Grain Quality, Provitamin A Carotenoid Profiles, and Sensory Quality of Provitamin A-Biofortified Maize Stiff Porridges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Maize Grain Varieties
2.2. Physical Properties of Maize Grain
2.2.1. Colour of Maize Grain
2.2.2. Grain Texture
2.2.3. Thousand Kernel Weight
2.2.4. Hectolitre Mass
2.3. Grain Milling
2.4. Preparation of Stiff Porridges
2.5. Provitamin A Analysis and Retention
2.6. Sensory Evaluation
2.6.1. Descriptive Sensory Analysis
2.6.2. Consumer Acceptability Test
2.6.3. Ethical Considerations
2.6.4. Statistical Analysis
3. Results and Discussion
3.1. Grain Properties
3.2. Provitamin A Retention
3.3. Sensory Quality of the Porridges
3.4. Sensory Acceptability of the Porridges
3.5. Cluster Analysis of the Porridges
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wanyama, R.; Gödecke, T.; Jager, M.; Qaim, M. Poor consumers’ preferences for nutritionally enhanced foods. Br. Food J. 2019, 121, 755–770. [Google Scholar] [CrossRef]
- Onyango, C.; Wanjala, G.W. Quality of porridge from sub-Saharan Africa evaluated using instrumental techniques and descriptive sensory lexicon. Part 2: Thin porridge. Afr. J. Food Sci. 2018, 12, 104–114. [Google Scholar] [CrossRef] [Green Version]
- Kalumbi, M.; Matumba, L.; Mtimuni, B.; Mwangwela, A.; Gama, A.P. Hydrothermally Treated Soybeans Can Enrich Maize Stiff Porridge (Africa’s Main Staple) without Negating Sensory Acceptability. Foods 2019, 8, 650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menkir, A.; Maziya-Dixon, B. Influence of genotype and environment on β-carotene content of tropical yellow-endosperm maize genotypes. Maydica 2004, 49, 313–318. [Google Scholar]
- Maqbool, M.A.; Aslam, M.; Beshir, A.; Sarwar, M. Breeding for provitamin A biofortification of maize (Zea mays L.). Plant Breed. 2018, 137, 451–469. [Google Scholar] [CrossRef]
- Sagare, D.B.; Shetti, P.; Surender, M.; Reddy, S.S.; Pradeep, T.; Anuradha, G. Maize: Potential crop for provitamin A biofortification. Maydica 2018, 63, M12. [Google Scholar]
- Nestel, P.; Bouis, H.E.; Meenakshi, J.V.; Pfeiffer, W. Biofortification of Staple Food Crops. J. Nutr. 2006, 136, 1064–1067. [Google Scholar] [CrossRef]
- De Groote, H.; Kimenju, S.C. Comparing consumer preferences for colour and nutritional quality in maize: Application of a semi-double-bound logistic model on urban consumers in Kenya. Food Policy 2008, 33, 362–370. [Google Scholar] [CrossRef]
- Muzhingi, T.; Langyintuo, A.S.; Malaba, L.C.; Banziger, M. Consumer acceptability of yellow maize products in Zimbabwe. Food Policy 2008, 33, 352–361. [Google Scholar] [CrossRef]
- Pillay, K.; Siwela, M.; Derera, J.; Veldman, F.J. Consumer acceptance of yellow, provitamin A-biofortified maize in KwaZulu-Natal. S. Afr. J. Clin. Nutr. 2011, 24, 186–191. [Google Scholar] [CrossRef]
- Tumuhimbise, G.A.; Namutebi, A.; Turyashemererwa, F.; Muyonga, J. Provitamin A Crops: Acceptability, bioavailability, efficacy and effectiveness. Food Sci. Nutr. 2013, 4, 430–435. [Google Scholar] [CrossRef] [Green Version]
- De Groote, H.; Kimenju, S.C.; Morawetz, U.B. Estimating consumer willingness to pay for food quality with experimental auctions: The case of yellow versus fortified maize meal in Kenya. J. Agric. Econ. 2011, 42, 1–16. [Google Scholar] [CrossRef]
- Stevens, R.; Winter-Nelson, A. Consumer acceptance of provitamin A-biofortified maize in Maputo, Mozambique. Food Policy 2008, 33, 341–351. [Google Scholar] [CrossRef]
- Meenakshi, J.V.; Banerji, A.; Manyong, V.; Tomlins, K.; Mittal, N.; Hamukwala, P. Using a discrete choice experiment to elicit the demand for a nutritious food: Willingness-to-pay for orange maize in rural Zambia. J. Health Econ. 2012, 31, 62–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singo, T.M.; Beswa, D. Effect of roselle extracts on the selected quality characteristics of ice cream. Int. J. Food Prop. 2019, 22, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Domin, M.; Kluza, F.; Góral, D.; Nazarewicz, S.; Kozłowicz, K.; Szmigielski, M.; Ślaska-Grzywna, B. Germination Energy and Capacity of Maize Seeds Following Low-Temperature Short Storage. Sustainability 2020, 12, 46. [Google Scholar] [CrossRef] [Green Version]
- AACC. Method 55-10-01. In Approved Methods of Analysis, Test Weight per Bushel, 11th ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar]
- Pillay, K.; Siwela, M.; Derera, J.; Veldman, F.J. Provitamin A carotenoids in biofortified maize and their retention during processing and preparation of South African maize foods. J. Food Sci. Technol. 2014, 51, 634–644. [Google Scholar] [CrossRef] [Green Version]
- Howe, J.A.; Tanumihardjo, S.A. Evaluation of Analytical Methods for carotenoid extraction from biofortified maize (Zea mays). J. Agric. Food Chem. 2006, 54, 7992–7997. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B.; Kimura, M. Harvest Plus Handbook for Carotenoids Analysis; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2004; Volume 2. [Google Scholar]
- Kurilich, A.C.; Juvik, J.A. Quantification of Carotenoid and Tocopherol antioxidants in Zea mays. J. Agric. Food Chem. 1999, 47, 1948–1995. [Google Scholar] [CrossRef]
- Menkir, A.; Rocheford, T.; Maziya-Dixon, B.; Tanumihardjo, S.A. Exploiting natural variation in exotic germplasm for increasing provitamin-A carotenoids in tropical maize. Euphytica 2015, 205, 1–5. [Google Scholar] [CrossRef]
- Anyango, J.O.; de Kock, H.L.; Taylor, J.R.N. Evaluation of the functional quality of cowpea-fortified traditional African sorghum foods using instrumental and descriptive sensory analysis. J. Food Sci. Technol. 2011, 44, 2126–2133. [Google Scholar] [CrossRef] [Green Version]
- Stone, H.; Sidel, J.L. Sensory Evaluation Practices, 3rd ed.; Elsevier Academic Press: Cambridge, MA, USA, 2004; pp. 247–277. [Google Scholar]
- Ng’ong’ola-Manani, T.A.; Mwangwela, A.M.; Schuller, R.B.; Østlie, H.M.; Wicklund, T. Sensory evaluation and consumer acceptance of naturally and lactic acid bacteria-fermented pastes of soybeans and soybean-maize blends. Food Sci. Nutr. 2013, 2, 114–131. [Google Scholar] [CrossRef] [PubMed]
- Egesel, C.O.; Wong, J.C.; Lambert, R.J.; Rocheford, T.R. Gene dosage effects on carotenoid concentration in maize grain. Maydica 2003, 48, 183–190. [Google Scholar]
- Das, A.K.; Singh, N.K. Carotenoid and SSR marker-based diversity assessment among short duration maize (Zea mays L) genotypes. Maydica 2012, 57, 1–8. [Google Scholar]
- Lee, K.M.; Bean, S.R.; Alavi, S.; Herrman, T.J.; Waniska, R.D. Physical and biochemical properties of maize hardness and extrudates of selected hybrids. J. Agric. Food Chem. 2006, 54, 4260–4269. [Google Scholar] [CrossRef]
- Williams, P.; Geladi, P.; Fox, G.; Manley, M. Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis. Anal. Chim. Acta 2009, 653, 121–130. [Google Scholar] [CrossRef]
- Gaytán-Martínez, M.; Figueroa-Cárdenas, J.D.; Reyes-Vega, M.L.; Rincón-Sánchez, F.; Morales-Sánchez, Y.E. Microstructure of starch granule related to kernel hardness in corn. Rev. Fitotec. Mex. 2006, 29, 135–139. [Google Scholar]
- Ayalew, H.; Wondale, L.; Teshager, A. GGE biplot analysis on the performance of wheat genotypes for hectolitre weight and mega environments identification in North Western Ethiopia. Aust. J. Crop Sci. 2014, 8, 1435–1440. [Google Scholar]
- Pillay, K.; Siwela, M.; Derera, J.; Veldman, F.J. Influence of biofortification with provitamin A on protein, selected micronutrient composition and grain quality of maize. Afr. J. Biotechnol. 2013, 12, 5285–5293. [Google Scholar]
- Chuck-Hernandez, C.; Perez-Carrillo, E.; Serna-Saldivar, S.O. Production of bioethanol from steam-flaked sorghum and maize. J. Cereal Sci. 2009, 50, 131–137. [Google Scholar] [CrossRef]
- Pan, Z.; Eckhoff, S.R.; Paulsen, M.R.; Litchfield, J.B. Physical properties and dry-milling characteristics of six selected high-oil maize hybrids. Cereal Chem. 1996, 73, 517–520. [Google Scholar]
- Pomeranz, Y.; Martin, C.R.; Traylor, D.D.; Lai, F.S. Corn hardness determination. Cereal Chem. 1984, 61, 147–150. [Google Scholar]
- Nguyen, M.L.; Schwartz, S.J. Lycopene. In Natural Food Colorants: Science and Technology; Lauro, G.L., Francis, F.J., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2000; pp. 153–192. [Google Scholar]
- Vicente, A.R.; Manganaris, G.A.; Cisneros-Zevallos, L.; Crisosto, C.H. Prunus. In Health-Promoting Properties of Fruits and Vegetables; CABI: Wallingford, UK, 2011; pp. 238–259. [Google Scholar] [CrossRef]
- Rogers, D.E.; Malouf, R.B.; Langemeier, J.; Gelroth, J.A.; Ranhotra, G.S. Stability and nutrient contribution of β-carotene added to selected bakery products. Cereal Chem. 1993, 70, 558–561. [Google Scholar]
- Kong, F.; Singh, R.P. Effect of processing on nutrients in foods. In Innovation in Healthy and Functional Foods; Ghosh, D., Das, S., Bagchi, D., Smarta, R.B., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 193–213. [Google Scholar]
- Hwang, E.S.; Stacewicz-Sapuntzakis, M.; Bowen, P.E. Effect of heat treatment on the carotenoid and tocopherol composition of tomato. J. Food Sci. 2012, 77, C1109–C1114. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.K.; Prasad, N.K.; Amin, I. Carotenoids retention in leafy vegetables based on cooking methods. Int. Food Res. J. 2013, 20, 457–465. [Google Scholar]
- Dykes, L.; Rooney, L.W. Phenolic compounds in cereal grains and their health benefits. Cereal Foods World 2007, 105–111. [Google Scholar] [CrossRef]
- Khumalo, T.P.; Schonfeldt, H.C.; Vermeulen, H. Consumer acceptability and perceptions of maize meal in Giyani, South Africa. Dev. S. Afr. 2012, 28, 271–281. [Google Scholar] [CrossRef]
Attribute | Definition | References | Rating Scale | |
---|---|---|---|---|
Appearance | ||||
Colour | Degree of colour intensity ranging from yellow to dark yellow. | Rama (rate 2) Deep yellow cheese | 0 = light yellow 10 = deep yellow | |
Glossy | Degree of glossiness (shiny) of porridge ranging from opaque (not glossy) to very shiny. | Rama margarine (South African Brand) Ultramel custard | 0 = opaque 10 = shiny | |
Roughness | The degree of roughness as seen on the surface of the porridge. | Ultramel custard Coarse white maize porridge (25% solid). | 0 = not rough 10 = very rough | |
Aroma | ||||
Overall aroma | The overall aroma intensity of maize porridge | 0 = not intense 10 = very intense | ||
Cooked maize aroma | The intensity of cooked maize aroma in the porridge. | Stiff coarse yellow maize porridge (25% solid) | 0 = not perceived 10 = strongly perceived aroma | |
Rama-margarine aroma | The intensity of Rama-margarine aroma in the porridge. | Cooked soft yellow maize porridge with Rama margarine (South African Brand). | 0 = not perceived 10 = strongly perceived | |
Texture | ||||
Stickiness | The degree to which the porridge adhered to fingers. | Thin porridge (10% solid). White wheat dough | 0 = not sticky 10 = very sticky | |
Hardness | The force required to compress the porridge. | Thin cooked porridge (10% solid). Cooked coarse maize meal (33%) | 0 = not hard 10 = very hard | |
Fineness | The degree of fineness of granules felt in the mouth. | Coarse white maize meal (25%) Corn starch (25% solid) | 0 = not fine 10 = very fine | |
Flavour | ||||
Overall flavour | The overall flavour intensity of maize porridge. | 0 = not intense 10 = very intense | ||
Cooked maize flavour | The intensity of cooked maize flavour in the porridge. | 25% cooked yellow maize porridge | 0 = bland 10 = strong cooked maize flavour | |
Aftertaste | ||||
Bitter | The bitter sensation after swallowing the porridge. | Cold instant coffee solution (30% solid) | 0 = Not intense 10 = very intense | |
Residual grain | The extent to which the particles are felt in the mouth after swallowing. | Cooked coarse sorghum flour | 0 = none 10 = a lot |
Variety | d Colour (Hunter Values) | dλ Grain Texture | λ Grain Density | |||
---|---|---|---|---|---|---|
L | a | b | MI | d TKW (g) | HLM (kg/hL) | |
RWM | 46.3 b ± 1.1 | 6.3 a ± 1.1 | 24.6 a ± 2.6 | 93.5 c ± 1.8 | 257.1 a ± 5.4 | 78.5 a |
PVAH-79–100 | 37.2 a ± 1.3 | 16.6 b ± 3.0 | 28.1 ab ± 2.5 | 69.9 b ± 1 0.6 | 206.5 b ± 0.8 | 80.1 a |
PVAH-27–49 | 39.0 a ± 3.2 | 17.2 b ± 2.4 | 29.2 ab ± 2.5 | 79.0 a ± 1.6 | 234.4 c ± 0.2 | 81.5 b |
PVAH-50–75 | 39.0 a ± 1.9 | 17.0 b ± 0.3 | 28.7 ab ± 1.1 | 73.3 ab ± 2.1 | 227.7 d ± 0.0 | 78.8 a |
PVAH-1–26 | 36.6 a ± 0.7 | 18.9 b ± 2.3 | 31.0 bc ± 3.6 | 80.7 a ± 1.2 | 267.3 e ± 0.6 | 81.6 b |
Variety | Provitamin A Content (µg/g DW) | ProvA Retention (%) | |
---|---|---|---|
Maize Flour | Stiff Porridge | ||
RWM | n.d | n.d | n.d |
PVAH1–26 | 2.58 a ± 0.06 | 3.18 a ± 0.01 | 123.30 a ± 2.93 |
PVAH27–49 | 2.47 ab ± 0.12 | 2.60 b ± 0.01 | 105.30 b ± 5.27 |
PVAH50–75 | 2.46 a ± 0.07 | 2.24 c ± 0.06 | 91.39 c ± 4.23 |
PVAH79–100 | 2.40 b ± 0.08 | 2.60 b ± 0.01 | 108.41 b ± 3.82 |
Attribute | Maize Stiff Porridge Samples | ||||
---|---|---|---|---|---|
RWM | PVAH 79–100 | PVAH 27–49 | PVAH 1–26 | PVAH 50–75 | |
Colour | 0.0 a ± 0.0 | 4.9 b ± 1.0 | 4.0 a ± 0.8 | 4.6 ab ± 1.0 | 4.8 b ± 1.0 |
Glossy | 3.1 a ± 0.9 | 3.6 ab ± 0.9 | 3.6 ab ± 0.8 | 4.0 b ± 0.9 | 3.8 b ± 1.1 |
Roughness | 1.8 a ± 0.9 | 4.1 b ± 0.8 | 3.8 b ± 0.7 | 3.9 b ± 0.7 | 4.0 b ± 0.8 |
Overall aroma | 1.5 a ± 0.8 | 4.4 b ± 1.3 | 4.3 b ± 1.3 | 4.4 b ± 1.2 | 4.3 b ± 1.2 |
Cooked maize aroma | 1.4 a ± 0.9 | 5.1 b ± 1.9 | 4.9 b ± 2.0 | 5.0 b ± 1.9 | 5.1 b ± 1.9 |
Rama-margarine aroma | 0.2 a ± 0.1 | 3.3 b ± 1.5 | 3.2 b ± 1.5 | 3.4 b ± 1.7 | 3.4 b ± 1.6 |
Stickiness | 0.3 a ± 0.1 | 5.2 b ± 1.5 | 5.6 b ± 1.4 | 5.7 b ± 1.6 | 5.6 b ± 1.3 |
Hardness | 1.4 a ± 0.8 | 4.1 b ± 1.4 | 4.2 b ± 1.5 | 3.8 b ± 1.3 | 3.9 b ± 1.4 |
Fineness | 2.1 a ± 0.6 | 4.7 b ± 1.3 | 5.0 b ± 1.4 | 5.2 b ± 1.5 | 5.2 b ± 1.4 |
Overall flavour | 1.2 a ± 1.0 | 4.0 b ± 1.9 | 3.7 b ± 1.6 | 3.7 b ± 1.6 | 3.5 b ± 1.6 |
Cooked maize flavour | 1.1 a ± 0.2 | 5.1 b ± 1.9 | 4.9 b ± 1.9 | 5.1 b ± 2.0 | 4.9 b ± 2.0 |
Bitter | 0.0 a ± 0.0 | 1.8 b ± 1.3 | 1.8 b ± 1.4 | 1.8 b ± 1.2 | 1.7 b ± 1.2 |
Residual | 0.0 a ± 0.0 | 2.7 b ± 0.9 | 2.9 b ± 1.0 | 2.8 b ± 1.0 | 2.9 b ± 0.9 |
Sensory Attribute | Provitamin A-Biofortified Maize Stiff Porridges | ||||
---|---|---|---|---|---|
RWM | PVAH 27–49 | PVAH 1–26 | PVAH 50–75 | PVAH 79–100 | |
Colour | 4.6 a ± 0.6 | 4.6 a ± 0.7 | 4.6 a ± 0.6 | 4.6 a ± 0.5 | 4.5 a ± 0.9 |
Texture | 4.6 a ± 0.7 | 4.5 a ± 0.9 | 4.4 a ± 0.9 | 4.6 a ± 0.6 | 4.3 a± 1.0 |
Taste | 4.7 a ± 0.6 | 4.5 a ± 0.8 | 4.4 a ± 0.9 | 4.5 a ± 0.7 | 4.4 a ± 0.9 |
Aroma | 4.6 ab ± 0.7 | 4.6 ab ± 0.7 | 4.4 a ± 1.0 | 4.7 b ± 0.5 | 4.5 ab ± 0.9 |
Overall acceptability | 4.7 a ± 0.6 | 4.5 a ± 0.8 | 4.5 a ± 0.8 | 4.6 a ± 0.5 | 4.6 a ± 0.7 |
Cluster | Cluster Description | Consumer | Gender | * p-Values | Age | * p-Values | |||
---|---|---|---|---|---|---|---|---|---|
N, (%) | Male | Female | 20–40 | 41–60 | 61–80 | ||||
1 | Neither liked nor disliked | 23 (38.3) | 39.1 | 60.9 | 0.6 | 26.1 | 47.8 | 26.1 | 0.04 |
2 | Liked | 20 (33.3) | 10.0 | 90.0 | 25.0 | 55.0 | 20.0 | ||
3 | Disliked | 17 (28.3) | 41.2 | 58.8 | 58.8 | 5.9 | 35.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beswa, D.; Siwela, M.; Amonsou, E.O.; Kolanisi, U. Grain Quality, Provitamin A Carotenoid Profiles, and Sensory Quality of Provitamin A-Biofortified Maize Stiff Porridges. Foods 2020, 9, 1909. https://doi.org/10.3390/foods9121909
Beswa D, Siwela M, Amonsou EO, Kolanisi U. Grain Quality, Provitamin A Carotenoid Profiles, and Sensory Quality of Provitamin A-Biofortified Maize Stiff Porridges. Foods. 2020; 9(12):1909. https://doi.org/10.3390/foods9121909
Chicago/Turabian StyleBeswa, Daniso, Muthulisi Siwela, Eric O. Amonsou, and Unathi Kolanisi. 2020. "Grain Quality, Provitamin A Carotenoid Profiles, and Sensory Quality of Provitamin A-Biofortified Maize Stiff Porridges" Foods 9, no. 12: 1909. https://doi.org/10.3390/foods9121909
APA StyleBeswa, D., Siwela, M., Amonsou, E. O., & Kolanisi, U. (2020). Grain Quality, Provitamin A Carotenoid Profiles, and Sensory Quality of Provitamin A-Biofortified Maize Stiff Porridges. Foods, 9(12), 1909. https://doi.org/10.3390/foods9121909