Effects of Nitrogen Application in the Wheat Booting Stage on Glutenin Polymerization and Structural–Thermal Properties of Gluten with Variations in HMW-GS at the Glu-D1 Locus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Experimental Design
2.3. Separation and Identification of Gliadin and Glutenin
2.4. Near-infrared Reflectance (NIR) Analysis of Grains
2.5. Formation of Total Protein and Its Compositions during Grain Development
2.6. Determination of Nitrogen Use Efficiency (NUE) and Grain Yield
2.7. Preparation of Gluten Samples
2.8. Determination of Sulfhydryl Groups (-SH) and Disulfide Bond (-S-S-)
2.9. Fourier Transform Infrared Spectroscopy (FTIR) Analysis of Gluten
2.10. Thermal Properties of Gluten
2.11. Dough Mixing Properties
2.12. Microstructure Analysis of Wheat Dough Using Confocal Laser Scanning Microscopy (CLSM) and Image Analysis
2.13. Statistical Analysis
3. Results and Discussion
3.1. Identification of HMW-GS Compositions
3.2. Analysis of Nitrogen Use Efficiency and Grain Yield of Wheat Lines
3.3. Grain Quality Traits of Wheat with Variations in HMW-GS at the Glu-D1 Locus Under Different N Treatments
3.4. Dynamic Changes in Total Protein and Its Composition Contents of Grains during Grain Development under N Fertilizer Application
3.5. Changes in Sulfhydryl Groups (-SH) and Disulfide Bonds (-S-S-) in Gluten with Variations in HMW-GS at the Glu-D1 Locus under Different N Treatments
3.6. Effect of N Application on the Secondary Structures of Gluten with Variations in HMW-GS at the Glu-D1 Locus
3.7. Effects of N on the Thermal Properties of Gluten with Variations in HMW-GS at the Glu-D1 Locus
3.8. Dough Mechanical Mixing Properties of NILs
3.9. Effects of N on the Microstructure of Gluten with Variations in HMW-GS at the Glu-D1 Locus
3.10. Correlation Analysis of the Quality–related Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO, FOASTAT, Food and Agriculture Data. 2016. Available online: http://www.fao.org/faostat (accessed on 15 March 2020).
- Shewry, P.R. Wheat. J. Exp. Bot. 2009, 60, 1537–1553. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.R.; Chen, X.Y.; Wang, L.L.; Yang, Y.; Zhu, X.W.; Shao, S.S.; Cui, W.; Xiong, F. Novel insights into the effect of nitrogen on storage protein biosynthesis and protein body development in wheat caryopsis. J. Exp. Bot. 2017, 68, 2259–2274. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.X.; Wang, W.L.; Huang, X.; Liu, M.M.; Hebelstrup, K.H.; Yang, D.L.; Cai, J.; Wang, X.; Zhou, Q.; Cao, W.; et al. Nitrogen topdressing timing modifies the gluten quality and grain hardness related protein levels as revealed by iTRAQ. Food Chem. 2019, 277, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Plessis, A.; Ravel, C.; Bordes, J.; Francois, B.; Martre, P. Association study of wheat grain protein composition reveals that gliadin and glutenin composition are trans-regulated by different chromosome regions. J. Exp. Bot. 2013, 64, 3627–3644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, C.; Erley, G.S.A.; Rücker, S.; Koehler, P.; Obenauf, U.; Mühling, K.H. Late nitrogen application increased protein concentration but not baking quality of wheat. J. Plant Nutr. Soil Sci. 2016, 179, 591–601. [Google Scholar] [CrossRef]
- Foulkes, M.J.; Hawkesford, M.J.; Barraclough, P.B.; Holdsworth, M.J.; Kerr, S.; Kightley, S.; Shewry, P.R. Identifying traits to improve the nitrogen economy of wheat: recent advances and future prospects. Field Crop Res. 2009, 114, 329–342. [Google Scholar] [CrossRef]
- Garrido-Lestache, E.; López-Bellido, R.J.; López-Bellido, L. Effect of N rate, timing and splitting and N type on bread-making quality in hard red spring wheat under rainfed Mediterranean conditions. Field Crop Res. 2004, 85, 213–236. [Google Scholar] [CrossRef]
- García-Molina, M.D.; Francisco, B. Characterization of changes in gluten proteins in low-gliadin transgenic wheat lines in response to application of different nitrogen regimes. Front. Plant Sci. 2017, 8, 257–269. [Google Scholar] [CrossRef] [Green Version]
- Yue, H.W.; Jiang, D.; Dai, T.B.; Qin, X.D.; Jing, Q.; Cao, W.X. Effect of nitrogen application rate on content of glutenin macropolymer and high molecular weight glutenin subunits in grains of two winter wheat cultivars. J. Cereal Sci. 2007, 45, 248–256. [Google Scholar] [CrossRef]
- Lancashire, P.; Bleiholder, H.; Langeluddecke, P.; Stauss, R.; Asselt, T.; Weber, E.; Witzenberger, A. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Gupta, R.B.; Khan, K.; Macritchie, F. Biochemical basis of flour properties in bread wheats. i. Effects of variation in the quantity and size distribution of polymeric protein. J. Cereal Sci. 1993, 18, 23–41. [Google Scholar] [CrossRef]
- Naeem, H.A.; MacRitchie, F. Polymerization of glutenin during grain development in near-isogenic wheat lines differing at Glu-D1 and Glu-B1 in greenhouse and field. J. Cereal Sci. 2005, 41, 7–12. [Google Scholar] [CrossRef]
- Ferrise, R.; Bindi, M.; Martre, P. Grain filling duration and glutenin polymerization under variable nitrogen supply and environmental conditions for durum wheat. Field Crop Res. 2015, 171, 23–31. [Google Scholar] [CrossRef]
- Zhu, J.; Khan, K.; Huang, S.; O’Brien, L. Allelic variation at Glu-D1 locus for high molecular weight (HMW) glutenin subunits: quantification by multistacking SDS-PAGE of wheat grown under nitrogen fertilization. Cereal Chem. 2007, 76, 915–919. [Google Scholar] [CrossRef]
- Panozzo, A.; Manzocco, L.; Lippe, G.; Nicoli, M.C. Effect of pulsed light on structure and immunoreactivity of gluten. Food Chem. 2016, 194, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Georget, D.M.R.; Belton, P.S. Effects of temperature and water content on the secondary structure of wheat gluten studied by FTIR spectroscopy. Biomacromolecules 2006, 7, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Nawrocka, A.; Szymańska-Chargot, M.; Miś, A.; Wilczewska, A.Z.; Markiewicz, K.H. Effect of dietary fibre polysaccharides on structure and thermal properties of gluten proteins‒A study on gluten dough with application of FT-Raman spectroscopy, TGA and DSC. Food Hydrocolloids 2017, 69, 410–421. [Google Scholar] [CrossRef]
- Gao, X.; Liu, T.H.; Yu, J.; Li, L.Q.; Lv, Q.; Feng, Y.; Li, X. Influence of high-molecular-weight glutenin subunit composition at Glu-B1 locus on secondary and micro structures of gluten in wheat (Triticum aestivum L.). Food Chem. 2016, 197, 1184–1190. [Google Scholar] [CrossRef]
- Liu, T.H.; Gao, X.; Li, L.Q.; Lv, Q.; Du, D.F.; Cheng, X.; Zhao, Y.; Liu, Y.; Li, X. Effects of HMW-GS at Glu-B1 locus on the polymerization of glutenin during grain development and on the secondary and micro-structures of gluten in wheat (Triticum aestivum L.). J. Cereal Sci. 2016, 72, 101–107. [Google Scholar] [CrossRef]
- Song, L.J.; Li, L.Q.; Zhao, L.Y.; Liu, Z.Z.; Xie, T.T.; Li, X.J. Absence of Dx2 at Glu-D1 locus weakens gluten quality potentially regulated by expression of nitrogen metabolism enzymes and glutenin-related genes in wheat. Int. J. Mol. Sci. 2020, 21, 1383. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.F.; Sun, X.H.; Zhang, Y.Y.; Wang, R.H.; Yan, X. Interactions between soy protein hydrolyzates and wheat proteins in noodle making dough. Food Chem. 2018, 245, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Singh, N.; Kaur, S.; Ahlawat, A.K.; Singh, A.M. Relationships of flour solvent retention capacity, secondary structure and rheological properties with the cookie making characteristics of wheat cultivars. Food Chem. 2014, 158, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Dhaka, V.; Gulia, N.; Khatkar, B.S. Application of Mixolab to assess the bread making quality of wheat varieties. Sci. Rep. 2012, 1, 183–190. [Google Scholar] [CrossRef]
- Gao, X.; Liu, T.H.; Ding, M.Y.; Wang, J.; Li, C.L.; Wang, Z.H.; Li, X. Effects of HMW-GS Ax1 or Dx2 absence on the glutenin polymerization and gluten micro structure of wheat (Triticum aestivum L.). Food Chem. 2018, 240, 626–633. [Google Scholar] [CrossRef]
- Gupta, R.B.; Masci, S.; Lafiandra, D.; Bariana, H.S.; MacRitchie, F. Accumulation of protein subunits and their polymers in developing grains of hexaploid wheats. J. Exp. Bot. 1996, 47, 1377–1385. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Branlard, G.; Griffin, W.B.; Mcneil, D.L. The effect of nitrogen and sulphur fertilisation and their interaction with genotype on wheat glutenins and quality parameters. J. Cereal Sci. 2000, 31, 185–194. [Google Scholar] [CrossRef]
- Wieser, H. Chemistry of gluten proteins. Food Microbiol. 2007, 24, 115–119. [Google Scholar] [CrossRef]
- Lamacchia, C.; Baiano, A.; Lamparelli, S.; Terracone, C.; Trani, A.; Luccia, A.D. Polymeric protein formation during pasta-making with barley and semolina mixtures, and prediction of its effect on cooking behaviour and acceptability. Food Chem. 2011, 129, 319–328. [Google Scholar] [CrossRef]
- Zhao, L.; Li, L.; Liu, G.; Chen, L.; Liu, X.; Zhu, J.; Li, B. Effect of freeze–thaw cycles on the molecular weight and size distribution of gluten. Food Res. Int. 2013, 53, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.X.; Xu, D.C.; Hebelstrup, K.H.; Yang, D.L.; Cai, J.; Wang, X.; Jiang, D. Nitrogen topdressing timing modifies free amino acids profiles and storage protein gene expression in wheat grain. BMC Plant Biol. 2018, 18, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.T.; Islam, S.; She, M.Y.; Diepeveen, D.; Zhang, Y.J.; Tang, G.X.; Zhang, J.J.; Ma, W. Wheat grain protein accumulation and polymerization mechanisms driven by nitrogen fertilization. Plant J. 2018, 96, 1160–1177. [Google Scholar] [CrossRef] [PubMed]
- Esselink, E.F.J.; Aalst, H.V.; Maliepaard, M.; Duynhoven, J.P.M. Long-term storage effect in frozen dough by spectroscopy and microscopy. Cereal Chem. 2003, 80, 396–403. [Google Scholar] [CrossRef]
- Wang, P.; Xu, L.; Nikoo, M.; Ocen, D.; Wu, F.; Yang, N.; Jin, Z.; Xu, X. Effect of frozen storage on the conformational, thermal and microscopic properties of gluten: Comparative studies on gluten-, glutenin- and gliadin-rich fractions. Food Hydrocoll. 2014, 35, 238–246. [Google Scholar] [CrossRef]
- Zhu, J.; Li, L.Q.; Zhao, L.Y.; Song, L.J.; Li, X.J. Effects of freeze-thaw cycles on the structural and thermal properties of wheat gluten with variations in HMW-GS at the Glu-B1 locus. J. Cereal Sci. 2019, 87, 266–272. [Google Scholar] [CrossRef]
- Singh, N.; Kaur, A.; Katyal, M.; Bhinder, S.; Ahlawat, A.K.; Singh, A.M. Diversity in quality traits amongst Indian wheat varieties II: Paste, dough and muffin making properties. Food Chem. 2016, 197, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Bernklau, I.; Lucas, L.; Jekle, M.; Becker, T. Protein network analysis – a new approach for quantifying wheat dough microstructure. Food Res. Int. 2016, 89, 812–819. [Google Scholar] [CrossRef]
Line | N Rate (kg N /ha) | Protein Area (×104 μm2) | Protein Junctions (×102) | Junction Density (×10−3) | Total Protein Length (×103 µm) | Protein Endpoints (× 102) | Lacunarity (×10−2) | Branching Rate (×10−3) | Endpoint Rate (×10−3) |
---|---|---|---|---|---|---|---|---|---|
Glu-1Dd | 0 | 12.48 ± 0.22b | 11.88 ± 0.12b | 4.55 ± 0.07b | 20.62 ± 0.27b | 5.55 ± 0.03a | 6.18 ± 0.06b | 9.52 ± 0.21b | 4.45 ± 0.08a |
90 | 12.91 ± 0.15a | 13.20 ± 0.23a | 5.06 ± 0.12a | 22.29 ± 0.13a | 4.88 ± 0.10b | 6.75 ± 0.14a | 10.22 ± 0.14a | 3.78 ± 0.06b | |
Glu-1Da | 0 | 11.06 ± 0.11b | 10.77 ± 0.21b | 4.13 ± 0.17b | 19.42 ± 0.20b | 5.33 ± 0.09a | 5.76 ± 0.11b | 9.73 ± 0.09b | 4.81 ± 0.03a |
120 | 12.64 ± 0.20a | 14.00 ± 0.42a | 5.37 ± 0.28a | 21.14 ± 0.95a | 4.69 ± 0.05b | 6.55 ± 0.12a | 11.07 ± 0.25a | 3.72 ± 0.08b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, L.; Li, L.; Zhao, L.; Liu, Z.; Li, X. Effects of Nitrogen Application in the Wheat Booting Stage on Glutenin Polymerization and Structural–Thermal Properties of Gluten with Variations in HMW-GS at the Glu-D1 Locus. Foods 2020, 9, 353. https://doi.org/10.3390/foods9030353
Song L, Li L, Zhao L, Liu Z, Li X. Effects of Nitrogen Application in the Wheat Booting Stage on Glutenin Polymerization and Structural–Thermal Properties of Gluten with Variations in HMW-GS at the Glu-D1 Locus. Foods. 2020; 9(3):353. https://doi.org/10.3390/foods9030353
Chicago/Turabian StyleSong, Lijun, Liqun Li, Liye Zhao, Zhenzhen Liu, and Xuejun Li. 2020. "Effects of Nitrogen Application in the Wheat Booting Stage on Glutenin Polymerization and Structural–Thermal Properties of Gluten with Variations in HMW-GS at the Glu-D1 Locus" Foods 9, no. 3: 353. https://doi.org/10.3390/foods9030353
APA StyleSong, L., Li, L., Zhao, L., Liu, Z., & Li, X. (2020). Effects of Nitrogen Application in the Wheat Booting Stage on Glutenin Polymerization and Structural–Thermal Properties of Gluten with Variations in HMW-GS at the Glu-D1 Locus. Foods, 9(3), 353. https://doi.org/10.3390/foods9030353