Effect of Glazing with Different Materials on the Quality of Tuna During Frozen Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Samples and Glazing Solution
2.3. Glazing of Tuna and Frozen Storage
2.4. Water-Holding Capacity (WHC), Drip Loss, and Cooking Loss
2.5. Low-Field Nuclear Magnetic Resonance (LF-NMR) Analysis
2.6. Determination of Protein Degradation and Fat Oxidation
2.6.1. Preparation of the Myofibrillar Protein
2.6.2. Determination of the Total Volatile Basic Nitrogen (TVB-N)
2.6.3. Determination of malondialdehyde (MDA)
2.7. Color and Texture
2.8. Free Amino Acid (FAA)
2.9. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Analysis
3.1.1. Changes in the Water-Holding Capacity, Drip Loss, and Cooking Loss
3.1.2. Changes in the Color of Samples
3.1.3. Texture Analysis
3.2. Low-Field Nuclear Magnetic Resonance (LF-NMR) Relaxation Time (T2) and Moisture Distribution
3.3. Protein Degradation
3.3.1. Changes in the Myofibrillar Protein Content
3.3.2. Determination of Total Volatile Basic Nitrogen (TVB-N)
3.4. Lipid Oxidation
3.4.1. Changes in Malondialdehyde (MDA)
3.4.2. Changes in Free Amino Acid (FAA)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xie, J.; Tang, Y.; Yang, S.P.; Qian, Y.F. Effects of whey protein films on the quality of thawed bigeye tuna (Thunnus obesus) chunks under modified atmosphere packaging and vacuum packaging conditions. Food Sci. Biotechnol. 2017, 26, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Brands, C.M.J.; Van Boekel, M.A.J.S. Kinetic Modeling of Reactions in Heated Monosaccharide−Casein Systems. J. Agric. Food Chem. 2002, 50, 6725–6739. [Google Scholar] [CrossRef] [PubMed]
- Boonsumrej, S.; Chaiwanichsiri, S.; Tantratian, S.; Suzukib, T.; Takaib, R. Effects of freezing and thawing on the quality changes of tiger shrimp (Penaeus monodon) frozen by air-blast and cryogenic freezing. J. Food Eng. 2007, 80, 292–299. [Google Scholar] [CrossRef]
- Solval, K.M.; Espinoza Rodezno, L.A.; Moncada, M.; Bankstonb, J.D.; Sathivel, S. Evaluation of chitosan nanoparticles as a glazing material for cryogenically frozen shrimp. LWT Food Sci. Technol. 2014, 57, 172–180. [Google Scholar] [CrossRef]
- Taheri, A. Antioxidative Effect of Rainbow Sardine (Dussumieria acuta) Protein Hydrolysate on Lipid and Protein Oxidation in Black Pomfret (Parastromateus niger) Fillet by Glazing. J. Aquat. Food Prod. Technol. 2015, 24, 241–258. [Google Scholar] [CrossRef]
- Sathivel, S.; Liu, Q.; Huang, J. Q.; Prinyawiwatkul, Q. The influence of chitosan glazing on the quality of skinless pink salmon (Oncorhynchus gorbuscha) fillets during frozen storage. J. Food Eng. 2007, 83, 366–373. [Google Scholar] [CrossRef]
- Mesarčová, L.; Marcinčák, S.; Nagy, J.; Popelka, P. Effect of glaze and selected herbal extracts on lipid oxidation and sensory properties of frozen Atlantic herrings (Clupea harengus L.). Acta Aliment. 2013, 42, 236–244. [Google Scholar] [CrossRef]
- Sundararajan, S.; Prudente, A.; Bankston, J.D.; King, J.M.; Wilson, P.; Sathivel, S. Evaluation of Green Tea Extract as a Glazing Material for Shrimp Frozen by Cryogenic Freezing. J. Food Sci. 2011, 76, E511–E518. [Google Scholar] [CrossRef]
- Seabra, L.; Damasceno k Andrade, S.; Ddantas, M.M.G. Effect of rosemary on the quality characteristics of white shrimp (litopenaeus vannamei). J. Food Qual. 2011, 34, 363–369. [Google Scholar] [CrossRef]
- Ge, L.; Zhu, M.; Li, X.; Xu, X.B. Development of active rosmarinic acid-gelatin biodegradable films with antioxidant and long-tserm antibacterial activities. Food Hydrocoll. 2018, 83, 308–316. [Google Scholar] [CrossRef]
- Li, T.T.; Hu, W.Z.; Li, J.R.; Zhang, X.G.; Zhu, K.L.; Li, X.P. Coating effects of tea polyphenol and rosemary extract combined with chitosan on the storage quality of large yellow croaker (Pseudosciaena crocea). Food Control 2012, 25, 101–106. [Google Scholar] [CrossRef]
- Zhuang, R.Y.; Huang, Y.W.; Beuchat, L.R. Quality Changes During Refrigerated Storage of Packaged Shrimp and Catfish Fillets Treated with Sodium Acetate, Sodium Lactate or Propyl Gallate. J. Food Sci. 1996, 61, 241–244. [Google Scholar] [CrossRef]
- Sallam, K.I. Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon. Food Control 2007, 18, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Nirmala, C.; Bisht, M.S.; Bajwa, H.K.; Santosh, O. Bamboo: A rich source of natural antioxidants and its applications in the food and pharmaceutical industry. Trends Food Sci. Technol. 2018, 77, 91–99. [Google Scholar] [CrossRef]
- Zhang, X.L.; Ma, H.X.; Yang, X.Q. Effect of Antioxidant of Bamboo Leaves (AOB) Combined with Different Packaging Methods on the Preservation of Fresh Tilapia Fillets. Food Sci. 2017, 38, 263–268. [Google Scholar]
- Yu, W.H.; Wang, J.F.; Xie, J. Response Surface Methodology for Optimizing the Proportion of Tuna Compound Ice Coating Solution. Food Ferment Ind. 2019, 1–8. [Google Scholar] [CrossRef]
- Mousakhani-Ganjeh, A.; Hamdami, N.; Soltanizadeh, N. Impact of high voltage electric field thawing on the quality of frozen tuna fish (Thunnus albacares). J. Food Eng. 2015, 156, 39–44. [Google Scholar] [CrossRef]
- Niu, L.; Rasco, B.A.; Tang, J.; Lai, K.Q.; Huang, Y.Q. Relationship of changes in quality attributes and protein solubility of ground beef under pasteurization conditions. LWT Food Sci. Technol. 2015, 61, 19–24. [Google Scholar] [CrossRef]
- Ministry of Agriculture. Determination of Volatile Base Nitrogen in Food: GB 5009.228-2016; Standards Press: Beijing, China, 2017. [Google Scholar]
- Yu, D.; Xu, Y.; Regenstein, J.M.; Xia, W.S.; Yang, F.; Jiang, Q.X.; Wang, B. The effects of edible chitosan-based coatings on flavor quality of raw grass carp (Ctenopharyngodon idellus) fillets during refrigerated storage. Food Chem. 2018, 242, 412. [Google Scholar] [CrossRef]
- Hughes, J.M.; Oiseth, S.K.; Purslow, P.P.; Warner, R.D. A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Sci. 2014, 98, 520–532. [Google Scholar] [CrossRef]
- Li, D.; Qin, N.; Zhang, L.; Li, Q.; Prinyawiwatkul, W.; Luo, Y. Degradation of adenosine triphosphate, water loss and textural changes in frozen common carp (Cyprinus carpio) fillets during storage at different temperatures. Int. J. Refrig. 2018, 98, 294–301. [Google Scholar] [CrossRef]
- Benjakul, S.; Visessanguan, W.; Thongkaew, C.; Tanaka, M. Comparative study on physicochemical changes of muscle proteins from some tropical fish during frozen storage. Food Res. Int. 2003, 36, 787–795. [Google Scholar] [CrossRef]
- Lagerstedt, A.; Enfalt, L.; Johansson, L.; Lundström, K. Effect of freezing on sensory quality, shear force and water loss in beef longissimus dorsi. Meat Sci. 2008, 80, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Tajima, G.; Shikama, K. Autoxidation of oxymyoglobin. An overall stoichiometry including subsequent side reactions. J. Biol. Chem. 1987, 262, 12603–12606. [Google Scholar]
- Ying, L.S.; Zhang, M.; Zhou, X.Q.; Fu, H.J. Research Progress in Color Protection Technologies for Meat Products. Food Sci. 2011, 32, 291–295. [Google Scholar]
- Djenane, D.; Sanchez-escalantel, A.; Beltran, J.A.; Roncalés, P. Ability of a-tocopherol, taurine and rosemary, in combination with vitamin C, to increase the oxidative stability of beef steaks packaged in modified atmosphere. Food Chem. 2002, 76, 407–415. [Google Scholar] [CrossRef]
- Kaewprachu, P.; Osako, K.; Benjakul, S.; Suthiluk, P.; Rawdkuen, S. Shelf life extension for Bluefin tuna slices ( Thunnus thynnus ) wrapped with myofibrillar protein film incorporated with catechin-Kradon extract. Food Control 2017, 79, 333–343. [Google Scholar] [CrossRef]
- OcañoHiguera, V.M.; MarquezRíos, E.; CanizalesDávila, E.; Castillo-Yáñez, F.J.; Pacheco-Aguilar, P.; Lugo-Sánchez, M.E.; García-Orozco, K.D.; Graciano-Verdugo, A.Z. Postmortem changes in cazon fish muscle stored on ice. Food Chem. 2009, 116, 933–938. [Google Scholar] [CrossRef]
- Hernández, M.D.; López, M.B.; Álvarez, A.; Ferrandinib, E.; García, B.G.; Garrido, M.D. Sensory, physical, chemical and microbiological changes in aquacultured meagre (Argyrosomus regius) fillets during ice storage. Food Chem. 2009, 114, 237–245. [Google Scholar] [CrossRef]
- Pearce, K.L.; Rosenvold, K.; Andersen, H.J.; Hopkins, D.L. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes—A review. Meat Sci. 2011, 89, 111–124. [Google Scholar] [CrossRef]
- Gudjónsdóttir, M.; Traoré, A.; Jónsson, Á.; Karlsdóttira, M.G.; Arasonad, S. The effects of pre-salting methods on salt and water distribution of heavily salted cod, as analyzed by 1H and 23Na MRI, 23Na NMR, low-field NMR and physicochemical analysis. Food Chem. 2015, 188, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Jesper, B.; Lars, M.; Poul, H.; Anders, H.K. Prediction of waterholding capacity and composition of porcine meat by comparative spectroscopy. Meat Sci. 2000, 55, 177–185. [Google Scholar]
- Shi, J.; Lei, X.T.; Shen, H.X.; Hong, H.; Yu, X.P.; Zhu, B.W.; Luo, Y.K. Effect of glazing and rosemary (Rosmarinus officinalis) extract on preservation of mud shrimp (Solenocera melantho) during frozen storage. Food Chem. 2019, 272, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Miklos, R.; Mora-Gallego, H.; Larsen, F.H.; Sorra, X.; Cheong, L.Z.; Xu, X.; Arnau, J.; Lametsch, R. Influence of lipid type on water and fat mobility in fermented sausages studied by low-field NMR. Meat Sci. 2014, 96, 617–622. [Google Scholar] [CrossRef]
- Somjit, K.; Ruttanapornwareesakul, Y.; Hara, K.; Nozaki, Y. The cryoprotectant effect of shrimp chitin and shrimp chitin hydrolysate on denaturation and unfrozen water of lizardfi shsurimi during frozen storage. Food Res. Int. 2005, 38, 345–355. [Google Scholar] [CrossRef]
- Zhanga, W.M.; Dong, Q.L.; Song, Y.Y.; Liu, Q. Progress of Sodium Lactate as a Preservative in Meat and Meat Products. Food Sci. 2016, 518, 257–262. [Google Scholar]
- Rogério, O.M.; Amparo, G.; José, P.; Carla, P. Indole production and deep water pink shrimp(Parapenaeus longirostris) decomposition. Eur. Food Res. Technol. 2005, 221, 320–328. [Google Scholar]
- National Standard of the People’s Republic of China. GB 2733-2005, Hygienic Standard for Fresh and Frozen Marine Products of Animal Origin; Ministry of Health of the People’s Republic of China: Beijing, China, 2005.
- Arancibia, M.Y.; López-Caballero, M.E.; Gómez-Guillén, M.C.; Montero, P. Chitosan coatings enriched with active shrimp waste for shrimp preservation. Food Control 2015, 54, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Ojagh, S.M.; Rezaei, M.; Razavi, S.H.; Hosseini, S.M.H.H. Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem. 2010, 120, 193–198. [Google Scholar] [CrossRef]
- Ozogul, Y.; Ayas, D.; Yazgan, H.; Ozougul, F.; Boga, E.K.; Ozyurt, G. The capability of rosemary extract in preventing oxidation of fish lipid. Int. J. Food Sci. Technol. 2010, 45, 1717–1723. [Google Scholar] [CrossRef]
- Seydim, A.C.; Guzel-Seydim, Z.B.; Acton, J.C.; Dawson, P.L. Effects of Rosemary Extract and Sodium Lactate on Quality of Vacuum-packaged Ground Ostrich Meat. J. Food Sci. 2006, 71, S71–S76. [Google Scholar] [CrossRef]
- Fernández-López, J.; Zhi, N.; Aleson-Carbonell, L.; Pérez-Alvareza, J.A.; Kuri, V. Antioxidant and antibacterial activities of natural extracts: Application in beef meatballs. Meat Sci. 2005, 69, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Mei, J.; Shen, Y.; Xie, J. Quality improvement of half-smooth tongue sole (Cynoglossus Semilaevis) fillets by chitosan coatings containing rosmarinic acid during storage. CyTA J. Food 2018, 16, 1018–1029. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hui, T.; Zhang, Y.W.; Liu, B.; Wang, F.L.; Li, J.K.; Cui, B.W.; Guo, X.Y.; Peng, Z.Q. Effects of frying conditions on the formation of heterocyclic amines and trans fatty acids in grass carp ( Ctenopharyngodon idellus ). Food Chem. 2015, 167, 251–257. [Google Scholar] [CrossRef] [PubMed]
Treatment | Storage Time (day) | |||||
---|---|---|---|---|---|---|
30 | 60 | 90 | 120 | 150 | 180 | |
UG | 31.09 ± 2.6 Ec | 29.71 ±0.4 Eb | 27.64 ± 2.4 Ca | 29.86 ± 2.4 Cb | 27.54 ± 1.9 Da | 33.02 ± 1.4 Dd |
CG | 23.69 ± 1.2 Ba | 26.63 ± 1.5 Ccd | 27.70 ± 2 Cd | 24.42 ± 2.1 Bab | 24.57 ± 2.2 Cab | 26.02 ± 1.6 Cc |
RG | 18.50 ± 1.5 Aa | 28.51 ± 0.6 Dd | 30.42 ± 1.7 De | 24.58 ± 0.6 Bb | 18.30 ± 1.8 Aa | 25.63 ± 1.0 Cc |
SG | 30.21 ± 2.1 Dd | 23.72 ± 1.7 Ab | 27.88 ± 1.7 Cc | 20.39 ± 1.8 Aa | 21.67 ± 1.2 Bab | 19.88 ± 1.4 Aa |
AG | 30.29 ± 1.3 Dd | 24.48 ± 1.8 ABab | 23.91 ± 1.6 Ba | 29.82 ± 1.9 Cd | 27.14 ± 0.5 Dc | 24.97 ± 1.3B Cab |
WG | 28.20 ± 2.6 Ccd | 25.40 ± 1.8 Bb | 21.27 ± 0.7 Aa | 29.95 ± 2.1 Cd | 27.76 ± 0.7 Dc | 23.83 ± 0.5 Bab |
The proportion | UG | WG | RG | AG | SG | CG | |
---|---|---|---|---|---|---|---|
0 day | T2 peak area | 13,000.83781 | |||||
T21 peak area proportion | 0.04 | ||||||
T22 peak area proportion | 0.95 | ||||||
T23 peak area proportion | 0.01 | ||||||
60 days | T2 peak area proportion | 10,622.29 | 9010.84 | 9186.84 | 8788.45 | 9384.28 | 11,389.84 |
T21 peak area proportion | 0.04 | 0.05 | 0.03 | 0.04 | 0.03 | 0.04 | |
T22 peak area proportion | 0.96 | 0.91 | 0.96 | 0.89 | 0.96 | 0.96 | |
T23 peak area proportion | 0.00 | 0.04 | 0.01 | 0.08 | 0.01 | 0.01 | |
120 days | T2 peak area proportion | 9260.24 | 7854.69 | 8522.56 | 8616.11 | 8871.52 | 9574.82 |
T21 peak area proportion | 0.04 | 0.01 | 0.04 | 0.04 | 0.03 | 0.04 | |
T22 peak area proportion | 0.96 | 0.99 | 0.96 | 0.96 | 0.97 | 0.96 | |
T23 peak area proportion | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | |
180 days | T2 peak area proportion | 6218.72 | 6421.40 | 8018.95 | 7758.65 | 8473.01 | 9208.06 |
T21 peak area proportion | 0.05 | 0.04 | 0.05 | 0.04 | 0.05 | 0.06 | |
T22 peak area proportion | 0.95 | 0.96 | 0.90 | 0.95 | 0.91 | 0.92 | |
T23 peak area proportion | 0.00 | 0.00 | 0.06 | 0.01 | 0.04 | 0.02 |
Type | WG | RG | AG | SG | CG | UG |
---|---|---|---|---|---|---|
Asp | 0.49 ± 0.13 AB | 0.39 ± 0.06 A | 0.62 ± 0.04 C | 0.34 ± 0.02 A | 0.54 ± 0.15 B | 0.37 ± 0.03 A |
Thr | 1.82 ± 0.07 A | 1.88 ± 1.01 A | 1.88 ± 0.62 A | 2.82 ± 0.44 B | 3.12 ± 0.49 B | 2.83 ± 0.31 B |
Ser | 2.04 ± 0.24 AB | 1.63 ± 0.33 A | 1.73 ± 0.21 A | 2.46 ± 0.20 B | 3.18 ± 0.08 C | 2.40 ± 0.07 B |
Glu | 0.80 ± 0.09 A | 1.50 ± 0.15 BC | 1.80 ± 0.09 C | 1.27 ± 0.06 B | 0.90 ± 0.04 A | 0.78 ± 0.17 A |
Gly | 3.28 ± 0.36 B | 2.72 ± 0.29 A | 2.23 ± 0.17 A | 5.19 ± 0.46 C | 3.27 ± 0.30 B | 5.81 ± 0.26 C |
Ala | 8.05 ± 0.54 B | 4.93 ± 0.95 A | 10.73 ± 1.91 C | 10.74 ± 0.95 C | 15.58 ± 4.37 D | 9.61 ± 1.01 BC |
Val | 5.13 ± 0.55 C | 1.64 ± 0.27 A | 4.05 ± 0.62 B | 4.05 ± 1.89 B | 4.79 ± 1.44 BC | 4.11 ± 0.46 B |
Met | 2.91 ± 0.09 D | 1.48 ± 0.34 A | 2.50 ± 1.02 C | 1.31 ± 0.09 A | 2.10 ± 0.36 BC | 1.80 ± 0.06 B |
Ile | 2.58 ± 0.62 C | 2.05 ± 1.32 A | 2.09 ± 1.17 A | 2.26 ± 0.56 B | 3.06 ± 1.05 D | 2.22 ± 0.63 B |
Leu | 4.49 ± 1.15 C | 3.30 ± 0.84 A | 3.69 ± 1.19 B | 3.47 ± 1.66 AB | 5.16 ± 1.99 D | 3.42 ± 0.47 A |
Tyr | 3.92 ± 1.17 C | 1.67 ± 0.71 A | 3.50 ± 0.20 C | 2.65 ± 0.53 B | 2.76 ± 0.96 B | 2.62 ± 0.73 B |
Phe | 3.04 ± 1.37 C | 1.51 ± 0.43 A | 2.13 ± 0.69 B | 2.05 ± 0.36 B | 2.20 ± 1.36 B | 2.16 ± 0.64 B |
Lys | 65.37 ± 6.18 C | 38.05 ± 3.18 A | 57.90 ± 3.11 B | 65.85 ± 3.81 C | 60.54 ± 5.47 BC | 70.90 ± 4.42 D |
His | 290.10 ± 12.16 D | 203.59 ± 14.49 A | 231.11 ± 6.63 B | 334.78 ± 18.42 E | 270.60 ± 9.38 C | 359.45 ± 22.23 F |
Arg | 0.42 ± 0.13 A | 1.02 ± 0.10 C | 0.70 ± 0.34 B | 1.30 ± 0.23 CD | 0.52 ± 0.36 AB | 1.51 ± 0.67 D |
Pro | 1.12 ± 0.29 A | 1.01 ± 0.60 A | 1.92 ± 0.78 B | 1.31 ± 0.35 A | 2.55 ± 1.05 C | 1.14 ± 0.27 A |
Total | 395.56 ± 5.20 | 268.36 ± 7.05 | 328.57 ± 13.72 | 441.85 ± 20.50 | 380.87 ± 21.57 | 471.13 ± 19.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Yu, W.; Xie, J. Effect of Glazing with Different Materials on the Quality of Tuna During Frozen Storage. Foods 2020, 9, 231. https://doi.org/10.3390/foods9020231
Wang J, Yu W, Xie J. Effect of Glazing with Different Materials on the Quality of Tuna During Frozen Storage. Foods. 2020; 9(2):231. https://doi.org/10.3390/foods9020231
Chicago/Turabian StyleWang, Jinfeng, Wenhui Yu, and Jing Xie. 2020. "Effect of Glazing with Different Materials on the Quality of Tuna During Frozen Storage" Foods 9, no. 2: 231. https://doi.org/10.3390/foods9020231
APA StyleWang, J., Yu, W., & Xie, J. (2020). Effect of Glazing with Different Materials on the Quality of Tuna During Frozen Storage. Foods, 9(2), 231. https://doi.org/10.3390/foods9020231