Non-Targeted Authentication Approach for Extra Virgin Olive Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reference Methods
2.2. Monitoring EVOO Quality Indices
2.3. Vibrational Spectroscopy
2.4. Multivariate Data Analysis
3. Results and Discussion
3.1. Characterization of Olive Oils Using International Olive Oil Trade Standards
3.2. Spectral Analysis of Olive Oil Samples
3.3. Pattern Recognition Modeling Using FT-IR and Raman Spectroscopy
3.4. Development of PLSR Models Using FT-IR and Raman Spectroscopy
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gelpí, E.; Posada de la Paz, M.; Terracini, B.; Abaitua, I.; Gómez de la Cámara, A.; Kilbourne, E.M.; Lahoz, C.; Nemery, B.; Philen, R.M.; Soldevilla, L.; et al. The spanish toxic oil syndrome 20 years after its onset: A multidisciplinary review of scientific knowledge. Environ. Health Perspect. 2002, 110, 457–464. [Google Scholar] [CrossRef] [Green Version]
- Bajoub, A.; Bendini, A.; Fernández–Gutiérrez, A.; Carrasco–Pancorbo, A. Olive oil authentication: A comparative analysis of regulatory frameworks with especial emphasis on quality and authenticity indices, and recent analytical techniques developed for their assessment. A. review. Crit. Rev. Food Sci. Nutr. 2018, 58, 832–857. [Google Scholar] [CrossRef]
- United States International Trade Commission. Olive Oil: Conditions of Competition between U.S. and Major Foreign Supplier Industries; United States International Trade Commission: Washington, DC, USA, 2013.
- Aparicio, R.; Morales, M.T.; Aparicio–Ruiz, R.; Tena, N.; García–González, D.L. Authenticity of olive oil: Mapping and comparing official methods and promising alternatives. Food Res. Int. 2013, 54, 2025–2038. [Google Scholar] [CrossRef]
- Milanez, K.D.T.M.; Nóbrega, T.C.A.; Nascimento, D.S.; Insausti, M.; Band, B.S.F.; Pontes, M.J.C. Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach. LWT-Food Sci. Technol. 2017, 85, 9–15. [Google Scholar] [CrossRef]
- Aroca–Santos, R.; Cancilla, J.C.; Pérez–Pérez, A.; Moral, A.; Torrecilla, J.S. Quantifying binary and ternary mixtures of monovarietal extra virgin olive oils with UV–vis absorption and chemometrics. Sens. Actuators B Chem. 2016, 234, 115–121. [Google Scholar] [CrossRef]
- Durán Merás, I.; Domínguez Manzano, J.; Airado Rodríguez, D.; Muñoz de la Peña, A. Detection and quantification of extra virgin olive oil adulteration by means of autofluorescence excitation–emission profiles combined with multi–way classification. Talanta 2018, 178, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fang, T.; Zhu, S.; Huang, F.; Chen, Z.; Wang, Y. Detection of olive oil adulteration with waste cooking oil via Raman spectroscopy combined with iPLS and SiPLS, Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2018, 189, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Philippidis, A.; Poulakis, E.; Papadaki, A.; Velegrakis, M. Comparative Study using Raman and Visible Spectroscopy of Cretan Extra Virgin Olive Oil Adulteration with Sunflower Oil. Anal. Lett. 2017, 50, 1182–1195. [Google Scholar] [CrossRef]
- Mendes, T.O.; da Rocha, R.A.; Porto, B.L.S.; de Oliveira, M.A.L.; dos Anjos, V.D.C.; Bell, M.J. Quantification of Extra–virgin Olive Oil Adulteration with Soybean Oil: A Comparative Study of NIR, MIR, and Raman Spectroscopy Associated with Chemometric Approaches. Food Anal. Methods 2015, 8, 2339–2346. [Google Scholar] [CrossRef]
- Rohman, A.; Man, Y.B.C. Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil. Food Res. Int. 2010, 43, 886–892. [Google Scholar] [CrossRef]
- Di Girolamo, F.; Masotti, A.; Lante, I.; Scapaticci, M.; Calvano, C.D.; Zambonin, C.; Muraca, M.; Putignani, L. A simple and effective mass spectrometric approach to identify the adulteration of the mediterranean diet component extra–virgin olive oil with corn oil. Int. J. Mol. Sci. 2015, 16, 20896–20912. [Google Scholar] [CrossRef] [PubMed]
- Calvano, C.D.; De Ceglie, C.; D’Accolti, L.; Zambonin, C.G. MALDI–TOF mass spectrometry detection of extra–virgin olive oil adulteration with hazelnut oil by analysis of phospholipids using an ionic liquid as matrix and extraction solvent. Food Chem. 2012, 134, 1192–1198. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, I.M.; Pavón, J.L.P.; Laespada, M.E.F.; Pinto, C.G.; Cordero, B.M. Detection of adulterants in olive oil by headspace–mass spectrometry. J. Chromatogr. A 2002, 945, 221–230. [Google Scholar] [CrossRef]
- Šmejkalová, D.; Piccolo, A. High–power gradient diffusion NMR spectroscopy for the rapid assessment of extra–virgin olive oil adulteration. Food Chem. 2010, 118, 153–158. [Google Scholar] [CrossRef]
- Xu, Z.; Morris, R.H.; Bencsik, M.; Newton, M.I. Detection of virgin olive oil adulteration using low field unilateral NMR. Sensors 2014, 14, 2028–2035. [Google Scholar] [CrossRef] [Green Version]
- Vigli, G.; Philippidis, A.; Spyros, A.; Dais, P. Classification of edible oils by employing 31P and 1H NMR spectroscopy in combination with multivariate statistical analysis. A proposal for the detection of seed oil adulteration in virgin olive oils. J. Agric. Food Chem. 2003, 51, 5715–5722. [Google Scholar] [CrossRef]
- Fragaki, G.; Spyros, A.; Siragakis, G.; Salivaras, E.; Dais, P. Detection of extra virgin olive oil adulteration with lampante olive oil and refined olive oil using nuclear magnetic resonance spectroscopy and multivariate statistical analysis. J. Agric. Food Chem. 2005, 53, 2810–2816. [Google Scholar] [CrossRef]
- Dugo, G.; Rotondo, A.; Mallamace, D.; Cicero, N.; Salvo, A.; Rotondo, E.; Corsaro, C.; Mannina, L.; Salvo, A. Enhanced detection of aldehydes in extra–virgin olive oil by means of band selective NMR spectroscopy. Physica A 2015, 420, 258–264. [Google Scholar] [CrossRef]
- Rotondo, A.; Mannina, L.; Salvo, A. Multiple Assignment Recovered Analysis (MARA) NMR for a Direct Food Labeling: The Case Study of Olive Oils. Food Anal. Methods. 2019, 12, 1238–1245. [Google Scholar] [CrossRef]
- Kumar, S.; Kahlon, T.; Chaudhary, S. A rapid screening for adulterants in olive oil using DNA barcodes. Food Chem. 2011, 127, 1335–1341. [Google Scholar] [CrossRef]
- Mildner–Szkudlarz, S.; Jeleń, H.H. Detection of olive oil adulteration with rapeseed and sunflower oils using mos electronic nose and smpe–ms. J. Food Qual. 2010, 33, 21–41. [Google Scholar] [CrossRef]
- Knolhoff, A.M.; Croley, T.R. Non–targeted screening approaches for contaminants and adulterants in food using liquid chromatography hyphenated to high resolution mass spectrometry. J. Chromatogr. A 2016, 1428, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Tengstrand, E.; Rosén, J.; Hellenäs, K.-E.; Åberg, K.M. A concept study on non–targeted screening for chemical contaminants in food using liquid chromatography–mass spectrometry in combination with a metabolomics approach. Anal. Bioanal. Chem. 2013, 405, 1237–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coates, J. A Review of New Small–Scale Technologies for Near Infrared Measurements. Available online: https://www.americanpharmaceuticalreview.com/Featured-Articles/163573-A-Review-of-New-Small-Scale-Technologies-for-Near-Infrared-Measurements/ (accessed on 10 July 2019).
- Ellis, D.I.; Muhamadali, H.; Haughey, S.A.; Elliott, C.T.; Goodacre, R. Point–and–shoot: Rapid quantitative detection methods for on–site food fraud analysis–moving out of the laboratory and into the food supply chain. Anal. Methods. 2015, 7, 9401–9414. [Google Scholar] [CrossRef] [Green Version]
- Mossoba, M.M.; Azizian, H.; Fardin–Kia, A.R.; Karunathilaka, S.R.; Kramer, J.K.G. First Application of Newly Developed FT–NIR Spectroscopic Methodology to Predict Authenticity of Extra Virgin Olive Oil Retail Products in the USA. Lipids 2017, 52, 443–455. [Google Scholar] [CrossRef]
- Hirri, A.; Gammouh, M.; Gorfti, A.; Kzaiber, F.; Bassbasi, M.; Souhassou, S.; Balouki, A.; Oussama, A. The use of Fourier transform mid infrared (FT–MIR) spectroscopy for detection and estimation of extra virgin olive oil adulteration with old olive oil. Sky J. Food Sci. 2015, 4, 60–66. [Google Scholar]
- Pan, M.; Sun, S.; Zhou, Q.; Chen, J. A Simple and Portable Screening Method for Adulterated Olive Oils Using the Hand–Held FTIR Spectrometer and Chemometrics Tools. J. Food Sci. 2018, 83, 1605–1612. [Google Scholar] [CrossRef]
- Jiménez-Carvelo, A.M.; Osorio, M.T.; Koidis, A.; González-Casado, A.; Cuadros-Rodríguez, L. Chemometric classification and quantification of olive oil in blends with any edible vegetable oils using FTIR–ATR and Raman spectroscopy. LWT-Food Sci. Technol. 2017, 86, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Georgouli, K.; Martinez Del Rincon, J.; Koidis, A. Continuous statistical modelling for rapid detection of adulteration of extra virgin olive oil using mid infrared and Raman spectroscopic data. Food Chem. 2017, 217, 735–742. [Google Scholar] [CrossRef] [Green Version]
- Method Cd 8-53: Peroxide Value-Acetic Acid-Chloroform Method. In Official Methods and Recommended Practices of the American Oil Chemists’ Society, 6th ed.; Firestone, D. (Ed.) AOCS Press: Urbana, IL, USA, 2012. [Google Scholar]
- European Pharmacopoeia, European Pharmacopoeia 01/2005:20501, in: Counc. Eur., vol. 1. 2004. Available online: https://kampoeng2013.files.wordpress.com/2015/12/european-pharmacopoeia-5-with-all-supplements.pdf (accessed on 17 December 2019).
- ISO 29841:2009/AMD 1:2016, Vegetable Fats and Oils—Determination of the Degradation Products of Chlorophylls a and a’ (Pheophytins a, a’ and Pyropheophytins)—Amendment 1. 2016. Available online: https://www.iso.org/standard/66396.html (accessed on 12 December 2019).
- Berrueta, L.A.; Alonso–Salces, R.M.; Héberger, K. Supervised pattern recognition in food analysis. J. Chromatogr. A 2007, 1158, 196–214. [Google Scholar] [CrossRef]
- Kvalheim, O.M.; Karstand, T.V. SIMCA—Classification by Means of Disjoint Cross Validated Principal Components Models. In Multivariate Pattern Recognition in Chemometrics: Illustrated by Case Studies; Brereton, R.G., Ed.; Elsevier: Amsterdam, The Netherlands, 1992; pp. 209–248. [Google Scholar]
- Checa–Moreno, R.; Manzano, E.; Capitán–Vallvey, L.F. Characterisation and classification of binders used in art materials at the class and the subclass level. Anal. Methods. 2014, 6, 4009–4021. [Google Scholar] [CrossRef]
- Abdi, H. Partial least squares regression and projection on latent structure regression (PLS Regression). Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 97–106. [Google Scholar] [CrossRef]
- Romía, M.B.; Bernàrdez, M.A. Multivariate Calibration for Quantitative Analysis. In Infrared Spectroscopy Food Qulity Analytical Control, 1st ed.; Sun, D.-W., Ed.; Elsevier: New York, NY, USA, 2009; pp. 51–82. [Google Scholar]
- Feng, S.; He, A.; Wang, D.; Kang, B. Diagnostic significance of miR–210 as a potential tumor biomarker of human cancer detection: An updated pooled analysis of 30 articles. Onco Targets Ther. 2019, 12, 479–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- USDA. United States Standards for Grades of Olive Oil and Olive–Pomace Oil; 2010; pp. 9–10. Available online: https://www.ams.usda.gov/sites/default/files/media/Olive_Oil_and_Olive–Pomace_Oil_Standard%5B1%5D.pdf (accessed on 10 January 2019).
- International Olive Council. Trade Standards Applying to Olive Oils and Olive Pomace Oils; International Olive Council: Madrid, Spain, 2006. Available online: https://portal.ct.gov/-/media/DCP/pdf/OliveOilIOCTradeStandardpdf.pdf?la=en (accessed on 7 May 2019).
- Boudour–Benrachou, N.; Plard, J.; Pinatel, C.; Artaud, J.; Dupuy, N. Fatty Acid Compositions of Olive Oils from Six Cultivars from East and South–Western Algeria. Adv. Food Technol. Nutr. Sci. Open J. 2017, 3, 1–5. [Google Scholar] [CrossRef]
- Cicero, N.; Albergamo, A.; Salvo, A.; Bua, G.D.; Bartolomeo, G.; Mangano, V.; Rotondo, A.; Di Stefano, V.; Di Bella, G.; Dugo, G. Chemical characterization of a variety of cold–pressed gourmet oils available on the Brazilian market. Food Res. Int. 2018, 109, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Klikarová, J.; Rotondo, A.; Cacciola, F.; Česlová, L.; Dugo, P.; Mondello, L.; Rigano, F. The Phenolic Fraction of Italian Extra Virgin Olive Oils: Elucidation Through Combined Liquid Chromatography and NMR Approaches. Food Anal. Methods. 2019, 12, 1759–1770. [Google Scholar] [CrossRef]
- Van Doosselaere, P. Production of Oils. In Edible Oil Process, 2nd ed.; Hamm, W., Hamilton, R.J., Calliauw, G., Eds.; John Wiley & Sons, Ltd.: West Sussex, UK, 2013; p. 92. [Google Scholar]
- Choe, E.; Min, D.B. Chemistry of deep–fat frying oils. J. Food Sci. 2007, 72, R77–R86. [Google Scholar] [CrossRef]
- Commission Regulation (EEC) No 2568/91. 1991. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:01991R2568-20151016&from=EN (accessed on 5 December 2019).
- Casal, S.; Malheiro, R.; Sendas, A.; Oliveira, B.P.P.; Pereira, J.A. Olive oil stability under deep–frying conditions. Food Chem. Toxicol. 2010, 48, 2972–2979. [Google Scholar] [CrossRef]
- Vossen, P. Growing Olives for Oil. In Handbook Olive Oil Analysis Properties, 2nd ed.; Aparicio, R., Harwood, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 19–56. [Google Scholar]
- Guillaume, C.; Gertz, C.; Ravetti, L. Pyropheophytin a and 1,2–diacyl–glycerols over time under different storage conditions in natural olive oils. JAOCS J. Am. Oil Chem. Soc. 2014, 91, 697–709. [Google Scholar] [CrossRef]
- Frankel, E.N.; Mailer, R.J.; Schoemaker, C.F.; Wang, S.C.; Flynn, J.D. Tests Indicate that Imported “Extra Virgin” Olive Oil often Fails International and USDA Standards. 2010. Available online: https://www.kretareserve.com/info/oliveoilappendix071510.pdf (accessed on 10 July 2019).
- Osawa, C.C.; Gonçalves, L.A.G.; Gumerato, H.F.; Mendes, F.M. Study of the effectiveness of quick tests based on physical properties for the evaluation of used frying oil. Food Control 2012, 26, 525–530. [Google Scholar] [CrossRef] [Green Version]
- Rohman, A.; bin Che Man, Y.; Ismail, A.; Hashim, P. FTIR spectroscopy coupled with chemometrics of multivariate calibration and discriminant analysis for authentication of extra virgin olive oil. Int. J. Food Prop. 2017, 20, S1173–S1181. [Google Scholar] [CrossRef]
- Bendini, A.; Cerretani, L.; Di Virgilio, F.; Belloni, P.; Bonoli–Carbognin, M.; Lercker, G. Preliminary evaluation of the application of the ftir spectroscopy to control the geographic origin and quality of virgin olive oils. J. Food Qual. 2007, 30, 424–437. [Google Scholar] [CrossRef]
- Zhang, X.F.; Zou, M.Q.; Qi, X.H.; Liu, F.; Zhang, C.; Yin, F. Quantitative detection of adulterated olive oil by Raman spectroscopy and chemometrics. J. Raman Spectrosc. 2011, 42, 1784–1788. [Google Scholar] [CrossRef]
- Zhang, L.; Li, P.; Sun, X.; Mao, J.; Ma, F.; Ding, X.; Zhang, Q. One–class classification based authentication of peanut oils by fatty acid profiles. RSC Adv. 2015, 5, 85046–85051. [Google Scholar] [CrossRef]
- Wold, S.; Sjostrom, M. SIMCA: A method for analyzing chemical data in terms of similarity and analogy. In Chemometrics Theory and Application, American Chemical Society Symposium Series 52; Kowalski, B.R., Ed.; American Chemical Society: Washington, DC, USA, 1977; Volume 52, pp. 243–282. [Google Scholar] [CrossRef]
- Yan, J.; Oey, S.B.; van Leeuwen, S.P.J.; van Ruth, S.M. Discrimination of processing grades of olive oil and other vegetable oils by monochloropropanediol esters and glycidyl esters. Food Chem. 2018, 248, 93–100. [Google Scholar] [CrossRef]
- Gurdeniz, G.; Ozen, B.; Tokatli, F. Comparison of fatty acid profiles and mid–infrared spectral data for classification of olive oils. Eur. J. Lipid Sci. Technol. 2010, 112, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Maggio, R.M.; Kaufman, T.S.; Del Carlo, M.; Cerretani, L.; Bendini, A.; Cichelli, A.; Compagnone, D. Monitoring of fatty acid composition in virgin olive oil by Fourier transformed infrared spectroscopy coupled with partial least squares. Food Chem. 2009, 114, 1549–1554. [Google Scholar] [CrossRef]
- Gouvinhas, I.; Machado, N.; Carvalho, T.; De Almeida, J.M.M.M.; Barros, A.I.R.N.A. Short wavelength Raman spectroscopy applied to the discrimination and characterization of three cultivars of extra virgin olive oils in different maturation stages. Talanta 2015, 132, 829–835. [Google Scholar] [CrossRef] [Green Version]
EVOO a | VOO/OO b | Mixture c | ||
---|---|---|---|---|
Palmitic (%) | Range | 9.8–17.4 | 10.6–18.1 | 5.3–18.9 |
Mean | 13.2 | 13.4 | 12.1 | |
SD | 1.7 | 1.9 | 2.8 | |
Stearic (%) | Range | 2.7–2.9 | 2.7–3.1 | 2.7–3.5 |
Mean | 2.8 | 2.8 | 2.9 | |
SD | 0 | 0.1 | 0.2 | |
Oleic (%) | Range | 62.0–78.2 | 57.7–76.5 | 11.0–76.9 |
Mean | 72.6 | 71.5 | 66.9 | |
SD | 3.8 | 4.4 | 14 | |
Linoleic (%) | Range | 4.5–14.8 | 6.0–17.7 | 5.6–76.0 |
Mean | 8.5 | 9.5 | 15.1 | |
SD | 2.2 | 2.4 | 14 | |
Linolenic (%) | Range | 0.6–0.8 | 0.7–0.9 | 0.1–5.8 |
Mean | 0.7 | 0.7 | 1 | |
SD | 0 | 0.1 | 0.9 | |
Free Fatty Acid (%) | Range | 0.1–0.7 | 0.1–1.9 | 0.1–10.3 |
Mean | 0.4 | 0.5 | 2.1 | |
SD | 0.2 | 0.5 | 2.7 | |
Peroxide Value (meqO2/kg) | Range | 4.8–13.7 | 3.1–13.2 | 2.5–32.7 |
Mean | 9.8 | 10 | 11.7 | |
SD | 2 | 2.5 | 4.9 | |
Pyropheophytin (%) | Range | 7.0–14.9 | 5.6–20.6 | 12.5–25.5 |
Mean | 11.5 | 13.2 | 19.8 | |
SD | 2.3 | 3 | 3 | |
Total Polar Compound (%) | Range | 2.5–8.5 | 4.0–9.8 | 5.5–17.8 |
Mean | 5.2 | 6.6 | 8.7 | |
SD | 1.1 | 1.5 | 2.4 |
Groups | EVOO a | VOO/OO Blends b | EVOO with other Vegetable Oils c |
---|---|---|---|
EVOO | 0 | ||
VOO/OO blends | 2.6 | 0 | |
EVOO with other vegetable oils | 5.2 | 6.1 | 0 |
Model Types | Samples | Sensitivity (%) | Specificity (%) | |
---|---|---|---|---|
Multi-Class | FT-IR | VOO/OO blends b | 100 | 100 |
EVOO a with other vegetable oils | 100 | 100 | ||
Raman | VOO/OO blends | 100 | 100 | |
EVOO with other vegetable oils c | 100 | 100 | ||
One-Class | FT-IR | 100 | 89 | |
Raman | 100 | 66 |
Groups | EVOO a | VOO/OO Blends b | EVOO with other Vegetable Oils c |
---|---|---|---|
EVOO | 0 | ||
VOO/OO blends | 0.9 | 0 | |
EVOO with other vegetable oils | 7.0 | 5.9 | 0 |
Technique | Parameter | Calibration Model | External Validation Model | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Range | Na | Factor | SECV b | Rcal | Range | Nc | SEP d | Rval | ||
FT-IR | Palmitic (%) | 5.3–18.9 | 120 | 6 | 0.44 | 0.98 | 6.5–18.1 | 30 | 0.53 | 0.98 |
Stearic (%) | 2.7–3.6 | 120 | 4 | 0.03 | 0.98 | 2.7–3.5 | 30 | 0.02 | 0.99 | |
Oleic (%) | 11.0–78.2 | 120 | 4 | 1.13 | 0.99 | 29.9–78.0 | 30 | 1.41 | 0.99 | |
Linoleic (%) | 4.5–76.0 | 120 | 4 | 1 | 0.99 | 5.7–41.0 | 30 | 1.4 | 0.98 | |
Linolenic (%) | 0.5–1.8 | 117 | 4 | 0.02 | 0.99 | 0.6–1.0 | 29 | 0.02 | 0.97 | |
FFA (%) | 0.1–10.3 | 118 | 3 | 0.17 | 1 | 0.1–6.8 | 30 | 0.23 | 0.99 | |
PV (meqO2/kg) | 2.5–32.7 | 120 | 5 | 0.65 | 0.98 | 4.9–19.1 | 30 | 0.79 | 0.96 | |
Pyropheophytin (%) | 5.6–25.5 | 87 | 6 | 1.47 | 0.96 | 10.7–23.5 | 22 | 1.46 | 0.94 | |
TPC (%) | 2.5–17.8 | 120 | 6 | 0.54 | 0.97 | 3.3–13.3 | 30 | 0.59 | 0.97 | |
Raman | Palmitic (%) | 5.3–18.9 | 120 | 6 | 0.84 | 0.91 | 6.5–18.1 | 30 | 0.99 | 0.92 |
Stearic (%) | 2.7–3.6 | 120 | 5 | 0.04 | 0.96 | 2.7–3.5 | 30 | 0.04 | 0.97 | |
Oleic (%) | 11.0–78.2 | 120 | 6 | 1.33 | 0.99 | 29.9–78.0 | 30 | 1.78 | 0.98 | |
Linoleic (%) | 4.5–76.0 | 120 | 4 | 1.09 | 0.99 | 5.7–41.0 | 30 | 1.63 | 0.99 | |
Linolenic (%) | 0.5–1.8 | 118 | 6 | 0.02 | 0.99 | 0.6–1.0 | 30 | 0.01 | 0.98 | |
FFA (%) | 0.1–10.3 | 118 | 6 | 0.55 | 0.94 | 0.1–6.8 | 30 | 0.52 | 0.93 | |
PV (meqO2/kg) | 2.5–32.7 | 120 | 4 | 1.31 | 0.92 | 4.9–19.1 | 30 | 1.11 | 0.92 | |
Pyropheophytin (%) | 7.0–25.5 | 85 | 5 | 1.93 | 0.92 | 10.7–20.5 | 21 | 1.55 | 0.92 | |
TPC (%) | 2.5–17.8 | 119 | 6 | 0.76 | 0.94 | 3.3–13.3 | 30 | 0.83 | 0.93 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aykas, D.P.; Karaman, A.D.; Keser, B.; Rodriguez-Saona, L. Non-Targeted Authentication Approach for Extra Virgin Olive Oil. Foods 2020, 9, 221. https://doi.org/10.3390/foods9020221
Aykas DP, Karaman AD, Keser B, Rodriguez-Saona L. Non-Targeted Authentication Approach for Extra Virgin Olive Oil. Foods. 2020; 9(2):221. https://doi.org/10.3390/foods9020221
Chicago/Turabian StyleAykas, Didem Peren, Ayse Demet Karaman, Burcu Keser, and Luis Rodriguez-Saona. 2020. "Non-Targeted Authentication Approach for Extra Virgin Olive Oil" Foods 9, no. 2: 221. https://doi.org/10.3390/foods9020221
APA StyleAykas, D. P., Karaman, A. D., Keser, B., & Rodriguez-Saona, L. (2020). Non-Targeted Authentication Approach for Extra Virgin Olive Oil. Foods, 9(2), 221. https://doi.org/10.3390/foods9020221