | 1080 | Benzene methanethiol | Burnt hair |
1660 | 1050 | Phenylacetaldehyde | Floral, green |
1662 | 2-Acetylthiazole | Roasted bread | |
1666 | Undecenal | Aldehyde | |
1670 | 2-Methyl-3-(methyldithio)furan | Fried, barbecue | |
1674 | 1261 | (E)-2-Decenal | Green, rancid |
1680 | 878 | 3-Methylbutyric acid (isovaleric acid) | Foot odour, cheese, perspiration |
1717 | 1217 | (E, E)-2,4-Nonadienal | Rancid, toasted |
1717 | (-)-Borneol | Earth, mould | |
1717 | 2-Phenylethanethiol | Sulphur, plastic | |
1723 | 910 | Methionol (3-methylthiopropanol) | Boiled potato, rubber, plastic |
1725 | Decadienal | Aldehyde | |
1732 | 1254 | 3-Mercaptohexyl acetate | Boxwood, basil |
1735 | 1195 | α-Terpineol | Anise, green |
1738 | 1430 | Dodecanal | Metallic, sea |
1740 | 3-Methyl-2,4-nonanedione | Honey, strong | |
1748 | 1162 | Borneol | Camphor, anise |
1753 | 1149 | Benzyl acetate | Sweet, honey |
1763 | (E)-2-Undecenal | Rancid | |
1767 | 1106 | 2-Acetyl-2-thiazoline | Popcorn, pork scratching |
1778 | 1233 | Methyl phenylacetate | Honey |
1786 | (E, Z)-2,6-Nonadienol | Rancid, toasted | |
1797 | Citronellol | Citrus | |
1805 | 1329 | Ethyl phenylacetate | Honey |
1807 | 1360 | 2,4,6-Trichloroanisole | Cork, humidity |
1811 | 1342 | (E, E)-2,4-Decadienal | Fatty, aldehyde |
1812 | 1254 | 2-Phenylethyl acetate | Roses |
1820 | 1388 | β-Damascenone | Boiled apple, sweet, compote |
1825 | 1373 | Geosmine | Mould, wet land, mustiness |
1829 | 1308 | (E)-Anethole | Anise |
1860 | 1134 | 3-Mercaptohexanol | Thiol, green |
1860 | 989 | Hexanoic acid | Green, unpleasant |
1862 | 1262 | Geraniol | Floral, rose, citrus |
1865 | 1100 | Guaiacol | Medicinal, spiced |
1879 | 1434 | α-Ionone | Sweet, fruit, violet |
1884 | 1064 | Benzyl alcohol | Grass |
1887 | 1370 | Ethyl dihydrocinnamate | Sweet, floral |
1913 | 1289 | γ-Octalactone | Coconut |
1944 | 1116 | β-Phenylethanol | Roses |
1957 | 1488 | β-Ionone | Floral, violet, berry |
1958 | 1134 | (Z)-Whisky lactone | Coconut, cinnamon, wood |
1976 | 1381 | (E)-Whisky lactone | Coconut |
2001 | δ-Octalactone | Sweet | |
2015 | 1077 | o-Cresol | Phenolic, medicinal |
2032 | 1386 | γ-Nonalactone | Sweet, peach |
2034 | 1319 | 4-Ethylguaiacol | Clove, phenolic |
2043 | 1302 | Diethyl malate | Rose, sweet |
2047 | 1092 | Furaneol (4-hydroxy-2,5-dimethyl-3(2H)-furanone) | Candy, sweet, candyfloss |
2074 | 1175 | Homofuraneol | Candyfloss, peach |
2077 | Unknown | Rose, sweet, phenolic | |
2080 | 1190 | Octanoic acid | Rancid, perspiration, plastic |
2094 | 1103 | p-Cresol | Animal, leather, stable |
2100 | 1103 | m-Cresol | Stable, animal, leather |
2113 | Tetrachloroanisol | Chlorine | |
2116 | 1404 | 4-Propylguaiacol | Clove, aromatic herbs |
2125 | 1241 | 2,6-Dichlorophenol | Spiced, leaf |
2135 | Ethyl cinnamate | Floral, sweet | |
2155 | 1540 | Bis(2-Methyl-3-furyl) disulphide | Fried, popcorn, toasted |
2160 | 1250 | 2-Phenoxyethanol | Spiced, plasticine |
2177 | Eugenol | Clove, spiced, phenolic | |
2179 | 1486 | γ-Decalactone | Spiced, wood phenolic |
2184 | 1154 | 4-Ethylphenol | Phenolic, leather |
2200 | 1154 | 3-Ethylphenol | Phenolic, leather |
2210 | 1110 | Sotolon | Liquorice, toasted, curry |
2225 | o-Aminoacetophenone | Muscatel, grape | |
2242 | 1328 | 4-Vinylguaiacol (2-methoxy-4-vinylphenol) | Clove, phenolic |
2260 | 1490 | Massoialactone | Coconut, fruit |
2270 | 1586 | γ-Undecalactone | Peach, sweet |
2272 | Decanoic acid | Rancid, perspiration | |
2285 | 1395 | 2,6-Dimethoxyphenol | Phenolic |
2313 | Unknown | Spiced, phenolic | |
2319 | Tribromoanisole | Chlorine | |
2341 | 1462 | δ-Undecalactone | Sweet |
2375 | 2,4,6-Trichlorophenol | Medicinal, chlorine | |
2375 | 1465 | Isoeugenol | Spice, mint, confectioner, sweet |
2384 | 1686 | γ-Dodecalactone | Peach, sweet |
2433 | 2,3,6-Trichlorophenol | Medicinal, chlorine | |
2463 | Indole | Tarmac, faeces | |
2465 | Benzophenone | Boiled apple | |
2507 | Skatole | Faeces | |
2535 | 2,4,5-Trichlorophenol | Medicinal, chlorine | |
2541 | 2,3,4- Trichlorophenol | Medicinal, chlorine | |
2570 | 1249 | Phenylacetic acid | Honey, sweet |
2592 | 1410 | Vanillin | Vanilla, custard |
2646 | Methyl vanillate | Burnt, burnt vanilla | |
2665 | 1560 | Ethyl vanillate | Vanilla |
2683 | Acetovanillone | Vanilla | |
3084 | 2,3,4,6-Tetrachlorophenol | Medicinal, chlorine |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de-la-Fuente-Blanco, A.; Ferreira, V. Gas Chromatography Olfactometry (GC-O) for the (Semi)Quantitative Screening of Wine Aroma. Foods 2020, 9, 1892. https://doi.org/10.3390/foods9121892
de-la-Fuente-Blanco A, Ferreira V. Gas Chromatography Olfactometry (GC-O) for the (Semi)Quantitative Screening of Wine Aroma. Foods. 2020; 9(12):1892. https://doi.org/10.3390/foods9121892
Chicago/Turabian Stylede-la-Fuente-Blanco, Arancha, and Vicente Ferreira. 2020. "Gas Chromatography Olfactometry (GC-O) for the (Semi)Quantitative Screening of Wine Aroma" Foods 9, no. 12: 1892. https://doi.org/10.3390/foods9121892
APA Stylede-la-Fuente-Blanco, A., & Ferreira, V. (2020). Gas Chromatography Olfactometry (GC-O) for the (Semi)Quantitative Screening of Wine Aroma. Foods, 9(12), 1892. https://doi.org/10.3390/foods9121892