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Abstract

:

Honey adulteration is a major issue in food production, which may reduce the effective components in honey and have a detrimental effect on human health. Herein, laser-induced breakdown spectroscopy (LIBS) combined with chemometric methods was used to fast quantify the adulterant content. Two common types of adulteration, including mixing acacia honey with high fructose corn syrup (HFCS) and rape honey, were quantified with univariate analysis and partial least squares regression (PLSR). In addition, the variable importance was tested with univariable analysis and feature selection methods (genetic algorithm (GA), variable importance in projection (VIP), selectivity ratio (SR)). The results indicated that emissions from Mg II 279.58, 280.30 nm, Mg I 285.25 nm, Ca II 393.37, 396.89 nm, Ca I 422.70 nm, Na I 589.03, 589.64 nm, and K I 766.57, 769.97 nm had compact relationship with adulterant content. Best models for detecting the adulteration ratio of HFCS 55, HFCS 90, and rape honey were achieved by SR-PLSR, VIP-PLSR, and VIP-PLSR, with root-mean-square error (RMSE) of 8.9%, 8.2%, and 4.8%, respectively. This study provided a fast and simple approach for detecting honey adulteration.
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1. Introduction


Food adulteration is an illegal activity of food production, which may threaten food quality and safety. On one hand, the nutritional value of food is limited because of the reduction of effective components in food. On the other hand, the adulterants may have a detrimental effect on human health. Several scandals concerning food adulteration have been reported around the world [1,2,3]. Honey is one of the most commonly adulterated foods because of its economical purpose and wide use. There are two main approaches for honey adulteration. One is to mix pure honey with sugar-based adulterants, and the other is to adulterate high-quality honey with inferior honey. These two cases will be explored in this study.



The adulterant usually has a similar constituent or characteristic with the pure honey, and it is hard to distinguish from the appearance. Several studies concerning honey adulteration detection have been reported. Amiry et al. [4] discriminated adulterated honey (mix pure honey with date syrup and invert sugar syrup) with linear discriminant analysis. Different parameters including color indices, rheological, physical, and chemical parameters were used as variables for discrimination. Physical and chemical parameters achieved the best results, with accuracy above 95%. The results highlighted the use of physical and chemical parameters to detect honey adulteration. In addition, Arroyo-Manzanares et al. [5] used gas chromatography-ion mobility spectrometry to detect sugar cane or corn syrup adulterated honey; seven out of nine commercial honeys were classified as adulterated samples. Traditionally, the chemical features of honey are detected with wet chemical analysis, which is time and labor consuming. Hence, several rapid analytical methods based on electronic and optical techniques were proposed by other researchers, e.g., electronic nose [6], electronic tongue [6], fluorescence spectroscopy [7], visible-near infrared spectroscopy [8,9]. The ‘fingerprint information’ of honey could be rapidly obtained by these sensors, and the adulterated honey could be distinguished with the help of chemometric methods.



For its part, laser-induced breakdown spectroscopy (LIBS), which allows elemental analysis, may be useful for honey authenticity. The elemental information of honey can be obtained through analyzing the atomic emission spectroscopy from plasma which is induced by a laser. It has the advantages of fast detection, multi-elemental analysis, and environmentally friendly feature [10]. As a novel approach in food, it has been used for regional discrimination [11] and elemental detection [12,13,14]. Because LIBS spectrum often contains numerous variables, chemometric methods are usually used to figure out the useful information and establish models for food adulteration detection. Recently, LIBS was used to classify the botanical origins of honey, and detect rice syrup adulterated samples [15]. However, the adulterant content in honey should be further quantified. Herein, LIBS combined with partial least squares regression was used as an analytical tool for fast quantification of honey adulterant content.



In this study, acacia honey mixed with high fructose corn syrup (HFCS) and rape honey were analyzed by LIBS. The specific objectives were to: (1) analyze the LIBS spectral features of pure honey and adulterants; (2) determine the feature variables that are related to adulteration; (3) quantify the adulterant content with univariate and multivariate analysis.




2. Materials and Methods


2.1. Sample Preparation


Honey including acacia honey (Guanshengyuan Co., Ltd, Shanghai, China) and rape honey (Yaoquan Food Co., Ltd, Yunnan, China) were collected from main producers in China, and two kinds of HFCS with different fructose concentrations (F55 and F90) were purchased from markets. HFCS F55 contains 55% fructose, and HFCS F90 contains 90% fructose. In this case, acacia honey was considered as pure honey, and HFCS (F55 and F90) and rape honey were used as adulterants.



Honey adulteration was prepared by mixing the acacia honey with HFCS F55, HFCS F90, and rape honey. To establish models for quantifying adulterant content, acacia honey was adulterated with HFCS and rape honey at 21 different percentages (0%, 5%, 10%, 15%, 20%, 25%, 30%, 35,% 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, and 100%). In addition, adulterated samples for external prediction were prepared at 13 different adulteration rates, i.e., 0%, 8%, 16%, 24%, 32%, 40%, 48%, 56%, 64%, 72%, 80%, 88%, and 96%. The adulteration rates of 0% and 100% indicated pure acacia honey and pure adulterant, respectively. All sample adulteration was performed in three replications, so there were 63 samples for calibration, and 39 samples for prediction. After mixing, all samples were kept in a water bath at 37 °C for 12 h to ensure homogeneity.




2.2. LIBS Measurement


A laboratory-assembled LIBS device was used for honey adulteration detection. The detailed description of the device was introduced in our previous published article [16]. First, 8 g of sample was added in 12-well plates and placed in a X-Y-Z moving stage. A pulse laser (Vlite 200, Beamtech, Beijing, China) operated at 532 nm was used to ablate the sample with energy of 80 mJ. Then, emission light from induced plasma was transferred into an Echelle spectrograph (ME 5000, Andor, Belfast, UK), and detected by an intensified charge coupled device (ICCD, DH334T-18F-03, Andor, Belfast, UK). To improve the signal-to-background ratio, the delay time, integral time, and relative gain of ICCD camera were set at 2 µs, 10 µs, and 26. Single shot scanning was performed in an ablation region of 10 mm × 10 mm with resolution of 1 mm. Hence, 100 successive spectra were collected for each sample, the spectra were averaged to minimize the sample inhomogeneity. Because of the advantages of LIBS, no sample preparation was needed, and the total detection time for one sample was less than two minutes.




2.3. Data Analysis


Because the peak in LIBS spectrum corresponds to the emission from a certain element or molecule band, the observed peak intensity was used as the variable for analysis. To establish a model for quantifying adulterant content, PLSR was used. In addition, several feature selection methods based on PLSR were used to determine the key LIBS emissions that related to the adulterant content.



PLSR is a commonly and widely used multivariate method for quantitative analysis. It projects the raw variables into new dimensions with the maximal variation, and regresses the first few new variables (latent variable, LV) with respond value [17]. In this case, the raw variables were peak intensities of main emissions, and the respond value was the adulterant content in honey. Before modeling, the auto scale preprocessing method, which used mean-centering followed by dividing each variable by the standard variation of the variable, was used to correct the scaling of each variable. Ten-folds random cross-validation was used to determine the number of LV, and prevent the overfitting. In addition, the straightforward implementation of a statistically inspired modification of the PLS (SIMPLS) algorithm was used to calculate the PLS model parameters [18].



Three feature selection methods including genetic algorithm (GA), variable importance in projection (VIP), and the selectivity ratio (SR) were used in this case. GA is a subset search algorithm that was inspired by biological evolution theory and natural selection [19]. The subset of relevant variables selected by GA is then fitted with PLSR to evaluate the performance, and determine the feature variables. Different from GA, the variable selection based on VIP and SR is carried out by using a threshold of some parameters from the PLSR model. VIP calculates the accumulation of PLS weights, and SR defines the ratio between explained variance and the unexplained variance in the PLS model. The larger values of VIP and SR, the greater contribution of the variable. For the criteria of variable selection, VIP follows the rule of ‘greater than one rule’, and SR follows the F-test (95%) criterion [20]. In this case, the variables with VIP value greater than 1 and SR value greater than 1.532 were selected as important variables.



After modeling, some measures should be used to evaluate the performance. In this case, model performance was evaluated with correlation coefficient (r) and root-mean-square error (RMSE). The r value measures the relationship between predicted adulterant content and actual value, and the RMSE value measures the predictive error. The larger the r value and the smaller the RMSE value, the better the model performance. All data analyses were carried out in the MATLAB (v2019b, The MathWorks Inc., Natick, MA, USA).





3. Results and Discussion


3.1. LIBS Spectral Characteristics


Before quantification, LIBS spectral characteristics of acacia honey, rape honey, HFCS F55, and HFCS F90 were first analyzed (Figure 1). All the LIBS spectra ranged from 240 to 860 nm. In general, the average LIBS spectra for different samples were similar except some emissions in certain spectral range. It was credited to the similar constituent of honey and HFCS. In general, honey contains 75% saccharides (mainly glucose and fructose), 15% water, amino acids, and minerals, etc. HFCS mainly contains glucose and fructose. According to the concentration of fructose, the HFCS can be divided into three categories: F42 (42% fructose), F55 (55% fructose), and F90 (90% fructose). Hence, the main components ablated by laser in both honey and HFCS were glucose and fructose. As shown in Figure 1, the emissions from C, H, O, and N were observed in all samples. The molecular band CN that usually appears in an organic sample when analyzed in air atmosphere was also found in this case.



Some differences in elemental emissions could be observed between honey and HFCS. It was obvious that emissions from Mg, Ca, and K appeared in the spectra of honey, while it cannot be found in the spectra of HFCS. It indicated that the concentrations of Mg, Ca, and K in honey were significantly higher than those in HFCS. In addition, there was no obvious difference between acacia honey and rape honey, except relatively stronger emission of Na in acacia honey. These elemental differences might be used to differentiate the adulterants. However, it was hard to quantify the adulterant content simply by analyzing spectrum. Hence, some modeling methods were further used to quantify the adulterant content.




3.2. Univariate Analysis


Univariate analysis was used to explore the relationship between adulterant content and single variable and quantify the adulteration. In this case, the peak intensities of main emissions from samples were used for analysis. Univariate analysis was performed by regressing the peak intensity of each emission with the adulterant content, and r and RMSE were used to evaluate the results. The corresponding element for each emission could be identified with the National Institute of Standard and Technology (NIST, Gaithersburg, Maryland, USA) database [21]. Table 1 shows the results of univariate analysis between main emission lines and adulterant content. Forty-three univariate models were established. The variables contained emissions from C, Si, Mg, Ca, Na, K, N, H, O, and CN. Four variables with emissions of 748.47, 794.83, 795.17, and 822.43 nm were marked with unknown, because they could not be identified with the NIST database or references.



In general, the models for quantifying adulterant content of HFCS F90 had the best results with higher r and lower RMSE. It indicated that high concentration of fructose in HFCS led to greater spectral difference and contributed to the univariate analysis. In addition, for HFCS F90 and HFCS F55, the emissions from Mg II 279.58, 280.30 nm, Mg I 285.25 nm, Ca II 393.37, 396.89 nm, Ca I 422.70 nm, Na I 589.03, 589.63 nm, and K I 766.57, 769.97 nm had compact relationship with the adulterant content, with r > 0.9 and RMSE < 11.0%. For rape honey, models based on emissions from Na I 589.03 and 589.63 nm had good results, with r of 0.919 and 0.903, and RMSE of 12.0% and 13.0%. It indicated that emissions from mineral elements played an important role in adulteration quantification. It also verified the LIBS spectral difference between acacia honey and adulterants.




3.3. Quantification of Adulterant Content Based on Multivariate Analysis


Multivariate analysis was further used to quantify the adulterant content. First, all variables in univariate analysis were used as the inputs of PLS models. As seen in Table 2, PLS models based on all variables achieved good results for all three types of adulteration. The r values for HFCS F55, HFCS F90, rape honey in the prediction set were 0.962, 0.980, 0.988, and the RSME values were 15.6%, 16.6%, 4.7%, respectively. The latent variables for these three models were 4, 4, 5, which were determined by cross validation. The results of PLS models were better than those of univariate analysis. It also verified the advantages of multivariate analysis. The combination of information from multiple emissions contributed to the adulterant content quantification.



In addition, results of PLS models based on feature variables (selected by GA, VIP, and SR) are also shown in Table 2. In general, prediction results after feature selection were similar or better than those based all variables. The irrelevant variables in models might worsen the modeling performance [22,23], which also verified the necessity of feature selection. Only one exception happened for the GA-PLS model in HFCS F55 quantification. The RMSE value in prediction set was 0.320, which is greatly worse than that without feature selection (0.156). It might be credited to the selected variables by the GA method. As shown in Figure 2, lots of irrelevant variables were selected. The GA method might not be suitable for feature selection in the honey adulteration with HFCS F55. With the consideration of variable number and prediction performance, the models marked with bold achieved the best results. The RMSE value for HFCS 55, HFCS F90, and rape honey in the prediction set were 8.9%, 8.2%, and 4.8%, respectively. In addition, similar results were achieved in 10-folds cross-validation, and RMSE value for HFCS 55, HFCS F90, and rape honey were 8.5%, 6.5%, and 4.6%, respectively.



We also compared the variables selected with GA, VIP, and SR methods (Figure 2). Row 1, 5, 9 showed the correlation coefficient between each variable and adulterant content of HFCS F55, HFCS F90, and rape honey, respectively. The values of correlation coefficient were in the range of 0 to 1. Other rows represented the variables selected by GA, VIP, and SR methods. Selected variables were represented in blue, and non-selected variables were in white. As shown in Figure 2, VIP and SR methods chose the variables with a high correlation coefficient, while some variables with a low correlation coefficient were selected by the GA method. It was related to the principal of feature selection methods. For the GA method, the variables were randomly combined and verified by PLSR. The variables were selected based on the results of PLSR modeling. For VIP and SR methods, the contribution of each variable was considered in the selection [20]. The variables selected by the GA method might be easily affected when testing with external samples. In addition, VIP and SR methods had some common variables, while the number of selected variables was different. It might be credited to the different threshold measure of each method. Hence, VIP and SR methods might be recommended for feature selection in quantification of honey adulterant content.



The scatter plot of the best model for quantifying adulteration ratio of HFCS 55, HFCS 90, and rape honey is shown in Figure 3. Among these three models, the quantification for rape honey achieved the best result, with r and RMSE of 0.988 and 4.8% in the prediction set. The samples in calibration and prediction sets distributed closely around the regression lines, and the regression lines almost went through original point. The emissions from Mg II 279.58, 280.30 nm, Mg I 285.25 nm, Ca II 393.37, 396.89 nm, Ca I 422.70 nm, Na I 589.03, 589.64 nm, and K I 766.57, 769.97 nm, which were the feature variables in the rape honey quantification, were also included in the other two models. It indicated that these variables might play an important role in honey adulteration analysis.





4. Conclusions


In this study, LIBS combined with chemometric methods was used to detect honey adulteration. The adulterant content of acacia honey (adulterated with HFCS 55, HFCS 90, and rape honey) was successfully quantified. SR and VIP methods detected effectively the most relevant variables for adulteration determination. The emissions from Mg II 279.58, 280.30 nm, Mg I 285.25 nm, Ca II 393.37, 396.89 nm, Ca I 422.70 nm, Na I 589.03, 589.64 nm, and K I 766.57, 769.97 nm were considered as feature variables and played an important role in modeling. The importance of these variables was also verified in univariate analysis. The SR-PLSR, VIP-PLSR, and VIP-PLSR achieved the best results for detecting an adulteration ratio of HFCS F55, HFCS 90, and rape honey, with RMSE of 8.9%, 8.2%, and 4.8%, respectively. The results indicated the promising possibility of using LIBS and chemometric methods for quantification in honey adulteration. In addition, some research concerning model transfer could be explored, and more types of acacia honey as well as adulterants could be included in modeling in further study, which might be helpful for practical application.
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Figure 1. Average laser-induced breakdown spectroscopy (LIBS) spectrum of honey (acacia honey and rape honey) and high fructose corn syrup (HFCS 55 and HFCS 90). 
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Figure 2. Feature variables selected with genetic algorithm (GA), variable importance in projection (VIP), and selectivity ratio (SR) methods. Row 1, 5, 9 shows the univariate analysis result between each variable and adulterant content of HFCS F55, HFCS F90, and rape honey, respectively. Cells with a gradient of blue color indicated the correlation coefficient. Other rows represented the variables selected by GA, VIP, and SR methods. Selected variables were represented in blue, and non-selected variables were in white. 
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Figure 3. Scatter plot of actual adulterant content vs. LIBS measured adulterant content. Quantification of adulterant content in the mixture of (a) acacia honey and HFCS F55 based on the SR-PLSR model; (b) acacia honey and HFCS 90 based on the VIP-PLSR model; (c) acacia honey and rape honey based on the VIP-PLSR model. 
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Table 1. Results of univariate analysis based on peak intensities of main emissions.
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No.

	
Observed

Wavelength (nm)

	
Element

	
HFCS F55

	
HFCS F90

	
Rape Honey




	
r

	
RMSE

	
r

	
RMSE

	
r

	
RMSE






	
1

	
247.88

	
C I

	
0.493

	
26.4%

	
0.823

	
17.2%

	
0.066

	
30.2%




	
2

	
250.72

	
Si I

	
0.176

	
29.8%

	
0.204

	
29.6%

	
0.154

	
29.9%




	
3

	
251.45

	
Si I

	
0.180

	
29.8%

	
0.214

	
29.6%

	
0.153

	
29.9%




	
4

	
251.64

	
Si I

	
0.204

	
29.7%

	
0.222

	
29.5%

	
0.166

	
29.8%




	
5

	
251.94

	
Si I

	
0.193

	
29.7%

	
0.205

	
29.6%

	
0.159

	
29.9%




	
6

	
252.44

	
Si I

	
0.195

	
29.7%

	
0.210

	
29.6%

	
0.149

	
29.9%




	
7

	
252.88

	
Si I

	
0.200

	
29.7%

	
0.210

	
29.6%

	
0.158

	
29.9%




	
8

	
279.58

	
Mg II

	
0.932

	
10.9%

	
0.936

	
10.6%

	
0.516

	
25.9%




	
9

	
280.30

	
Mg II

	
0.922

	
11.7%

	
0.934

	
10.8%

	
0.441

	
27.2%




	
10

	
285.25

	
Mg I

	
0.959

	
8.6%

	
0.959

	
8.6%

	
0.517

	
25.9%




	
11

	
288.20

	
Si I

	
0.194

	
29.7%

	
0.227

	
29.5%

	
0.161

	
29.9%




	
12

	
385.07

	
CN 4-4

	
0.550

	
25.3%

	
0.828

	
17.0%

	
0.487

	
26.4%




	
13

	
385.49

	
CN 3-3

	
0.576

	
24.8%

	
0.820

	
17.3%

	
0.454

	
27.0%




	
14

	
386.17

	
CN 2-2

	
0.596

	
24.3%

	
0.821

	
17.3%

	
0.442

	
27.2%




	
15

	
387.13

	
CN 1-1

	
0.473

	
26.7%

	
0.828

	
17.0%

	
0.460

	
26.9%




	
16

	
388.33

	
CN 0-0

	
0.514

	
26.0%

	
0.824

	
17.2%

	
0.466

	
26.8%




	
17

	
393.37

	
Ca II

	
0.957

	
8.8%

	
0.948

	
9.6%

	
0.694

	
21.8%




	
18

	
396.89

	
Ca II

	
0.959

	
8.6%

	
0.951

	
9.3%

	
0.652

	
22.9%




	
19

	
422.70

	
Ca I

	
0.953

	
9.2%

	
0.942

	
10.1%

	
0.707

	
21.4%




	
20

	
589.03

	
Na I

	
0.937

	
10.6%

	
0.973

	
6.9%

	
0.919

	
12.0%




	
21

	
589.64

	
Na I

	
0.936

	
10.6%

	
0.975

	
6.8%

	
0.903

	
13.0%




	
22

	
656.33

	
H α 

	
0.617

	
23.8%

	
0.538

	
25.5%

	
0.243

	
29.4%




	
23

	
715.77

	
O I

	
0.316

	
28.7%

	
0.766

	
19.5%

	
0.227

	
29.5%




	
24

	
742.45

	
N I

	
0.220

	
29.5%

	
0.739

	
20.4%

	
0.268

	
29.2%




	
25

	
744.30

	
N I

	
0.197

	
29.7%

	
0.738

	
20.4%

	
0.278

	
29.1%




	
26

	
746.92

	
N I

	
0.162

	
29.9%

	
0.742

	
20.3%

	
0.248

	
29.3%




	
27

	
748.47

	
Unknown

	
0.507

	
26.1%

	
0.632

	
23.4%

	
0.220

	
29.5%




	
28

	
766.57

	
K I

	
0.943

	
10.1%

	
0.960

	
8.4%

	
0.756

	
19.8%




	
29

	
769.97

	
K I

	
0.931

	
11.1%

	
0.959

	
8.6%

	
0.750

	
20.0%




	
30

	
777.47

	
O I

	
0.183

	
29.8%

	
0.760

	
19.7%

	
0.215

	
29.6%




	
31

	
794.83

	
Unknown

	
0.316

	
28.7%

	
0.758

	
19.7%

	
0.215

	
29.6%




	
32

	
795.17

	
Unknown

	
0.299

	
28.9%

	
0.773

	
19.2%

	
0.206

	
29.6%




	
33

	
818.57

	
N I

	
0.170

	
29.9%

	
0.740

	
20.4%

	
0.256

	
29.3%




	
34

	
818.86

	
N I

	
0.217

	
29.6%

	
0.736

	
20.5%

	
0.265

	
29.2%




	
35

	
820.10

	
N I

	
0.232

	
29.5%

	
0.746

	
20.2%

	
0.237

	
29.4%




	
36

	
821.14

	
N I

	
0.221

	
29.5%

	
0.744

	
20.2%

	
0.247

	
29.3%




	
37

	
821.68

	
N I

	
0.244

	
29.4%

	
0.725

	
20.8%

	
0.250

	
29.3%




	
38

	
822.28

	
N I

	
0.067

	
30.2%

	
0.782

	
18.9%

	
0.305

	
28.8%




	
39

	
822.43

	
Unknown

	
0.290

	
29.0%

	
0.706

	
21.4%

	
0.303

	
28.8%




	
40

	
824.32

	
N I

	
0.291

	
29.0%

	
0.719

	
21.0%

	
0.285

	
29.0%




	
41

	
844.73

	
O I

	
0.252

	
29.3%

	
0.743

	
20.3%

	
0.260

	
29.2%




	
42

	
856.86

	
N I

	
0.325

	
28.7%

	
0.729

	
20.7%

	
0.275

	
29.1%




	
43

	
859.49

	
N I

	
0.357

	
28.3%

	
0.706

	
21.5%

	
0.316

	
28.7%








Note: The shade color of the table represents the performance of univariate analysis. The shade color of being green indicates the best compact relationship (r = ±1) and the lowest predictive error (RMSE = 0).
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Table 2. Multivariate analysis results based on partial least square regression (PLSR) and feature selection methods.






Table 2. Multivariate analysis results based on partial least square regression (PLSR) and feature selection methods.





	
Adulterant

	
Method

	
No. of LV

	
No. of Var.

	
Calibration

	
C.V.

	
Prediction




	
r

	
RMSE

	
r

	
RMSE

	
r

	
RMSE






	
HFCS

F55

	
PLSR

	
4

	
43

	
0.977

	
6.5%

	
0.965

	
8.0%

	
0.962

	
15.6%




	
GA-PLSR

	
4

	
12

	
0.983

	
5.6%

	
0.978

	
6.4%

	
0.794

	
32.0%




	
VIP-PLSR

	
5

	
16

	
0.982

	
5.7%

	
0.966

	
8.1%

	
0.938

	
18.6%




	
SR-PLSR

	
1

	
11

	
0.965

	
7.9%

	
0.960

	
8.5%

	
0.966

	
8.9%




	
HFCS

F90

	
PLSR

	
4

	
43

	
0.973

	
7.0%

	
0.964

	
8.2%

	
0.980

	
16.6%




	
GA-PLSR

	
5

	
19

	
0.979

	
6.1%

	
0.972

	
7.3%

	
0.985

	
11.3%




	
VIP-PLSR

	
5

	
15

	
0.982

	
5.7%

	
0.977

	
6.5%

	
0.980

	
8.2%




	
SR-PLSR

	
5

	
20

	
0.981

	
5.9%

	
0.973

	
7.0%

	
0.982

	
9.4%




	
Rape honey

	
PLSR

	
5

	
43

	
0.993

	
3.6%

	
0.990

	
4.3%

	
0.988

	
4.7%




	
GA-PLSR

	
4

	
21

	
0.994

	
3.3%

	
0.990

	
4.4%

	
0.988

	
4.7%




	
VIP-PLSR

	
3

	
10

	
0.991

	
4.1%

	
0.989

	
4.6%

	
0.988

	
4.8%




	
SR-PLSR

	
1

	
2

	
0.912

	
12.4%

	
0.874

	
15.0%

	
0.943

	
11.3%








Note: No. of LV: number of latent variables; No. of var.: number of variables; C.V.: cross-validation; r: correlation coefficient; RMSE: root-mean-square error; GA: genetic algorithm; VIP: variable importance in projection; SR: selectivity ratio.
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