Insights into the Identification of the Specific Spoilage Organisms in Chicken Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genomic Analyses of Bacterial Groups Associated with Spoilage in Chicken Meat
2.2. Isolation of SSO Candidates from Spoiled Chicken Meat
2.3. Bacterial Growth Rate Analysis
2.4. Analysis of 16S rRNA Copy Number
2.5. Analysis of Meat Spoilage Potential
2.6. Quantification of TVB-N
2.7. Statistical Analysis
3. Results and Discussion
3.1. Genomic Analysis of Bacteria Associated with Chicken Meat Spoilage
3.2. Isolation of SSO Candidates from Spoiled Chicken Meat
3.3. Identification of Slow-Growing Bacteria
3.4. Proof-of-Concept: Validation of SSO Potential
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rouger, A.; Tresse, O.; Zagorec, M. Bacterial Contaminants of Poultry Meat: Sources, Species, and Dynamics. Microorganisms 2017, 5, 50. [Google Scholar] [CrossRef] [PubMed]
- Slader, J.; Domingue, G.; Jørgensen, F.; McAlpine, K.; Owen, R.J.; Bolton, F.J.; Humphrey, T.J. Impact of transport crate reuse and of catching and processing on Campylobacter and Salmonella contamination of broiler chickens. Appl. Environ. Microbiol. 2002, 68, 713–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remenant, B.; Jaffrès, E.; Dousset, X.; Pilet, M.-F.; Zagorec, M. Bacterial spoilers of food: behavior, fitness and functional properties. Food Microbiol. 2015, 45, 45–53. [Google Scholar] [CrossRef]
- Boziaris, I.S.; Parlapani, F.F. Specific Spoilage Organisms (SSOs) in Fish. In The Microbiological Quality of Food; Elsevier: Amsterdam, The Netherlands, 2017; pp. 61–98. ISBN 978-0-08-100502-6. [Google Scholar]
- Zhang, Q.Q.; Han, Y.Q.; Cao, J.X.; Xu, X.L.; Zhou, G.H.; Zhang, W.Y. The spoilage of air-packaged broiler meat during storage at normal and fluctuating storage temperatures. Poult. Sci. 2012, 91, 208–214. [Google Scholar] [CrossRef]
- Cesare, A.D.; Palma, F.; Lucchi, A.; Pasquali, F.; Manfreda, G. Microbiological profile of chicken carcasses: A comparative analysis using shotgun metagenomic sequencing. Ital. J. Food Saf. 2018, 7, 6923. [Google Scholar] [CrossRef] [Green Version]
- Gram, L.; Ravn, L.; Rasch, M.; Bruhn, J.B.; Christensen, A.B.; Givskov, M. Food spoilage—interactions between food spoilage bacteria. Int. J. Food Microbiol. 2002, 78, 79–97. [Google Scholar] [CrossRef]
- Ammor, M.S.; Michaelidis, C.; Nychas, G.-J.E. Insights into the Role of Quorum Sensing in Food Spoilage. J. Food Prot. 2008, 71, 1510–1525. [Google Scholar] [CrossRef]
- Doulgeraki, A.I.; Ercolini, D.; Villani, F.; Nychas, G.-J.E. Spoilage microbiota associated to the storage of raw meat in different conditions. Int. J. Food Microbiol. 2012, 157, 130–141. [Google Scholar] [CrossRef]
- Broekaert, K.; Heyndrickx, M.; Herman, L.; Devlieghere, F.; Vlaemynck, G. Seafood quality analysis: Molecular identification of dominant microbiota after ice storage on several general growth media. Food Microbiol. 2011, 28, 1162–1169. [Google Scholar] [CrossRef]
- Shelef, L.A. Effect of glucose on the bacterial spoilage of beef. J. Food Sci. 1977, 42, 1172–1175. [Google Scholar] [CrossRef]
- Gill, C.O. Substrate limitation of bacterial growth at meat surfaces. J. Appl. Bacteriol. 1976, 41, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Gill, C.O. Meat Spoilage and Evaluation of the Potential Storage Life of Fresh Meat. J. Food Prot. 1983, 46, 444–452. [Google Scholar] [CrossRef]
- Gill, C.O.; Badoni, M. Recovery of bacteria from poultry carcasses by rinsing, swabbing or excision of skin. Food Microbiol. 2005, 22, 101–107. [Google Scholar] [CrossRef]
- Gill, C.O.; Newton, K.G. Development of bacterial spoilage at adipose tissue surfaces of fresh meat. Appl. Environ. Microbiol. 1980, 39, 1076–1077. [Google Scholar] [CrossRef] [Green Version]
- Wickramasinghe, N.N.; Ravensdale, J.; Coorey, R.; Chandry, S.P.; Dykes, G.A. The Predominance of Psychrotrophic Pseudomonads on Aerobically Stored Chilled Red Meat. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1622–1635. [Google Scholar] [CrossRef] [Green Version]
- Stover, C.K.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Brinkman, F.S.L.; Hufnagle, W.O.; Kowalik, D.J.; Lagrou, M.; et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000, 406, 959–964. [Google Scholar] [CrossRef]
- Konstantinidis, K.T.; Tiedje, J.M. Trends between gene content and genome size in prokaryotic species with larger genomes. Proc. Natl. Acad. Sci. USA 2004, 101, 3160–3165. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.R.; Wang, Q.; Fish, J.A.; Chai, B.; McGarrell, D.M.; Sun, Y.; Brown, C.T.; Porras-Alfaro, A.; Kuske, C.R.; Tiedje, J.M. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014, 42, D633–D642. [Google Scholar] [CrossRef] [Green Version]
- Chen, I.-M.A.; Chu, K.; Palaniappan, K.; Pillay, M.; Ratner, A.; Huang, J.; Huntemann, M.; Varghese, N.; White, J.R.; Seshadri, R.; et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 2019, 47, D666–D677. [Google Scholar] [CrossRef]
- Frank, J.A.; Reich, C.I.; Sharma, S.; Weisbaum, J.S.; Wilson, B.A.; Olsen, G.J. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 2008, 74, 2461–2470. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranyi, J.; Tamplin, M.L. ComBase: a common database on microbial responses to food environments. J. Food Prot. 2004, 67, 1967–1971. [Google Scholar] [CrossRef]
- Baranyi, J.; Roberts, T.A. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 1994, 23, 277–294. [Google Scholar] [CrossRef]
- Stoddard, S.F.; Smith, B.J.; Hein, R.; Roller, B.R.K.; Schmidt, T.M. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 2015, 43, D593–D598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Signorini, M.; Ponce-Alquicira, E.; Guerrero-Legarreta, I. Proteolytic and Lipolytic Changes in Beef Inoculated with Spoilage Microorganisms and Bioprotective Lactic Acid Bacteria. Int. J. Food Prop. 2003, 6, 147–163. [Google Scholar] [CrossRef]
- Ercolini, D.; Casaburi, A.; Nasi, A.; Ferrocino, I.; Di Monaco, R.; Ferranti, P.; Mauriello, G.; Villani, F. Different molecular types of Pseudomonas fragi have the same overall behaviour as meat spoilers. Int. J. Food Microbiol. 2010, 142, 120–131. [Google Scholar] [CrossRef]
- Hwang, K.-E.; Choi, Y.-S.; Kim, H.-W.; Choi, M.-S.; Song, D.-H.; Kim, Y.-J.; Ham, Y.-K.; Kim, C.-J. Combined Effects of Mugwort Herb and Vitamin C on Shelf-Life of Vacuum-Packed Seasoned Pork. Korean J. Food Sci. Anim. Resour. 2015, 35, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Stanborough, T.; Fegan, N.; Powell, S.M.; Singh, T.; Tamplin, M.; Chandry, P.S. Genomic and metabolic characterization of spoilage-associated Pseudomonas species. Int. J. Food Microbiol. 2018, 268, 61–72. [Google Scholar] [CrossRef]
- Wang, G.; Wang, H.; Han, Y.; Xing, T.; Ye, K.; Xu, X.; Zhou, G. Evaluation of the spoilage potential of bacteria isolated from chilled chicken in vitro and in situ. Food Microbiol. 2017, 63, 139–146. [Google Scholar] [CrossRef]
- Casaburi, A.; Piombino, P.; Nychas, G.-J.; Villani, F.; Ercolini, D. Bacterial populations and the volatilome associated to meat spoilage. Food Microbiol. 2015, 45, 83–102. [Google Scholar] [CrossRef]
- Russell, S.M.; Fletcher, D.L.; Cox, N.A. Spoilage Bacteria of Fresh Broiler Chicken Carcasses. Poult. Sci. 1995, 74, 2041–2047. [Google Scholar] [CrossRef]
- Hinton, A.; Cason, J.A.; Ingram, K.D. Tracking spoilage bacteria in commercial poultry processing and refrigerated storage of poultry carcasses. Int. J. Food Microbiol. 2004, 91, 155–165. [Google Scholar] [CrossRef]
- Herbert, U.; Rossaint, S.; Khanna, M.-A.; Kreyenschmidt, J. Comparison of argon-based and nitrogen-based modified atmosphere packaging on bacterial growth and product quality of chicken breast fillets. Poult. Sci. 2013, 92, 1348–1356. [Google Scholar] [CrossRef]
- Ellis, D.I.; Broadhurst, D.; Kell, D.B.; Rowland, J.J.; Goodacre, R. Rapid and Quantitative Detection of the Microbial Spoilage of Meat by Fourier Transform Infrared Spectroscopy and Machine Learning. Appl. Environ. Microbiol. 2002, 68, 2822–2828. [Google Scholar] [CrossRef] [Green Version]
- Sahar, A.; Dufour, é. Use of Fourier transform-infrared spectroscopy to predict spoilage bacteria on aerobically stored chicken breast fillets. LWT Food Sci. Technol. 2014, 56, 315–320. [Google Scholar] [CrossRef]
- Rukchon, C.; Nopwinyuwong, A.; Trevanich, S.; Jinkarn, T.; Suppakul, P. Development of a food spoilage indicator for monitoring freshness of skinless chicken breast. Talanta 2014, 130, 547–554. [Google Scholar] [CrossRef]
- Morales, P.A.; Aguirre, J.S.; Troncoso, M.R.; Figueroa, G.O. Phenotypic and genotypic characterization of Pseudomonas spp. present in spoiled poultry fillets sold in retail settings. LWT 2016, 73, 609–614. [Google Scholar] [CrossRef]
- Jiménez, S.M.; Salsi, M.S.; Tiburzi, M.C.; Rafaghelli, R.C.; Tessi, M.A.; Coutaz, V.R. Spoilage microflora in fresh chicken breast stored at 4 degrees C: influence of packaging methods. J. Appl. Microbiol. 1997, 83, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Balamatsia, C.C.; Paleologos, E.K.; Kontominas, M.G.; Savvaidis, I.N. Correlation between microbial flora, sensory changes and biogenic amines formation in fresh chicken meat stored aerobically or under modified atmosphere packaging at 4 degrees C: possible role of biogenic amines as spoilage indicators. Antonie Van Leeuwenhoek 2006, 89, 9–17. [Google Scholar] [CrossRef]
- Mellor, G.E.; Bentley, J.A.; Dykes, G.A. Evidence for a role of biosurfactants produced by Pseudomonas fluorescens in the spoilage of fresh aerobically stored chicken meat. Food Microbiol. 2011, 28, 1101–1104. [Google Scholar] [CrossRef] [PubMed]
- Charles, N.; Williams, S.K.; Rodrick, G.E. Effects of packaging systems on the natural microflora and acceptability of chicken breast meat. Poult. Sci. 2006, 85, 1798–1801. [Google Scholar] [CrossRef] [PubMed]
- Rossaint, S.; Klausmann, S.; Kreyenschmidt, J. Effect of high-oxygen and oxygen-free modified atmosphere packaging on the spoilage process of poultry breast fillets. Poult. Sci. 2015, 94, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Higgs, P.G.; Ran, W. Coevolution of Codon Usage and tRNA Genes Leads to Alternative Stable States of Biased Codon Usage. Mol. Biol. Evol. 2008, 25, 2279–2291. [Google Scholar] [CrossRef] [Green Version]
- Rocha, E.P.C. Codon usage bias from tRNA’s point of view: Redundancy, specialization, and efficient decoding for translation optimization. Genome. Res. 2004, 14, 2279–2286. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Zhu, M.; Warren, M.; Balakrishnan, R.; Patsalo, V.; Okano, H.; Williamson, J.R.; Fredrick, K.; Wang, Y.-P.; Hwa, T. Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth. Nat. Microbiol. 2016, 2, 16231. [Google Scholar] [CrossRef] [Green Version]
- Goordial, J.; Raymond-Bouchard, I.; Zolotarov, Y.; de Bethencourt, L.; Ronholm, J.; Shapiro, N.; Woyke, T.; Stromvik, M.; Greer, C.W.; Bakermans, C.; et al. Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica. FEMS Microbiol. Ecol. 2016, 92. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Du, L.-M.; Liang, Y.-M.; Daroch, M. Complete Genome Sequence and Comparative Analysis of Synechococcus sp. CS-601 (SynAce01), a Cold-Adapted Cyanobacterium from an Oligotrophic Antarctic Habitat. Int. J. Mol. Sci. 2019, 20, 152. [Google Scholar] [CrossRef] [Green Version]
- Klappenbach, J.A.; Dunbar, J.M.; Schmidt, T.M. rRNA operon copy number reflects ecological strategies of bacteria. Appl. Environ. Microbiol. 2000, 66, 1328–1333. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Dai, X. On the intrinsic constraint of bacterial growth rate: M. tuberculosis’s view of the protein translation capacity. Crit. Rev. Microbiol. 2018, 44, 455–464. [Google Scholar] [CrossRef]
Genus | Family | Reference * |
---|---|---|
Aeromonas | Aeromonadaceae | [1,5,30] |
Alcaligenes | Alcaligenaceae | [1,5,31] |
Carnobacterium | Carnobacteriaceae | [5,31,32] |
LeclerciaHafnia | Enterobacteriaceae | [1,5,33,34] |
Enterococcus | Enterococcaceae | [1,5,31,34,35,36] |
Brochothrix | Listeriaceae | [1,5,32,37] |
LeuconostocWeisella | Leuconostocaceae | [1,5] |
PsychrobacterAcinetobacter | Moraxellaceae | [1,5,31,35] |
Pseudomonas | Pseudomonadaceae | [1,5,9,27,30,31,32,37,38,39,40,41] |
Shewanella | Shewanellaceae | [1,5,32,42,43] |
Staphylococcus | Staphylococcaceae | [5,9,33,42] |
Family | Number of Genomes |
---|---|
Aeromonadaceae | 58 |
Alcaligenaceae | 91 |
Carnobacteriaceae | 42 |
Enterobacteriaceae | 3962 |
Enterococcaceae | 714 |
Leuconostocaceae | 67 |
Listeriaceae | 116 |
Moraxellaceae | 1044 |
Pseudomonadaceae | 855 |
Shewanellaceae | 44 |
Staphylococcaceae | 4419 |
Total | 11,412 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saenz-García, C.E.; Castañeda-Serrano, P.; Mercado Silva, E.M.; Alvarado, C.Z.; Nava, G.M. Insights into the Identification of the Specific Spoilage Organisms in Chicken Meat. Foods 2020, 9, 225. https://doi.org/10.3390/foods9020225
Saenz-García CE, Castañeda-Serrano P, Mercado Silva EM, Alvarado CZ, Nava GM. Insights into the Identification of the Specific Spoilage Organisms in Chicken Meat. Foods. 2020; 9(2):225. https://doi.org/10.3390/foods9020225
Chicago/Turabian StyleSaenz-García, Cinthia E., Pilar Castañeda-Serrano, Edmundo M. Mercado Silva, Christine Z. Alvarado, and Gerardo M. Nava. 2020. "Insights into the Identification of the Specific Spoilage Organisms in Chicken Meat" Foods 9, no. 2: 225. https://doi.org/10.3390/foods9020225
APA StyleSaenz-García, C. E., Castañeda-Serrano, P., Mercado Silva, E. M., Alvarado, C. Z., & Nava, G. M. (2020). Insights into the Identification of the Specific Spoilage Organisms in Chicken Meat. Foods, 9(2), 225. https://doi.org/10.3390/foods9020225